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Abstract

This report addresses two algorithms within the �eld of hidden surface removal; Painter's
algorithm and Z-bu�ering. An introduction is �rst made into the domain of computer
generated graphics and more speci�cally hidden surface removal within that area, dis-
cussing methods of culling and de�nitions within hidden surface removal. The following
sections documents the implementation, strengths, and weaknesses of the two algorithms
as well as shortly discussing the data structure known as Binary Space Partitioning. An
analysis is then given, comparing the algorithms with the help of speci�c scenarios. Fi-
nally, a discussion of combining the algorithms together with Binary Space Partitioning
is given, labeling the strengths and weaknesses of this particular combination.

Sammanfattning

Denna rapport behandlar två algoritmer inom området borttagning av skymda ytor,
Painter's algoritm och Z-bu�ring. En introduktion görs först om datorgenererade bilder i
sin helhet, och sedan mer speci�kt borttagning av skymda ytor, som diskuterer metoder
för culling och de�nitioner inom borttagning av skymda ytor. I följande avsnitt doku-
menteras implementationen, styrkorna och svagheterna av de två algoritmer samt en kort
diskussion av datastrukturen Binary Space Partitioning. En analys ges därefter, där al-
goritmerna jämförs med hjälp av speci�ka scenarion. Slutligen �nns en diskussion om att
kombinera algoritmerna tillsammans med Binary Space Partitioning ges, med kombina-
tionens styrkor och svagheter.
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1 Introduction

In today's world, computer generated three dimensional images are abundant. CGI (com-
puter generated graphics) exists in your movies, your video games, your phone, your
computer's operating system. It is especially with the growth of powerful processors and
graphics processors that the average homeowner has come to possess an extremely pow-
erful piece of equipment, whose use is almost exclusively for playing video games. With
this, the video game market has exploded, and has grown from a niche market in the late
70's into the global juggernaut of an industry it is today. With 3D computer games comes
the problem of rendering an entire virtual world, sometimes seemingly in�nite, without
slowing down due to the graphics processor's limitations. This is where hidden surfaces
enter the picture.
Hidden surfaces are abound in 3D computer graphics today. A hidden surface is where
a surface cannot be viewed by the virtual camera e.g. the player in a video game. This
renders the hidden surface useless, and thus is an unnecessary strain on the graphics
processor. Hidden surface detection is especially numerous in video games and computer
generated 3D e�ects, where the game cannot a�ord to put a heavy load on the processor.
The same scene seen from the virtual camera can have vastly larger amount of polygons
depending on if it utilizes hidden surface detection algorithms or not.

2 Problem statement

To determine if a surface is hidden, there are several hidden surface detection algorithms
employed in the �eld of 3D computer graphics today. This report will aim to show two of
the most common algorithms and compare them to each other: Z-bu�ering and Painter's
Algorithms. Then a combination of the algorithms, together with the data structure Bi-
nary Space Partitioning is discussed.

3 Approach

Through thorough analysis, I plan to compare the two algorithms. I will achieve this
by comparing the two algorithm's implementation through pseudocode, their weaknesses,
and their strengths.
I also intend to determine if a combination of the two algorithms and a tree based data
hierarchy, BSP (Binary Space Partitioning), is a valid algorithm to eliminate hidden sur-
faces.
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4 Background

The visibility problem, or hidden surface detection, is one of the �rst major problems
that arose when research began on computer graphics in the 1960's. The problem can
be generalized to compute if a set of objects in R3 are visible from a certain camera's
position and viewpoint direction. If an object is not deemed visible by the camera, then
computing and rendering the object is unnecessary. There arose two di�erent approaches
to solve the problem: object space and image space [6].

4.1 Object space

Object space algorithms calculate which objects are visible in the image plane. A typical
object space algorithm will therefore return a projection of the image plane from three
dimensions onto two [4]. Thus, object space algorithms compute images of in�nite or near
in�nite resolution, the image will be seen as �correct� no matter the size of the resolution
[6]. However, object space algorithms have a major shortcoming. The image plane can be
overly complex, and the computing can lead to polygons deemed visible by the algorithm
that actually are substantially smaller than the pixel of a screen, the standard sample
point. This means that in complex and low resolution cases, an object space algorithm is
doing a lot of unnecessary work just to a�ect the values of a single pixel [4].

4.2 Image space

Image space algorithms, on the contrary, only compute which objects that are visible
within a �nite number of sample points, often one point per pixels. An image space
algorithm can contain more than one sample point per pixel, but this is the deviation
rather than the norm [3, 5]. For each pixel in the resolution, the image space algorithm
computes which triangle is visible at that speci�c pixel. Thus, the complexity of an image
space algorithm can theoretically be much smaller than the complexity of an object space
algorithm, since the image space algorithm's complexity is limited to the amount of pixels
in the resolution of the image.

2
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5 Hidden surface removal

In order to analyze the solution to a problem, one must �rst de�ne the problem. HSR
(hidden surface removal) is the process used to determine which surfaces and parts of
surfaces are not visible from a certain viewpoint. Hidden surfaces are thus de�ned as
polygons that are not visible from the view point. The removal of such surfaces are
needed in order to render full virtual environments. Removing hidden surfaces is one
of the fundamental problems of generating computer graphics, and it has been so since
CGI's birth in the late 60's. Sutherland, one of the early pioneers within CGI, describes
the problem as a practice of including opaque objects that can be seen from the viewing
eye, and omitting those that are concealed by other objects [6].

5.1 Culling

An important step that has arisen since Sutherland et al. published their �ndings in
1974 is the use of culling. Culling is the process in which certain faces of polygons are
deemed to be invisible to the camera and deleted. This is usually done very early in the
rendering pipeline, before any HSR algorithms are used. Culling helps remove the strain
on the algorithm by deleting the surfaces that are more easily determined hidden. This
is especially true if entire objects are determined to be hidden and thus culled, as these
objects no longer need to be fetched, sorted, rasterized and so on. There are many forms
of culling, ranging from back-face culling and view frustrum culling to occlusion culling.

5.1.1 Occlusion culling

As Hansong Zhang states in his Ph.D. Dissertation, �...the aim of occlusion culling is to
detect large numbers of non-visible primitives and remove them as early as possible.�[8].
Occlusion culling is a large part of the rendering pipeline, and is often done �rst, before
other culling methods and especially before HSR algorithms. Like the �gure below illus-
trates clearly, it is unnecessary to render the hidden objects in the scene, marked in red
in the �gure. The depth bu�er of Z-bu�ering could perform this task as well and get
an accurate scene, but it would strain the system because of the extra polygons. A fast
occlusion culling can help eliminate a huge part of the scene, so as to speed up the rest
of the rendering pipeline.
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Figure 1: How occlusion culling works.

Figure 1 helps illustrate how occlusion culling works. The blue area is the area that
is visible from the view point. The red area is hidden from the view point. The white
objects are occluded, since no polygon that is part of the object can be seen from the
view point.

5.1.2 Back-face culling

Back-face culling is a useful tool to use prior to using a HSR algorithm. In it the faces of
the polygons of an object as subjected to a back-face test. If this test is failed, the face
isn't drawn. A typical back-face test is to calculate the dot product between the vector
formed by the viewpoint to the polygon, and the polygon's normal. Depending on the
method used, a negative or a positive value of the dot product identi�es a polygon that
is facing away from the view point, and thus is subjected to culling [7]. A fast back-face
culling implementation can help speed up the rest of the scene rendering considerably. It
can also create fewer surfaces that need to be detected later in the hidden surface removal
phase.
To further illustrate the usefulness of back-face culling before executing a HSR algorithm,
see �gure 2. The cat on the left is the original wireframe version of the rendered cat, with
all it's polygons intact.
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Figure 2: A demonstration of the usefulness of back-face culling [10].

The cat in the middle has been altered with the help of back-face culling. As can be
seen, several polygons have been removed, as they were deemed to be facing away from
the camera. The cat on the right has had it's remaining hidden surfaces removed with
a HSR algorithm. Note how few polygons actually had to be tested for hidden surfaces
compared to the original cat.
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6 Painter's algorithm

Painter's algorithm was one of the �rst solutions proposed for the HSR problem and it's
understandable why. Painter's algorithm, like its name implies, is based on the method
an artist paints a scene on a canvas. The objects which are farthest away from the virtual
camera are �painted" �rst, then the objects in the image's middle ground, and �nally
the objects that are closest to the camera are painted. In this way, objects that are not
visible are simply �painted" over, resolving the visibility problem. Figure 3 illustrates this.

Figure 3: Painter's algorithm paints the image from back to front, much like a real
painting.

The idea behind Painter's Algorithm is simple to grasp and was widely used until
other more e�cient algorithms for Hidden Surface Removal arose.

6.1 Implementation

Painter's algorithm can easily be described in the following pseudocode:

Algorithm 1 Painter's algorithm in pseudocode

sort polygons by z;
for all polygon p do
for all pixel(x, y) ∈ p do
paint polygon.colour;

end for

end for

As an object space algorithm, all objects in the scene must be taken in consideration.
Therefore, all the polygons in the scene are �rst sorted by depth, using some sorting algo-
rithm. A polygon's depth can be de�ned in a number of ways, ranging from determining
the z-value in the middle of the polygon, to the z-value farthest from the view point.
Depending on the de�nition used, they give di�erent inherent problems in special cases,
some of which are discussed later in this report. After all the polygons have been sorted
according to their z-values, they are painted from back to front. Each polygon in turn
gets all it's pixels painted, until the �nal and closest object is painted.
We de�ne k as the number of polygons in a scene, and n as the number of pixels in

6
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the resolution of the screen. It is evident that Painter's algorithm painting from back
to front, looping through each pixel of each object, has a complexity of O(kn). This is
disregarding the sorting algorithm used for sorting each object according to it's z-value.
The e�ciency of Painter's algorithm essentially depends on the method of sorting, but
using a simple sorting algorithm a worst case complexity of O(n2) is achieved, with an
average complexity of O(nlog(n)).

6.2 Strengths

The main strength of Painter's algorithm is that its theory is uncomplicated. This facil-
itates its implementation immensely and is the sole reason that it is still taught today,
even though it is widely regarded as one of the worst HSR algorithms, due to it's many
faults.
Painter's algorithm does however have another strength when it comes to transparent
polygons. A common problem with transparent polygons and HSR is that the surfaces
behind the transparent polygon have already been removed. Painter's algorithm doesn't
have this problem as it paints over pixels from the back to the front. When the time comes
for the transparent polygon to be painted, the polygons behind the transparent polygon
have already been painted. Thus, the transparent polygon can remain truly transparent.

6.3 Weaknesses

Painter's algorithm su�ers from many inherent �aws and weaknesses, made evident by
it's implementation.
First and foremost, it is highly dependent on an e�cient depth sorting algorithm. If a
slow sorting algorithm is chosen, Painter's algorithm usefulness will be heavily a�ected
for the worse. This, however, is also part of Painter's algorithm's strengths. If a suitable
preprocessor is used to, for instance, produce a tree of the z-values, a simple depth �rst
searching algorithm could be used to identify which polygons are hidden by others, allow-
ing an implementation where the polygons could be painted from front to back, locking
each subsequent polygon's pixels so they can't be repainted.
This brings us to the next major imperfection in Painter's algorithm. It paints from back
to front, meaning that there is always a risk that the majority of a polygon's surface may
be repainted. This is profoundly ine�cient and can lead to a long rendering time in scenes
with many polygons slightly covering other polygons behind them.
The third unquestionable �aw of Painter's algorithm is that the 2D projection produced is
dependent on how the depth of an object is determined. As mentioned earlier, the z-value
of an object can be de�ned as the middle of the polygon, the closest edge of the polygon
in relation to the viewing point, vice versa the farthest edge, and so on. These de�nitions
give rise to certain cases that Painter's algorithm either can't handle or is exceedingly
slow at handling. Cyclic images like the one in �gure 4, are especially troublesome for the
algorithm.

7
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Figure 4: A cyclic image that Painter's algorithm �nds complicated

This is a fairly common problem, and the more complex an image is, the harder it is
for Painter's algorithm to handle. In order for Painter's algorithm to be able to paint the
intended image, the polygons must �rst be divided into smaller polygons with di�erent
z-values. This facilitates the painting part of the Painter's algorithm's implementation,
but greatly lengthens the sorting, the major hangup of Painter's algorithm's e�ciency.
However, to create such an algorithm that divides polygons into smaller polygons, and
does this in the general case as opposed by the speci�c case, is both a very time consuming
as well as complex endeavor.
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7 Z-bu�ering

A much more modern algorithm that is in full use in today's CGI is Z-bu�ering. First
introduced in 1974 by Edwin Catmull, it has grown to a staple in modern graphics pro-
cessing and is implemented in a majority of today's GPU:s [2].

7.1 Implementation

The Z-bu�ering algorithm can be described with the following pseudocode:
That Z-bu�ering is an image space algorithm is clear to see from its implementation.

Algorithm 2 Z-bu�ering in pseudocode

for all polygon p do
for all pixel(x, y) ∈ p do
if p.pixeldepth(x, y) < zbuffer(x, y) then
zbuffer(x, y) = p.pixeldepth(x, y)
framebuffer(x, y) = p.pixelcolour(x, y)

end if

end for

end for

The algorithm goes through every polygon in the scene and determines the z-value of each
pixel that creates those polygons. If the determined z-value of the pixel is smaller, which
means it's closer to the view point, then the Z-bu�ers value at that point is changed to
the pixel's value, and that pixel's colour is saved in the frame bu�er. Z-bu�ering uses two
matrices the size of the resolution of the screen, the z-bu�er and the frame bu�er. The
z-bu�er contains the z-values of each individual pixel and is initialized as the max depth
of the scene. The frame bu�er contains the RGB values of each individual pixel and is
initialized as the scene's background colour. As an image space algorithm, the resolution
of the scene is the most relevant when it comes to time complexity, the amount or the
complexity of the polygons can nearly be disregarded.

7.2 Strengths

Z-bu�ering has numerous strengths, which is unsurprising for an algorithm that is imple-
mented in nearly all GPU:s today.
The biggest strength of the Z-bu�ering algorithm is that it is online. This means that
the algorithm doesn't need all the data from the scene right away. As soon as Z-bu�ering
gets a polygon from the scene, it can start computing the z-values of the pixels in the
polygon and putting the values in the z-bu�er and frame bu�er. This makes Z-bu�ering
very e�cient, as it doesn't have to wait for the entire scene to load, but can compute
while it's still receiving data of the scene.
Another big advantage is that Z-bu�ering is a fairly simple algorithm, so it can easily
be implemented in the hardware of a graphics card. For instance, the graphics proces-
sor company ATI implements Z-bu�ering with the ATI Hyper Z technique in their ATI
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Radeon graphics cards.

7.3 Weaknesses

Z-bu�ering is not without its �aws, however.
The matrices that Z-bu�ering uses for the z-bu�er and the frame bu�er can take up a lot
of memory depending on the resolution of the scene. For instance, if the scene is 1080p
or 1920 x 1080 pixels large, then both the z-bu�er and the frame bu�er need to be 1920
x 1080 memory units large. This is quite a bit of memory allocated to the algorithm's
needs. However, the actual testing used by Z-bu�ering is so fast that it makes up for this
fact.
Z-bu�ering also cannot handle transparent polygons, as the polygons that are behind the
transparent polygon have already been culled by the algorithm. A simple solution to this
is to �ag any transparent polygons and render them last. This means that the transparent
polygon is still rendered and the polygon behind it can still be seen. In rare cases where
a transparent polygon are placed behind another transparent polygon however, the view
point will not be able to see through both polygons, as the polygons behind the second
transparent polygon has already been culled.
Like Painter's algorithm, Z-bu�ering su�ers a bit of repainting. Certain pixels in a scene
may be repainted many times for each scene, though this is highly unlikely, and is a much
larger problem for Painter's algorithm.

7.3.1 Z-�ghting

The major problem that Z-bu�ering su�ers from is z-�ghting. Z-�ghting occurs when
two polygons are so close together that they overlap on virtually the same z-value. This
makes it impossible for the depth test to determine which polygon is on top of the other
and thus what colour the pixels should have. Instead, the algorithm chooses the pixel's
colour at random.
The cause of z-�ghting can be a myriad of factors, but in most cases it is caused by
rounding errors or a poor choice of depth precision. A depth precision is chosen when the
algorithm is initialized and constitutes the amount of possible z-values in the scene that
the z-bu�er can handle. The standard precision used is 16 bit, however 24 bit and even
32 bit precision z-bu�ers are becoming more and more prominent. A 16 bit z-bu�er can
handle up to 65,536 di�erent values, while a 24 bit z-bu�er can handle up to 16,777,216
values.
With more possible values for the z-bu�er to take, a high precision helps combat z-

�ghting. An example of z-�ghting can be seen in �gure 5. The image on the left is the
intended image and the image on the right shows z-�ghting. Notice how the dark polygon
seems to create a pattern or rasterization across the surface of the lighter polygon. A
higher precision in the z-bu�er �xes the image so that it looks like the one on the left.

10
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Figure 5: An example of z-�ghting
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Figure 6: The �rst three stages of a BSP

8 Binary Space Partitioning

Binary Space Partioning, or BSP, is a common method for dividing up space in a scene so
that it can easily be sorted and traversed when needed. A BSP tree can be seen as a data
structure utilizing recursion and hierarchies within the subdivision of an n-dimensional
space into convex subspaces [9]. BSP trees incorporate powerful sorting and excellent
organization structures, and are used in many �elds. Among them are solid modeling,
ray tracing hierarchies, and our �eld, hidden surface removal. BSP trees are also used
to store levels in popular games such as Doom and Quake, and help determining hidden
surfaces in those games [1].

8.1 Implementation

BSP trees is a standard binary tree that has been adapted to space partitioning, where the
entire tree is the total space in the scene, and each node is a convex subspace consisting
of a hyperplane dividing it's space into two halves [9]. To more easily understand how a
BSP tree divides space, see �gure 6. It represents only two dimensions, but will do �ne
for explanation purposes. The �rst division cuts our polygon in half across the X axis,
the second along the Y axis. This is then done recursively until a suitably small and
manageable space is found in each leaf of the tree.

12
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8.2 Combining BSP trees with other algorithms

The main strength of the BSP tree is the e�ciency boost that it provides for other algo-
rithms. As a BSP tree is precomputed before the rendering process of a scene and is view
independent during it's construction, it is ideal for speeding up HSR algorithms, such as
Painter's algorithm and Z-bu�ering.

8.2.1 Combining with Painter's algorithm

Thanks to a BSP tree sorting in a depth �rst traversal, it is very e�cient at speeding up
Painter's algorithm, as it paints from back to front. The tree also helps the algorithm
handle cyclic images by splitting the space up into manageable chunks for the algorithm
to render. This slows down the render time, but ultimately means that the algorithm can
handle cases that were near impossible or tediously long to compute prior.
With the BSP doing the initial sorting, Painter's algorithm would take considerable less
time however. It takes the BSP O(nlog(n)) to sort and divide up the space, and a further
O(n) to traverse the created tree, as opposed to O(n2). However, the worst case still stays
the same [9].
The big downside to this implementation is that the preprocessing time would skyrocket,
making it virtually impossible to incorporate Painter's algorithm in an environment where
polygons move and interact. The BSP tree would need to be rebuilt for every frame, mak-
ing the rendering very slow.

8.2.2 Combining with Z-bu�ering

While a combination of Painter's algorithm and a BSP tree means that it is useless when
it comes to rendering scenes with moving or movable objects; a combination of Z-bu�ering
and a BSP tree can handle such scenes. This is done by letting the z-bu�er merge with
the movable objects. In the case of a computer game, this can be objects such as movable
doors, monsters, and so on. The BSP eliminates the need for Z-bu�ering to check each
pixel's depth, as each polygon's depth has already been precomputed.
A BSP tree also helps to eliminate z-�ghting, as the polygons are split into smaller chunks
that can be processed individually. This means that the chunk is handled with a much
higher precision than if it was part of an entire polygon, giving more accurate z-values.

13
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9 Analysis

9.1 Comparison of Painter's & Z-bu�ering

To compare two algorithms such as Painter's and Z-bu�ering, which lie on two separate
ends of the spectrum when it comes to hidden surface removal, one needs to test them
objectively. To do this I propose the following theoretical scenarios to measure. To help
visualize the di�erent scenes that will be analyzed, I have rendered them in the modeling
program Autodesk Maya.

9.1.1 Low resolution & low polygon count

The scene being rendered can be seen in the �gure below. It contains 68 polygons and
has a resolution of 320 x 240 pixels.

Figure 7: Low resolution & low polygon count

As the scene contains few polygons and has a small resolution, both Painter's algo-
rithm and Z-bu�ering will paint the scene quickly. With a little perception however, one
can see that even in this very simple scene Painter's algorithm will repaint a portion of
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the pixels. Nevertheless, while using BSP in combination with the algorithms this short-
coming is surpassed. Painter's largest �aw, the slow sorting, is not a problem in this
scene as it contains so few polygons. Z-bu�ering on the other hand has no problem with
this scene, as it is fairly small in resolution and consequently removes any hidden surfaces
quickly.

9.1.2 High resolution & low polygon count

The scene being rendered can be seen in the �gure below. It contains 68 polygons and
has a resolution of 4096 x 4096 pixels.

Figure 8: High resolution & low polygon count

This scene is identical to the above scene, except that it has a far higher resolution.
While this impacts Painter's algorithm's performance slightly, with it having to paint
more pixels per polygon, it is ultimately Z-bu�ering that takes a toll. For every pixel,
all 16,777,216 of them, the z-bu�er needs to check the z-value in relation to the z-bu�er.
Both the z-bu�er and the frame bu�er are of immense size, which slows Z-bu�ering down.
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9.1.3 Low resolution & high polygon count

The scene being rendered can be seen in the �gure below. It contains 8704 polygons and
has a resolution of 320 x 240 pixels. The scene contains a prodigious amount of polygons.
This will slow down both of the algorithms considerably, albeit Painter's algorithm takes
the heavier penalty.

Figure 9: Low resolution & high polygon count

Painter's �rst has to wait for all the polygons in the scene to be sorted before it can
start painting them. This takes considerable time, and even with a BSP implementation,
it takes an average time of O(nlog(n)). Even with taking this into account, the algorithm
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will still repaint a majority of the pixels, as the low resolution of the image means that
every pixel in the scene has at least one hidden polygon.
Z-bu�ering will also encounter problems with the scene. Unlike Painter's algorithm, Z-
bu�ering is online, so it doesn't need to get every polygon from the scene before it can
start. Despite this, it is still possible for the algorithm to repaint many pixels if it gets
the polygons in the scene in a back to front order. This is highly unlikely however, and
Z-bu�ering is still fast at this low resolution as a majority of the polygons, due to the
depth involved in the scene, are implausible to have a signi�cant amount of pixels per
polygon. Each polygon reasonably only has a handful of pixels each.
Both algorithms also have to deal with the problem of complex images. Be it a near
impossible case or z-�ghting, it is likely to come up while eliminating hidden surfaces in
the scene. This can be combated by combining the algorithms separately with a BSP
tree, though the preprocessing time of each will increase, even if Painter's algorithm gains
some speed in the painting stage thanks to the sorting of depth.

9.1.4 High resolution & high polygon count

The scene being rendered can be seen in the �gure below. It contains 8704 polygons and
has a resolution of 4096 x 4096 pixels. This scene, like the previous one hampers the two
algorithms and takes them to their limit. This is the scene that closest mimics a HSR
algorithm's work in the real world; a complex scene with a high resolution that needs to
be rendered as quickly and e�ciently as possible.
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Figure 10: High resolution & high polygon count

Painter's algorithm will, like in the previous low resolution version, will have to wait
for all the polygon's data before it can start eliminating hidden surfaces. The biggest
di�erence between the low and high resolution scene though, is that the algorithm will
with a high likelihood repaint a large amount of pixels in the scene. There will be a lot
of unnecessary work during this stage.
As in the previous case of a higher resolution, Z-bu�ering needs a larger z-bu�er and frame
bu�er, meaning more memory is needed for it to remove hidden surfaces. The inner loop
of the algorithm will increase the performance time, and there will still be some cases of
repainting certain pixels, but not to the same extent as Painter's algorithm.

9.2 Conclusions

In lieu of the strengths and weaknesses of the two algorithms gleaned in the previous
section, it is clear that the algorithms' e�ciency is dependent on the scene's complexity
and resolution. If the scene has a small resolution the algorithm used doesn't matter as
much as the speed of the algorithm.
The lower the complexity of the scene, the more Painter's algorithm is favored in this
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scenario, especially if it's combined with a Binary Space Partitioning tree. However, it
doesn't have the advantage of being online like Z-bu�ering, and must therefore wait for
all the polygons' data before starting, so depending on the scene that the advantage of
Painter's algorithm because of low scene complexity is negligible.
When a scene with a large resolution is handled, Painter's isn't impacted as severely as
Z-bu�ering, except for having more costly repainting. Being o�ine comes back to haunt
the algorithm though, so Z-bu�ering is the preferred method to use. Z-bu�ering can
guarantee a correct and intended image, while Painter's algorithm needs to be combined
with a BSP tree and a front to back implementation for it to paint a correct image. The
drawback of Z-bu�ering is the amount of memory needed for the matrices, but in today's
world where most graphics cards have at least 1 Gigabyte of memory, this is not a big
problem.
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10 Discussion

Clearly, Painter's algorithm cannot cope with today's CGI computing needs. It is, how-
ever, an elegant and simple solution to a problem as old as CGI itself. If one were to
combine the straightforwardness of Painter's algorithm with the z-bu�er depth tracking
of Z-bu�ering, and with the hierarchical tree structure of a BSP tree, a more ingenious
solution to the hidden surface removal problem could be found.

10.1 Combining Painter's with Z-bu�ering and BSP trees

So how does one combine two algorithms and a hierarchy? What strengths are kept from
which algorithm, and will the new algorithm have new problems?
I propose implementing a break point of sorts for the calculation of hidden surfaces. First
in the rendering pipeline a occlusion culling is performed, followed by back-face culling.
This will remove most of the hidden polygons in the scene. Next, a suitable clipping plane
is established so that most of the detail, or if you will, a high percentage of the polygons
in the scene is in the space between the near clipping plane and the break point. This
space will hereby be called the nearground. Then a BSP tree is built with the depths of
the polygons in the space between the break point and the far clipping plane. This space
will hereby be called the background. A BSP is great for establishing backgrounds, and
has been used for this in games like Doom and Quake.
While the BSP tree is being built, an implementation of Z-bu�ering is applied in the near-
ground. The nearground is great for details such as characters, objects, weapons, and the
like, as they can have a high level of details with many polygons. Z-bu�ering will ensure
that the polygons are placed correctly, and the z-bu�er will also help render movement
more easily, as creating a z-bu�er is faster than creating a new BSP in conjunction for
each frame. The z-bu�er and frame bu�er will subsequently lock down which pixels will
obscure the background. The highest value in the z-bu�er, the break point in the clipping
plane, will help determine which pixels the background space may use. The frame bu�er
at this break point will create a transparent polygon to let the background through.
When the BSP is completely built, a front to back implementation of Painter's algorithm
is used to render the polygons in the background space, using a copy of the z-bu�er from
the nearground to determine which pixels may be painted or not. The algorithm will still
calculate where the polygons in the plane are, but will not �ll in those that are already
covered in the nearground, thus eliminating repainting of pixels.
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Figure 11: High resolution & high polygon count

The �gure illustrates my combined algorithm more clearly. The basic principle is that
pixels covered by the z-bu�er in the nearground can't be repainted and aren't even con-
sidered in the front to back implementation of Painter's algorithm in the background.
The blue area signi�es what the Z-bu�er will paint. The red area indicates hidden space,
that will not be rendered because of objects in front of the space hiding it. The green
area denotes the area that the front to back implementation of Painter's algorithm will
paint.

10.1.1 Strengths

The main strength of this combined algorithm is that it removes any and all repainting
that occurs in the algorithms separate implementations. This is especially helpful for
Painter's algorithm, stopping it from repainting parts of the background over and over
again.
The Z-bu�er gets a better precision, as it won't have to compute z-values all the way to
the far clipping plane. This higher precision helps eliminate z-�ghting, as discussed earlier
in this report.
Another strength is that the background won't need to be wholly rendered, as the z-bu�er
copied from the nearground informs the algorithm which pixels need a background, re-
ducing redundancy and, ultimately, performance time.

21



DD143X- Daniel Nyberg Degree Project in Computer Science, First Level

Z-bu�ering is widely supported by hardware in GPU:s which also helps speed up that
part of the algorithm.

10.1.2 Weaknesses

A major weakness of the algorithm is the processing time. It will take time to make a
suitable, general case break point, and build a BSP tree. If this algorithm were to be used
in a game, this could be a problem if the environments are too large or overly complex.
The algorithm does suit �ne though with more �indie� styled games that don't focus on
the pinnacle of graphics e�ects, and don't contain as many polygons as a state of the art
game.
Another weakness is that the Z-bu�ering algorithm won't be online any longer. It will
�rst need to wait for the data of the polygons that are in the nearground before it can
start. It will still be online in the remark that it doesn't matter which order it gets these
polygons however, just that they need to be sorted in nearground and background �rst.
While this may seem insigni�cant, it can extend the performance time of the overall algo-
rithm longer, as Z-bu�ering waits for its polygons to work on. If the polygons are tested,
by chance, back to front in the scene, then Z-bu�ering will have to wait a long time before
it can begin. This is a highly implausible scenario though, even if it is a bottleneck of the
algorithm.
Movement that occurs in the background will slow down the algorithm further, as each
time the background needs to be repainted, a new BSP tree must �rst be constructed or
the existing tree reevaluated. This can be a major hangup of the system, slowing down
the frame rate without the user understanding why. A solution to this problem could
be to have a separate z-bu�er in the background that keeps track of the movement of
polygons, merging it with the BSP tree. Coupled with levels of detail, this solution could
be made fairly e�cient, though it goes beyond the scope of this report.
Thanks to using a BSP tree with Painter's algorithm, the cases that the algorithm �nds
di�cult are of no concern, although the same can not be said for Z-bu�ering's problems.
The frame bu�er and the z-bu�er will still need an immense amount of memory during
large resolution rendering, and z-�ghting will still occur, albeit not as much thanks to the
added precision. As well, the trouble with transparent polygons still remains.

10.2 Algorithm for today's needs

Which algorithm is the most e�ective for today's CGI computing needs? This is a very
complicated question. From the years of the pioneers in the �eld, Sutherland et al., much
has changed in the world of CGI, many new algorithms, structures, and methodologies
have arisen and fallen into the waters of oblivion, forgotten. Painter's algorithm was
used before more e�ective means were found, and is today only a part of hidden surface
removal's history. Z-bu�ering on the other hand, being the most widespread solution, in-
tegrated into the hardware of our computers and found in most game engines, will likely
go down in history as one of the �rst really successful HSR algorithms. It will assuredly
be replaced in time by another, more �exible and e�cient algorithm, but it stands to say
that in this day and age it rules supreme over the CGI market as the go-to for hidden
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surface removal.
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