[t’s Go time!

Andreas Gustafsson & Camilla Romander

June 2, 2011

Abstract

The purpose of this report is to evaluate the functionality and syntax of Googles new
programming language: Go!

To achieve this goal, several tests will be conducted. Trial-division, naive and optimal
versions; The Sieve of Eratosthenes; Fibonacci generators, iterative, recursive and recur-
sive with memorization; a small math-based game; and a wiki will be implemented. For
comparison, each test will also be implemented in three other major languages: C, Java
and Python. The powers of Go is its (allegedly) smooth syntax and fast runtime. It feels
like an interpreted, dynamically typed language but is in fact a compiled, statically typed
language.

Overall Go performed very well, it was faster than both Java and Python (even when not
counting Javas extra second to boot the virtual machine) and in most cases as fast as C.
In addition to the good runtime, it was easier to implement the tests in Go than in C and
Java thanks to the simple syntax and orthogonality of the functions and packages.

Sammanfattning

Syftet bakom denna rapport dr att utvirdera Googles nya programmeringssprak, Go!
For att uppna det malet ska flera tester implementeras. Dessa tester dr naiva och opti-
mala Fibonacci generatorer, Eratosthenes sall, naiva och optimala trial-division, ett litet
matematikbaserat spel samt en wiki. For att fa perspektiv pa spraket ska dessa tester
dessutom implementeras i tre andra stora sprak; Java, C och Python.

Gos styrkor dr dess enkla syntax och snabba exekveringstid. Det kiinns som ett inter-
preterat, dynamiskt typat sprak men &r ett kompilerat, statiskt typat sprak.

Overlag presterade Go vildigt bra, det var snabbare dr bade Java och Python (iven om
Javas en sekund extra tid for start av virtuell maskin inte riknas med) och i manga fall
lika snabbt som C, men det var vildigt mycket lattare att implementera saker i Go 4n i
Java och C tack vare den enkla syntaxen och okomplicerade funktioner och paket.

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

Contents
1 Introduction
1.1 About Go
1.2 Project description oL,
1.3 Approach
2 Interview with Prof. Stefan Nilsson
3 Experiments
3.1 Computation of Fibonacci series
3.2 Generation of Prime Numbers
3.3 Simple math-game L.
4 The Wiki
4.1 Implementation
4.2 User Interface Design
5 Results
5.1 Sourceoferrors
5.2 Computation of Fibonacci series
5.3 A note about the recursive generator
5.3.1 Java
532 C .o e
533 Python. oL
534 Gol'. ...
5.4 Generation of Prime Numbers
041 Java ...
542 C . e
543 Python. oo
544 Gol. ..
5.5 Mathgame
5.0.1 Java ...
5.5.2 C. e
553 Python. 0.
554 Gol. . .
6 Conclusion
6.1 Gowvs. Java
6.2 Govs. Python,
6.3 Govs. C.
6.4 Performance
7 Web services in Go
7.0.1 Graphical Design of the Wiki
8 Final Evaluation

9 Litterature

A Fib(9000)

B Source Code

B.1

B.2

B.3

B.4

Computation of Fibonacci series
B.1.1 Python.
B.1.2 Java

Generation of Prime Numbers
B.2.1 Python.
B.2.2 Java . . .o

Math-game
B.3.1 Python.
B.3.2 Java

The Wiki o
B.4.1 Go
B.4.2 HTML

List of Figures

= W DN =

o ~1 O Ot

The gopher is a fitting mascot for Go, it is sleek and efficient.
Screenshot of mathgame in action.,
Initial draft for design layout of general page.
Graph of runtime when calculating the 90000th Fibonacci number 100

times. (see Appendix A for the number.
Graph of runtime when sieving forth the 900000 first Primes.
Graph of runtime when checking if 90001 is a prime by using trial-division.
The final design of the view page perspective.
The final design of the edit page perspective.

Statement of collaboration

Task Performer
Python implementations Andreas
Java implementations Camilla

Go implementations Both

C implementations Both

Web service design and implementation | Andreas
GUI design and implementation Camilla
Writing the report Both

Latex Andreas
Analyzing results Both

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

1 Introduction

1.1 About Go

Go is a fairly young programming language, developed by Google in these past few years'
but it is only during the last year that its usage has become somewhat widespread. The
language is designed by Robert Greisemer, Rob Pike and Ken Thompson who all are
prominent characters within computer science. These three gentlemen sat down and
discussed the big languages of today: Java, C, C++, C# and Python. They had the
opinion that Java is too bloated, C is too meager, C++ is "just an extension of C to look
more like Java”, C# is "C++ for Windows” and Python is nice to code in, but quickly
becomes messy. They quickly agreed that with their experience in computer science,
they could combine these languages and learn from the mistakes of the past to make
a new language that circumvents all the flaws in these languages but also encompasses
the advances in hardware of recent years?. Thus Go was born. Go is a mix of all these
languages, it has the quick compilation and runtime of C, the easy syntax of Python, a
standard library similar to that of Java and C# and structs of C. Finally, they agreed
that UNIX pipelines are really neat and so decided that UNIX-like pipelines will be used
to allow threads to communicate without the extra code for synchronizing that is required
in other languages?.

1.2 Project description

The project is to test various abilities of the programming language Go and document the
capabilities of this fairly young language. To perform these tests a Wiki was written in
Go. This approach is perfect for the participants, since the first author is very interested
in programming languages and find Go in particular very fascinating, and the second
author is a User Interface Designer. This blend of interests is perfect for this project
since these are the required skills to fully utilize the broad spectrum of features that is
Go. Though a simple wiki is not a sufficient basis to evaluate an entire programming
language on, a few other tests where also implemented and evaluated. These tests where
Fibonacci generation (iterative, recursive and memorization), a small online game and
prime number generation. Due to the limited time scope, the project will focus mainly,
apart from the Wiki, on testing Go’s capabilities regarding multi—threading applications,
ease and smoothness of syntax and performance of runtime will be evaluated?.

1.3 Approach

Since neither of us are well-versed in this language, the first few days was spent getting to
grips with Go. We used a few online tutorials and the documentation on http://golang.
org to produce several programs of varying sizes, from "Hello World!” to "Echo”. This
initial learning curve was quite steep, learning a new language might not seem like such a
daunting task for an accomplished computer scientist but keep in mind that we only have

!The project was announced September 30th 2007

2Multi-core processors, powerful GPUs that can be used to compute arduous computations etc.
3http://golang.org

4According to http://golang.org the syntax is easy both to read and to write.

http://golang.org
http://golang.org
http://golang.org

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

two or three languages below our belt. The time spent on simply learning the syntax is
not reflected in this report. The GUI designer will prepare by reading "Don’t make me
think!” by Steve Krug and "Anvindarcentrerad Systemdesign” by Jan Gulliksen & Bengt
Goransson and studying various wiki-pages such as wikipedia.com/en, wowwiki.com and
go.wikia.com. The other participant will read online tutorials about multi-threading in
several different languages to be better suited to compare with, and implement, multi-
threading in Go. This mix of specialties is a good foundation for a wiki site about the
performance of a particular programming language.

Included in this project is the work associated with learning an entirely new language.
This is a difficult task in various degrees: the more experience you have, the easier it is
to slip between different patterns of thought. Apart from simply writing a wiki, which
can be accomplished in a few hours with code more or less stolen from a code-lab on
http://golang.org we implemented several other programs, described in more detail
later on in this report. Simply writing a wiki is utilizing too little of the langages potential
to truly evaluate it.

Figure 1: The gopher is a fitting mascot for Go, it is sleek and efficient.

http://golang.org

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

2 Interview with Prof. Stefan Nilsson

How long have you programmed in Go?
Not very long, according to himself. He started in December, 2010.

How extensive is your knowledge about go?

He has written about 2000-3000 lines of Gocode and read the entire language specification
and knows it well. He has not used each library package extensively, but he has a good
overview of the various libraries.

What have you written in Go

All of the assignments in one of his courses at KTH, Introduction to Computer Science.
Most of them were easy to implement, but a few of them, such as the graph oriented ones,
required a complete redesign. This was necessary due to the lack of object orientation
in Go. The largest project he has implemented in Go is a type of Bloomfilter with an API.

What are the syntactical benefits versus other languages?

There are many syntactical superiorities, none too revolutionary but all combined makes
the syntax glorious. All the small annoying details of Java, C, C+-+ are fixed, such as
semicolons and parentheses. There is very little he can complain about.

Are there any syntactical deficiencies?

The way the lack of semicolons is implemented is faulty, they are actually present, but
it is optional to explicitly type them. This forces a special style of syntax. The parser
(pre-compilation) appends a semicolon at the end of each line that may be an expression.
This means you cannot start a line with a left curly bracket. "There are a few amusing
kinks in the syntax", as Prof. Nilsson himself expresses it.

Does Go demand a new way of reasoning when programming, and if so, what
are your thoughts about it?

That all the packages are completely independent of each other. This decreases confusion
and makes it easier to combine packages into a new function. If you are accustomed to
hierarchal languages, you have to completely discard your way of thought and start over.
The packages in Go are not hierarchal.

What are your opinion of the standard libraries in Go?

The design criteria of the libraries are that they are small, essential and relatively lightweight.
If a module or function is "nice to have sometime, maybe”, then it does not belong in the
libraries. Only the absolute essentials belong there. This, as opposed to Javas libraries,
makes it easy to get a good overview of the libraries.

Have you encountered any obstacles when writing Go code?

There are no libraries for GUIs, which forces you to use external libraries. A way to
circumvent this flaw is, according to Prof. Nilsson, to write your application as a web
service and let the browser be your GUIL.

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

What is your opinion about channels v.s. synchronized objects?

This is an excellent idea. The concept is already explored in Erlang and used extensively
in Unix in the form of pipes. Prof. Nilsson believes that channels are the solution to
almost all concurrency and inter-application communication problems.

Tricks that are possible to do in Go that are impossible in other languages?
There are a few cool syntactical tricks that are possible in Go, but none that cannot be
done in any other language. All programs written in Go can be written in all other lan-
guages with similar code. He thinks that Go is a language that is particularly enjoyable
to code in and spend some of his spare time coding Go for the sheer joy of it.

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

3 Experiments

This section is a general description of each test to be conducted. A short introduction
of each experiment will be presented, along with a description the aspects that are to be
evaluated.

3.1 Computation of Fibonacci series

The Fibonacci sequence is an infinite sequence of integers defined by the following recur-
rence formula:

FO:O7F1:]-7Fn: n—2+Fn—1 (]-)

This is easy to implement in most programming languages and may be implemented by
iteration or recursion. The most common implementation is using recursion with memo-
rization®. This combines the power and easy-to-read syntax of recursion with storage of
values in global parameters to achieve a small function that generates Fibonacci numbers.

In practice, Fibonacci series are used to compute the rate of expansion of a population
given two seeds. The first seed is the number of individuals in a population, the second
seed is the number of individuals birthed by the original population. Thus, based on this
initial data, one can assume that the third number in the sequence, that is the current
number of individuals, is the number of parents (the original herd) added to the newly
spawned generation. Thus Popcyrrent = PODoriginal + POPspawned follows the definition of
a Fibonacci series, but with slightly altered seeds.

In the following sections an analysis of the ease of implementation and performance of
Fibonacci—generators in various languages.

3.2 Generation of Prime Numbers

Prime Numbers have a pivotal role within cryptography. The reasons for this are beyond
the scope of this essay.
Generation of prime numbers consists of two steps; generating a number and checking if
this number is a prime number. There are many different algorithms to produce these
results, but most of them are fairly complex and are subjects for essays unto themselves.
Therefore the focus of this essay was two of the simpler algorithms: trial-division and
"The sieve of Eratosthenes”. Both of these are techniques that are easy to grasp as well
as being computationally demanding on the hardware.
Trial-division is a method for checking for primeness.

trialdiv (n):

for int i in 2 to n—1:

if n'%i = 0:
return not prime
return prime

5See code snippets in appendix B.1.

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

This is the naive version. There are several optimizations, such as: if the number is not
divisible by 2 it will not be divisible by any even number. Therefore it is only necessary
to divide by the odd numbers in the range. Furthermore, some prime factor of n must be
less than or equal to the square root of n.

trialdiv (n):
int end = sqrt(n)
if n%2——0: return false
for int i in 3 to end by step 2:
if n%i — 0:
return false
return true

The sieve of Eratosthenes will generate all primes less than a given number. The algorithm
is simple: Create a list from 2 to n, 2 is the smallest prime number, so strike out every
other number in the list. Now we know that the next uncrossed number is a prime number,
in this case three. Now strike out every third number from the list and proceed to the next
uncrossed number 5. Now strike out every fifth number and proceed to 7. Keep doing
this until you pass the sqrt(n)th element in the list. All remaining uncrossed numbers are
primes.

In pseudo—code:

eratosthenes (n):

list = [2,3,4,...,n]

crossed = [false, false ... false|

for int i in 0 to n—1:

if not crossed|i]:
for int j in i to n—1 by step i:
crossed [j] = true
return list

3.3 Simple math-game

The game will simply print an easy mathematical problem (small sums to keep it simple)
and the user shall supply the answer. One point is awarded for a correct answer and
no points for an incorrect answer. The purpose of this test is to test the capabilities of
concurrency i.e having a simplistic UI® updating multiple parts of the display at the same
time. The program was be divided into two threads, one that receive input and one that
use the received input and produces output. The same effect may be achieved by using
non-blocking I/0, but that would defeat the purpose of the experiment. No effort at all
was spent designing and implementing a fancy GUI’, both because it is not in the scope
of the test nor is it possible to do so in Go®. The client used one thread to read and send
input, and one thread to receive and print output. The server randomized two numbers
and stored the sum before sending the two numbers to the client. It then either award
a point for the user if the answer was correct or it sends a new addition problem if the

6User Interface
"Graphical User Interface
8Go lacks any graphical libraries.

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

Figure 2: Screenshot of mathgame in action.

user submitted an incorrect answer or the answer took more than five seconds to receive.
All these processes ran concurrently and somewhat independently of each other. Fig. 2
illustrates how execution of the game is supposed to be.

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

4 The Wiki

4.1 Implementation

In the interview with Prof. Nilsson in section 2 it was revealed that there is no native
support for GUIs? in Go. Therefore, it has been decided that all graphical components
was to be written in HTML! or PHP!'. These components was hosted on a Go web
service. See B.4 for source code. Functionality of the wiki was mainly the viewing and
editing of pages, but also inter page linking and navigation aid (a search bar or a list of
pages). There are no URL to the finished wiki since this report will be eternally stored
somewhere on KTH, we cannot publish a reliable URL. It is most likely that our server
will go offline far before KTH will remove the report.

4.2 User Interface Design

The design was be heavily inspired by current popular wiki sites, such as www.wikipedia.
com/en and www.wowwiki.com, since tools with the same purpose should have similar
functionality according to Steven Krug. www.wikipedia.com/en already fulfills many of
the criteria described in "Don’t make me think!”; therefore many of the traits of the gowiki
are inherited directly from the official wikipedia sites.

Log in/Register

@ Search

It's Go time!
The Ultimate GoWiki!

<h1><h1>

List
of

common
links
and

useful
articles

<p>

</p>

Figure 3: Initial draft for design layout of general page.

®Graphical User Interface
9Hyper Text Markup Language
HPHP: Hypertext Preprocessor

www.wikipedia.com/en
www.wikipedia.com/en
www.wowwiki.com
www.wikipedia.com/en

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

5 Results

5.1 Source of errors

The machine these tests were run on is not entirely stable. Due to Asus fancy energy
hybrid software that reconfigured CPU-clock on the fly the results were not entirely trust-
worthy. Therefore the machine was tweaked with a clean installation of Ubuntu 10.4.
Then the tests where run again under these new circumstances and new, more reliable re-
sults where had. All graphs are derived form data from the second round of measurements.

Another source of error is that all but the Java tests were run on the same machine.
The Java tests were run on another machine, this contaminated the results.

This second round of tests each test was ran multiple times in a row, and the total
time was considered. The important parts of these tests are not the absolute efficiency of
the languages, by the relative efficiency.

5.2 Computation of Fibonacci series

5.3 A note about the recursive generator

The recursive Fibonacci generators have been omitted in this section since calculating
any Fibonacci number greater than 45 takes a wvery long time. Calculating fib(50) =
12586269025 recursively, on the machine the tests were performed on, was not completed
after fourteen hours. Computing fib(50) recursion 25172538049 recursion calls. Therefore
any comparison of the languages based on the recursive generator is pointless, since the
results are the same in all cases.

5.3.1 Java

The implementation of the Fibonacci generators was about 50 lines of code that are
pretty straightforward. I/O is simple to use, the library Scanner was used to scan for
integers. There where quite a few lines of codes that are “formalities”, for instance the
class definition and the main method signature are both tedious and tricky to write. All
in all it was simple to implement. As can be seen in Fig. 4, Go was by far slower to
complete its task than the other languages this result was startling since it was assumed
that Java would be slowest. After some consideration though it was concluded that this
slowness is due to the excessive output this program produces. The time for printing was
accidentally included in this time, the actual time for calculating should be reminiscent
of that of C.

53.2 C

C is almost like Java, around 50 lines of code. The main difficulties when implementing
Fibonacci was handling the memorization part. All memory allocation in C must be
handled manually. There was also some trouble with overflowing integers, it was quite
problematic finding the correct structure (long long int) and finding the proper way to
format these numbers into a string with printf.

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

Fibonacci
1200

1000

&00

B Iterative
B Rec v
mem

600

400

o

Java C Python Go!
Language

Milliseconds

Figure 4: Graph of runtime when calculating the 90000th Fibonacci number 100 times.
(see Appendix A for the number.

5.3.3 Python

The Python version was only 35 lines of code, and only 12 of them the actual generators.
The rest of the code was a simple terminal based user interface and a few lines of code
to time the individual functions. The most exciting part of this implementation was the
use of direct-instantiation of a list of function pointers and then directly accessing one
of them depending of the input. The array was never explicitly stored anywhere, and it
allows a compact way to write simple flow-controlling code.

5.3.4 Go!

This is the implementation that required the most lines of code with 61 lines but many
of them consists of a single right curly bracket, due to gofmt'?2. The syntax was at first
glance similar to Java with all the curly brackets and indentation levels. Eventually one
notices that there are no semicolons nor any explicit typing, and suddenly the code looks
very pythonesque. Looking at the actual functions, they bear a significant reminiscence
of C with names such as Printf and Scanf. Most of the difficulties encountered when
implementing in Go was syntactical. Due to the programmers inexperience with the
language (unlike their experience with the other languages) the code was complex. Part
of the excessively long runtime may be die to the programmers unfamiliarity with this
language, which makes them unable to perform the usual "performance hacks”.

10

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

Eratosthenes

6000

S000

4000
)
=
S 3000
4k}
9
E 2000

. . -

0 i
Java C Python Gol
Figure 5: Graph of runtime when sieving forth the 900000 first Primes.
Trial division

00

200
. 400
=
=
o 300 W naive
o B O ptimal
E

200
100
0 — — -~

Java C Python Go!
Language

Figure 6: Graph of runtime when checking if 90001 is a prime by using trial-division.

11

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

5.4 Generation of Prime Numbers

5.4.1 Java

The implementation of The Sieve of Eratosthenes and Trial-division in Java was pretty
much straightforward. I/O was still tedious with all the checked exceptions.

The overwhelmingly slow runtime of Java when executing Trial division was confounding
at first

54.2 C

The Sieve of Eratosthenes implementation in C was particularly annoying because of
arrays in C. The programmer must keep track of the length of each individual array,
something that is not required in most other languages. Memory allocation is always
hazardous and difficult to debug. A program written in C may compile and execute
without crashing, but output or return values may be incorrect due to misaligned reads.
This was the case during the sieving process when the array containing the primes was
returned.

5.4.3 Python

As earlier, implementing anything small and script-like in python is simple and intuitive.
Very few lines of code, the Sieve of Eratosthenes only required 26 lines of code. Seven of
these where I/0O and administrative code. The interesting part of the python implemen-
tation was the list comprehension. List comprehension does not exist in any of the other
three languages.

5.4.4 Go!

This was where the most prominent syntactical flaw in Go was discovered. The equivalence
of a long long int (from C) in Go is int64. When calculating the square root of an int64
one must first cast the int64 into a float64 since the math.Sqrt function only accepts a
float64. Finally you must recast the return value from math.Sqrt from a float64 back to
an int64. This sequence of casts may result in a loss of precision and makes the code less
readable. The call described above would ultimately look like this:

var root int64 = int64(mat.Sqrt(float64(a)))

5.5 Math game
5.5.1 Java

Threading in Java is not very complicated, simply extend the Thread abstract class and
override the run() method. Start the thread by invoking the start() method that is
inherited from Thread. The start method will handle all administration required to
spawn an additional process. The run method is basically equivalent to the main method,
the only difference is that it is running in a disjoint process. Due to code conventions in
Java, namely to place each class in a separate file, a process consisting of several smaller

12 A formatting script that is built into the Go compiler.

12

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

threads quickly evolves into a project with many small files; some of which barely contain
any code at all. See B.3.2 for examples.

Sockets on the other hand is a difficult, but important, concept to grasp and implement.
There are many websites that attempt to explain sockets, but none that do so adequately.
The use of sockets in Java is complicated further by inbuilt functions, such as proprietary
I/O streams and functions. It is quite a daunting task for a relative "newbie” in the use
of sockets to start to use them if you do it in Java. Other languages, such as Python,
have much cleaner syntax for writing and reading from sockets. The checked exceptions
in Java combined with all the possible errors generated by sockets (such as I/O error, host
error, connection errors and so forth) makes the programs a mess of try/catch clauses.

5.5.2 C

Handling threads in C was not that difficult. Having them communicating with each other
was the problem. Both threads received a pointer to a struct. This idiom is reminiscent of
using a shared object. The problem was that, no matter how the semaphores where used,
the threads kept modifying the data in the struct concurrently and with disastrous results.
String handling in general in C is difficult without extensive knowledge about pointers
and memory allocation. Conversions between integers and characters did not work until
we remembered the ascii table. Sockets in C required a lot of code to initialize and much
micromanaging when sending and receiving data. In general C was exhausting working
with, after spending about twice the time on the game in C as was spent on Python, we
simply gave up. The few minor bugs left was simply too frustrating and time-consuming
to be bothered with. The bugs were all either string handling or concurrency issues.

5.5.3 Python

Implementing multithreaded applications in Python is theoretically simple. Just have your
classes inherit from threading. Thread and override the run() method. To have two threads
communicate with each other you create a class and give both threads the same instance
of that class. No further synchronizing was needed (no mutexes or semaphores where
used). The largest difficulty was synchronizing the shutdown, the sockets resisted closing
and blocked the program. To solve this a global flag, encapsulated in the shared object,
held a boolean. If that boolean became true during runtime, simply shut everything down.

5.5.4 Go!

Implementing multithreaded applications in Go is simple. Channels solve most synchro-
nization and data sharing problems that have to be dealt with by synchronizing objects
in other languages. No inheritance from a Thread superclass (as in Python and Java)
is necessary, indeed it is even impossible since there are no hierarchal structure in Go.
Simply write the keyword ”go” in front of the method call to let it run concurrently. All
methods and closures in Go have this ability.

Sockets behaved more unpredictably, but the methods in the "net” package are simple and
the methods are clean. To establish a listening server only two lines of code are required.
Even though the code was simple and easy to write, it did not behave as expected. The
read functions read garbage data when they where not supposed to. This might be due

13

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

to lack of experience in this particular language. With a more comprehensive knowledge
about Go and its runtime, these issues might be avoided with ease.

14

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

6 Conclusion

6.1 Go vs. Java

Not having to bother with semicolons and parentheses in loops and if statements is con-
venient. The number of lines of code required are about the same, but as a programmer
become more experienced with a language the number of lines will decrease. The stan-
dard libraries in Java is much more extensive than those of Go, but Go have much less
redundancy and old code in theirs. The libraries in Go are much cleaner than the libraries
in Java, Java has become bloated over the years. Sharing information between threads in
Java is meticulous and requires synchronized objects. Compared to that, the channels in
Go is lightweight and easy to grasp for an inexperienced programmer.

Larger programs is easy to write in Java, mostly due to advanced and extremely useful
IDEs such as NetBeans and Eclipse. These allow you to easily structure a class hierarchy
and a catalogue-tree and gives you an excellent overview of the project as well as a pow-
erful tool to utilize the libraries.

Go, due to its relative youth, lacks all these tools but as mentioned above the libraries
are cleaner and more efficient than most of Javas.

Apart from pure syntactical advantages of Go over Java, the most striking benefit
of Go is that go does not have checked exceptions. Java forces you to handle even the
only remotely plausible errors. In Go, a function simply returns a value if something
goes wrong, and the calling function may choose to ignore it. This makes the code more
customizable and easy to read. Checked exceptions leads to frustration, frustration leads
to poorly written error handling. Therefore the unchecked exceptions is a much better
approach, let the programmer designer decide how to handle the errors.

6.2 Go vs. Python

Python is extremely easy to read and follow, but there are a few frustrating aspects
of the syntax. FEach access of a member-variable the programmer must explicitly type
"self.value”. This sort of referencing is tedious and makes the code less readable. Python
have no curly brackets nor semi-colons, which makes the code look much cleaner. Go does
have curly brackets which we personally dislike, but it does bring in the benefit of looking
like more commonly used languages like C++ and Java. Syntactically and idiomatically
Python and Go are very similar. Neither is explicitly typed, but only Python is dynam-
ically typed. This allows Go-programmers to tweak their programs to a greater extent
than Python programmers due to the optional ability to micromanage the typing.

Python is a slow language. It is not compiled so included in its runtime lies the interpre-
tation. Go is exceptionally fast, in most regards as quick as C (but, as can be observed
in the graphs, it has the potential to be very slow if you make mistakes). If performance
is important, Go is your language. In any other case either one is fine as long as your
application does not require a GUI'¥since Go lacks any and all support for those.

B Graphical User Interface

15

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

6.3 Govs. C

All advantages of Go vs Java from 6.1 applies here as well. Apart from the syntax, the
inbuilt memory management and garbage collection in Go is a huge plus. When coding
in C we feel awkward and out of our comfort zone and there are a lot of statements
and function calls that simply "is required”. For instance the use of sockets in 5.5.2
required almost 30 lines of code to initialize the sockets and retrieve a connection. The
same is achieved in Go with only three lines of code. C quickly becomes difficult to read
and identify the important parts of the code and disregard the "formalities". Garbage
collection exists in o, it does not in C. This makes programming in Go easier since the
allocation and freeing of memory is handled automatically and out of sight.

6.4 Performance

The performance of Go is close to that of C, it beats Java (even when not including the
one second to boot the Java virtual machine) and Python by far. C is still the fastest
language, but Go is a valiant second. Google claims that Go runs almost as fast as see,
but this claim remains unproven. Though considering the ease of programming and much
simpler syntax in Go than in C and the runner—ups few extra milliseconds of runtime in
Go is, in our opinion, totally worth it.

7 Web services in Go

Writing a web service in Go is very simple, the "net” package is simple to use and very
powerful. Writing a wiki with a minimal interface, no error handling but with capabilities
to edit and view pages is merely twenty lines of code. This code is easy to read and
understand and simple to expand. Add error handling and the code ends up at about
thirty lines of code that are still very readable. The only drawback is that there is no na-
tive support for a graphical user interface. The interface may be written in any language
supported by a browser such as HTML, PHP or JavaScript (for this report HTML was
chosen).

The functionality included in our web service is mainly viewing and editing wiki pages.
Some small features added is the ability to hyper-link between wiki pages by writing the
title of the page you wish to link to within square brackets. You may also hide which page
you are linking to by specifying a display name for the link. Finally a list of available
pages is constructed each time the page is updated since the lack of a search bar would
make the site difficult to navigate. In Fig. 7 you may observe the final layout and design
of the view page perspective and in Fig. 8 is the final layout and design of the edit page
perspective.

7.0.1 Graphical Design of the Wiki

The design of the wiki has been kept simple to avoid confusion or promise advanced
functionality that does not exist. It is immediately obvious what the purpose of the wiki
is due to the extremely visible logo with the subscript "The ultimate GoWiki!”. All links
are colored blue (following the general design for links on the internet). Mimicking designs

16

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

from other pages with similar functions reduces the confusion of the user.

The purpose of the wiki page is to enlighten aspiring Go programmers, therefore all fancy
(but ultimately unnecessary) features have been omitted. Due to lack of time, the creation
of a search function was omitted, instead a list of links to all pages were added to the left
side bar.

Welcome to the Ultimate Go! wild.

This wiki 1s written in Go!, for Go! users.

Figure 7: The final design of the view page perspective.

8 Final Evaluation

Overall the language is very nice, though there are a few flaws. One of those flaws is a
very strict compiler. For instance, one may not import a package or declare a variable and
then end up not using it. This is apparently a compile error, but in most other languages
it would be a warning at most. This makes it difficult to plan your code. Assume that
you know that the packages that will be used are “fmt”, os” and "net” and you connect
two sockets and verify that this is successful by compiling and trying. The compiler will
now give you an error because you have imported but not used the "os” package yet. We
believe a better solution would be to give a flag to the compiler if you are in "development
mode” or want to compile a release version. Very similar to the -O flag of the common C
compilers.

The compiler'* generates very efficient code and compiles swiftly. Contrary to Python

146g 8¢. Not gomake.

17

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

Welcoms to the Ultimate Go! wiki.

Ihig wiki is writren in Go!, for Go! ugers.

Save

Figure 8: The final design of the edit page perspective.

that evaluates slowly but gets the job done without too much difficulties.

A very nice touch is that exceptions are unchecked. A method may have an additional
return value that may be an error. Then it is up to the caller to decide whether to care
or just ignore the error. This decreases frustration and makes the code cleaner. Javas
checked exceptions leads to lots of auto-generated code and sloppy error handling. For
instance, an I/O unit which make sure that input is always an integer, but returns a string
(this is common in C#). Then converting this string into an integer will never result in
a NumberFormatException, but Java will still force you to handle it.

One of the biggest flaws is that there are no packages to handle GUIs. This makes
Go a language that is difficult to use in commercial cases, since almost all applications
requires some sort of User Interface. If this flaw persists, Go will become a language used
only on the server side. While being well suited for that role we believe that Go can evolve
into a strong competitor to the C family.

Writing web services is very easy and well integrated into the language. Since an in-
creasing portion of communication transfer onto the internet, the logical conclusion is
that a new language should fit into these new systems with ease. Go has achieved this
goal well, the difference between "Hello World!” and "Hello World!, the web service edi-
tion” is less than four lines of code. Most other languages quickly become more complex
when communicating through the internet.

18

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

Go is still a young language and has plenty of time to evolve. These flaws might be
resolved in the future, and if so, Go might be, along with C, C+-+, C# and Java, one of
the Major Languages.

The opinions expressed by Prof. Nilsson in section 2 matches well with the above as-
sessments. His extensive experience as a programmer gives weight to our relatively inex-

perienced insights into the language of Go!

The more languages you know, the easier it is to learn another one.

19

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

9 Litterature

This is a list of litterature read prior to commencing the project.
e Don’t make me think!, Steve Krug
e Anvindarcentrerad Systemdesign, Jan Gulliksen & Bengt Goransson

e www.golang.org/documentation, 2011-04-10

20

www.golang.org/documentation

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

A Fib(9000)

fib(9000) = 34616029128668474631328927294065319582100493884057464919779235488262676145124

B Source Code

B.1 Computation of Fibonacci series
B.1.1 Python
1 #!/usr/bin/python

3 from time import time
s def iterative (n):

5 a, b = 0, 1

6 for x in xrange(n):

7 a,b:b,a+b

8 return a

o blargh = 0

1w def recursive(n):

1 blargh = blargh + 1

12 if n < 2: return n

13 return recursive (n—2) 4 recursive (n—1)

14

15 #Dictionary <Integer,<Integer >
6 mem = {0:0,1:1}

17 def recursive_mem (n):

18 if n not in mem: mem|[n| =
recursive_mem (n—1)4recursive_mem (n—2)

19 return mem|n |

20

o1 if name — " main__":

22 #Main loop

23 number = input ("Number: ")

24 while True:

2 print ("1. Iterative.\n2. Recursive.\n3. Recursive with
memorisation.")

26 k = input(">")

27 #This is a trick one may use to work around the lack of
switch cases in python.

28 #You place delegate functions in a list and immediately
pick which one by using the index—operator.

29 try:

30 start = time ()

31 for x in range(100):

21

32

33

34

35

36

37

DD143X~ Andreas Gustafsson & Camilla Romander

[iterative , recursive ,
recursive_mem ||k —1](number)
end = time ()
print ("Time: %dms."%(end—start))
except IndexError:
print "Invalid input.”
continue

It’s Go time!

B.1.2 Java

import java.util.Scanner;

Ver:
x Will find the fibaonacci number of your choice.
x @author Camilla Romander

*/

public class Fibonaccil {

public static void main(String || args){

11

12

13

14

15

16

17

18

19

32

33

34

35

36

int n = chooseNumber () ;
long t = System.currentTimeMillis () ;

if(n =— —1){
return;

}

long n0 = 0;

long nl = 1;

long n2 0;

for (int k—0; k<100; k++)
{

for(long i = 0; i < n—1; i++){
n2 = n0 + nl;
n) = nl;
nl = n2;

}

System.out. println (" " + nl);
System.out.println ("Time: " +
(System . currentTimeMillis () — t)+ " ms");

Will decide if your number is positive.

37

38

40

41

43

44

45

46

47

48

49

50

51

52

53

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

x Q@return

public static int chooseNumber(){

}

System.out.println ("Enter your number and it can not be
negative");

Scanner sc = new Scanner (System.in);
int i = sc.nextInt();
if (i >= 0){
System.out.println ("You numbers is " + i);
return i;
telse
System.out. println ("Your number is not a positive
number") ;

return —1;

import java.util.Scanner;

Ver

x Will find the fibonacci number of your choice in a recursive

way .

* @author Camilla Romander

*

*/

public class FibonacciR {

public static void main(String|]| args){

}

int n = chooseNumber () ;

long t = System.currentTimeMillis () ;

System.out . println (rec(n));

System.out.println ("Time: " +
(System.currentTimeMillis () — t)+ " ms");

public static int rec(int n){

if (n<2){
return n;
lelse
return rec(n—2) + rec(n—1);

23

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

27 /xox

28 x Will decide if your number is positive.

29 x Qreturn

30 */

31 public static int chooseNumber () {

32 System.out.println ("Enter your number and it can not be

negative");

33

34 Scanner sc = new Scanner(System.in);

35 int i = sc.nextInt();

36 if (1 >= 0){

a7 System.out.println ("You numbers is " + i);

38 return i;

39 lelse

40 System.out.println ("Your number is not a positive
number") ;

a1 System . exit (1) ;

12 return 0;

43

44 }

a5
ar }

1 import java.util.Scanner;

3 /KK

« % Will find the fibonacci number of your choice and will do it

fast.
5 x @author Camilla Romander

*
7 */

s public class FibonacciRM {

10 static int || fib;

1 public static void main(String|]| args){
12 int k = chooseNumber () ;

13 long t = System.currentTimeMillis () ;
11 fib = new int|[k+1];

15 fib [0] - 0;

16 flb[l] — 1;

17 for (int u=0; u<100;u++){

18 for(int i = 2; i < k+1; i++){

19 flb[l] — —1;

20 }
21 }

24

22

24

25

26

28

29

30

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

System.out. println (recM (k)) ;
System.out. println ("Time: " +
(System.currentTimeMillis () — t)+ " ms");

}

public static int recM(int n){

if (fib|n] = —1){
fib [n] = recM(n—2) + recM(n—1);

}return fib [n];

}
Ver

x Will decide if your number is positive.
x Qreturn

*/

public static int chooseNumber () {

System.out.println ("Enter your number and it can not be

negative");

Scanner sc¢ = new Scanner (System.in);
int i = sc.nextInt();
if (i >= 0){
System.out.println ("You numbers is " + i);
return i;
telse
System.out.println ("Your number is not a positive
number") ;

System . exit (1) ;
return —1;

}
B.1.3 C

#include <stdio.h>
#include <string.h>
#include <time.h>

long long iterative (long long n)

{

25

10

11

12

13

14

15

16

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!
long long a = 0, b =1, i, c;
for (i=0;i<n—1;i++)
{
c = atb;
a = b;
b = c;
J
return b;
}
long long rec(long long n)
{
if (n<2)
return n;
return rec(n—2) + rec(n—1);
}
long long rec_mem(long long n, int *xvalues)
{ if (values|[n| = —1)
values [n] = rec_mem(n—2, values) + rec_mem(n—1, values);

int

26

return values|n|;

main (int argc, char sxargv)

long long choice, number,

res;

while (1)

{

printf("1.
memorization.\n");

scanf ("%11d%11d " ,&choice , &number) ;

int values|[number+1];

long start = time (0);

int i;

for (1=0;i <100;i++){

switch (choice)

{

Iterative\n2. Recursive\n3.

);

Recursive with

iterative (number); continue;

VA
1;

case 1l: res —
case 2: res = rec(number); continue;
case 3:
memset (values , —1,(number+1)*xsizeof (int));
values [0] = 0; values|[1]
res = rec_mem (number, values
continue;

51

52

53

54

55

10

11

12

13

14

15

16

17

18

28

29

30

31

32

33

34

35

37

38

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

}
printf ("fib(%11d)=%1ld \n" ;number, res);
printf("Time: %ldms\n" ,(time (0)—start));

}
B.1.4 Go!

package main

import "fmt"
import "time"
func iterative (n int) int64 {

var a int64 = 0

var b int64 = 1

for i := 0; i < n—1; i+t {
var ¢ int64 — a + b
a=m>
b =c¢c

return b

}

func recursive(n int64) int64 {

if n <2 {
return n
} else {

return recursive (n—2) + recursive (n—1)

}

return 0

}

func rec_mem(n int64, calced [|int64) int64 {

if calced[n| =— —1{
calced [n] = rec_mem(n—2,calced)+rec_mem(n—1,calced)
}

return calced [n]

}

func main () {

n := 0
var res int64
for {

res =0

fmt. Printf("1. Iterative.\n2. Recursive\n3. Recursive
with memorization\n")

27

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

10

11

12

13

14

15

16

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

fmt . Scanf ("%d%d" , &res, &mn)
start := time.Nanoseconds ()
for i:=0;1<100;i++{

if res =1 {

res = iterative (n)
} else {
if res — 2 {
res = recursive (int64(n))
} else {

//slice allocation
s := make ([]int64, n+1)

// range = enumerate from python
for i, := range s {
s[i] = -1
}
s[0] =0
s[1] =1
res = rec_mem(int64(n),s)

1

}
fmt. Printf ("fib(%d) = %d\n", n, res)
fmt. Printf (" Time: %dms.\n",

(time . Nanoseconds ()—start)/1000000)

}

B.2 Generation of Prime Numbers

B.2.1 Python

#!/usr/bin /python

from time import time

def trial division mnaive(n):
for x in xrange(2,n+1):
if n%x==0: return False
return True

from math import sqrt
def trial division opt(n):
if n%2——0: return False
k = int(sqrt(n))
for x in xrange(3,k+1,2):
if n%x——0: return False
return True

28

23

24

-

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!
if name — " main_ ":
while True:
choice = input("1. Naive trial division\n2. Optimal
trial division.\n")-1
start = time ()
for x in range(10):
div = [trial division mnaive

trial division opt|[choice]
print "Prime! :D" if div(input("Number: ")) else "Is not
prime :("
print ("Time: %dms."%(time ()—start))

#!/usr/bin/python
from math import sqrt
from time import time

def eratosthenes (k):

if

nums = range (2,k+1)
#If crossed|[i] is True, then nums|[i]| is not a prime.
crossed = [False for x in nums]
breakpoint = int (sqrt(k)) + 1
#i1 = current index, x = nums|i |
for i,x in enumerate (nums):

if crossed|[i]: continue

if x > breakpoint: break

#Eg: 2 is the current number, then we wish to cross 4,

6, 8, 10...

for y in xrange(x+i,len(nums),x): crossed|y| = True
#return a generator expression for all primes less than k
return (x for i,x in enumerate(nums) if not crossed|[i])
_ _name — " main

start = time ()

p = 900000

for x in range(10):

k = eratosthenes(p)
end = time ()
for x in k:
print x,
print ("\nTime: %dms."%(end—start))

"n.

B.2.2 Java

import java.util.Scanner;

public class Eratosthenes {

29

10

11

12

13

14

15

16

17

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

static int || primeNumbers;
static boolean|| list ;

public static void main(String|[] args){

int n = chooseNumber () ;
int breakN = (int)Math.sqrt(n);
primeNumbers = new int|n|;
list = new boolean|n]|;
long t = System.currentTimeMillis () ;
for (int k=0; k<10; k++)
{
if(n = 0){
return;
}else

for(int i = 2; i < n; i++){

primeNumbers|[i]| = i;
list [i] = false;
}
for (int i = 2; i < breakN-+1; i++){
if(list|[i| = true){
continue;
}

for (int y — primeNumbers|[i]+i; y < primeNumbers.length ;
y += primeNumbers|[i]) {

list [y] = true;

}
}

for (int i = 2; i < primeNumbers.length; i++) {
if(list|i| = false){
System.out. print (primeNumbers|[i]+ " ");
}

System.out.println ("Time: " + (System.currentTimeMillis ()
. t) 4o ms");

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

14

15

16

17

18

19

20

21

22

23

24

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

1

Ver
x Will decide if you number is bigger then zero.
x Qreturn

*/

public static int chooseNumber () {

System.out.println ("Enter your number and it has to be

larger then 1");

Scanner sc¢ = new Scanner(System.in);

int i = sc.nextInt();

if (i > 1){
System.out. println ("You numbers is " + i);
return i;

}else

System.out.println ("Your number is not larger than

1 n) .
return 0;

import java.io.BufferedReader;
import java.util.Scanner;

Ver

x Can decide

public class PrimeNumbersNaive {

static BufferedReader Input;

public static void main(String || args){
int n = chooseNumber () ;
long t = System.currentTimeMillis () ;
if(n = 0){
return;
lelse

for(int i = 0; i < 10; i++){
for (int Index = 2; Index < n; Indext++) {

if (n % Index =— 0) {

System.out.println (n + " is not a prime
number.");

if the number your have entered is a prime number.
x @author Camilla Romander

31

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

System.out. println ("Time: " +
(System . currentTimeMillis () — t) + " ms");
return;
}

}
}
System.out.println (n + " is a prime number.");
System.out.println ("Time: " +

(System . currentTimeMillis () — t) + " ms");

Ve
x Will decide if you number ts bigger then zero.
x @return
*/
public static int chooseNumber (){
System.out.println ("Enter your number and it has to be
larger then 0");

Scanner sc = new Scanner (System.in);
int i = sc.nextInt();
if (i > 0){
System.out.println ("You numbers is " + i);
return i;
lelse
System.out.println ("Your number is not larger than
0”);
return 0;

}

import java.util.Scanner;

/% x
x Can decide if the number your have entered is a prime number.
x @author Camilla Romander

*/

public class PrimeNumbersOptimal {

public static void main(String|[] args){

int n = chooseNumber () ;
long t = System.currentTimeMillis () ;

14

15

16

17

18

19

21

22

23

25

26

27

28

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

}

Ver:

if(n — 0){
return;
telse

for (int i=0; i<10; i++){
if(n % 2 — 0){

System.out.println ("This was not a prime number.");
System.out.println ("Time: " +
(System.currentTimeMillis () — t) + " ms");
}
else{
for (int Index = 3; Index <= (int)Math.sqrt(n); Index
=2) |

if (n % Index =— 0) {

System.out.println (n + " is not a prime
number.");
System.out.println ("Time: " +
(System.currentTimeMillis () — t) + " ms");
return;
}
}
}
}
System.out.println (n + " is a prime number.");
System.out.println ("Time: " +

(System.currentTimeMillis () — t) + " ms");

Will decide if you number is bigger then zero.

* @return

public static int chooseNumber () {

System.out.println ("Enter your number and it has to be
larger then 0");

Scanner sc = new Scanner (System.in);

int i = sc.nextInt();

if (i > 0){
System.out . println ("You numbers is " + i);
return 1i;

telse

33

53

54

55

56

57

58

10

11

12

14

15

16

17

18

19

33

34

35

36

37

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

}

B.23 C

System.out. println ("Your number is not larger than

OH) .

return 0;

#include <stdio.h>
#include <math.h>
#include <time.h>

int trialdiv_naive (int n)

{

int

int

34

int

1;

for (i=2;i<n;i++)

if (t%i—==0) return 0;

return n<270:1;

trialdiv_opt(int n)

int i,br
if (n%2 ==0)

for (i =3; i<br;i+=2)
— 0) return O0;

(int) sqrt(n);

return 0;

if (n%i
return 1;

main (int argc, char sxargv)

while (1)

{

printf("1. Naive.\n2. Optimal.\n");

int choice ,number, res;

scanf ("%i%i",&choice ,&number) ;
time t start — time (0);

int

1;

for (i=0;1 <10;i++)

{

switch (choice)

{

case 1:
case 2:

res
res

trialdiv_naive (number); continue;
trialdiv_opt (number); continue;

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

38 }
39 }

10 //Formatting output wether the number is a prime or not
using a ternary statement.

n printf ("%i is %s\n",number, !res?"not prime :(":"
prime! :D");

1 printf("Time: %lims.\n" ,(time (0)—start)*1000);

43 }

44 return 1;

45 }

1 #include <stdio.h>
» #include <stdlib.h>
3 #include <math.h>

1+ #include <time.h>

¢ int eratosthenes(int n, int xnums)

A

8 int i,j,num_ primes = 0, br = (int)sqrt(n);
9 for (i=2;i<=br;i++)

10 {

1 if (nums|i])

12

13 continue;

14 }

15 for (j=2«i;j<n;j+=1)

16 {

17 nums|[j] = 1;

" }
19 }

20 for (i=2;i<n;i++)

21 {

2 if (Inums|[i])

23

24 nums [num_ primes+-+] = i;

25 }

}

27 return num_primes;
28

20 int main(int argc, char xxargv)

30 {

31 int n, i, xprimes;

32 While(l)

33 {

34 printf("Number: ");

35 scanf ("%i",&n) ;

36 time t start = time (0);

35

37

38

39

40

41

43

44

45

46

47

48

49

51

10

11

12

13

14

15

16

17

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

//allocation of result array, calloc initializes the

memory to 0
primes = (intx) calloc(n,sizeof(int));
int i, number primes = 0;
for(i = 0; i<10; i++)
number primes = eratosthenes(n,primes);
for (i=0;i<number primes;i+-+)

{
1

printf("\n");
free (primes);
printf("Time: %lims.\n" ,(time (0)—start)*1000);

printf("%i ", primes|[i]);

}

return 1;

}
B.2.4 Go!

package main

import "fmt"
import "math"
import "time"

func trialdivNaive(n int64) bool {
var i int64
for i = 2; i < n; i++ {
if n%i — 0 {
return false
}
}

return true

func trialdivOpt(n int64) bool {
var 1 int64
br := int64 (math.Sqrt(float64 (n)))
if n%2 — 0 {
return false
}

for i = 3; i < br; i += 2 {

if n%i — 0 {
return false
}

36

30

31

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

11

12

13

14

15

16

17

18

19

20

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

}

return true

func main () {

}

var n, choice int64
var isPrime bool

for {

fmt. Print ("1. Naive\n2. Opt\n")
fmt . Scanf ("%d%d" , &choice , &n)
start := time.Nanoseconds ()

for i:=0; i < 10; i += 1{

if choice — 1 {

isPrime = trialdivNaive (n)

} else {

isPrime = trialdivOpt (n)

1
}

if isPrime {

fmt. Printf ("% is prime! :D\n", n)

} else {

fmt. Printf ("%d is not prime :(\n", n)

}

fmt. Printf (" Time: %dms.\n",
(time . Nanoseconds ()—start) /1000000)

package main

import "fmt"
import "math"
import "time"

func eratosthenes(n int, primes

[]int) int{

br := int (math.Sqrt(float64 (n)))

numPrimes := 0
for i:=2;i<=br;i++{
if primes|[i] = 1{
continue
}

for j:=2xi;j<=n;j+=i{
primes|j] = 1
}
}

for i:=2;i<n;i++{
if primes|i]==0{

primes [numPrimes| = i

37

33

34

35

36

37

38

39

40

41

42

43

10

11

12

13

14

15

16

DD143X~-

Andreas Gustafsson & Camilla Romander

It’s Go time!

}

numPrimes++

}

return numPrimes

}

func main () {

var

}

n int
n = 900000
start := time.Nanoseconds ()

primes := make ([]|int ,n+1)

for i:=0;i<n+1;i+H{
primes[i]=0

}

var numPrimes int
for i:=0; i<10; i++{

numPrimes = eratosthenes(n, primes)

}
for i:=0;i<numPrimes;i++{

fmt. Printf ("% " ,primes[i])
}

fmt. Printf ("\nTime:

%dms.\n" ,(time . Nanoseconds ()—start)/10000000)

B.3 Math-game

B.3.1 Python

#1/usr/
import
import
import
import
import
import

bin /python
threading
socket

Sys

time
random
datetime

class inp(threading.Thread):
"""Receives input from the client and makes it visible for

def

def

38

the sender thread."""

__init_ (self | sock):

threading . Thread. init (self)

self .sock = sock
self.valid = False
self .mess = 0

self .shutdown = False
run(self):

18

19

20

21

22

23

25

26

27

28

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

class s
mnn

It

If

It

If

def

def

while True:
try:
if self.valid:
time.sleep (0.1)
continue
if self.shutdown:
self.sock.close ()
return
self.mess = int(self.sock.recv(256))
self.valid = True
except ValueError:
shutdown = True

ender (threading . Thread) :
Receives input from the inp thread and sends output to
the client.

the client has not answered within 5 seconds, send a
"wrong" message and a new assignment.
the client has answered within 5 seconds and the answer
is correct , award the user with 1 point and send a new
assignment .
the client has answered within 5 seconds and the answer
is incorrect , send a "wrong" message and a new
assignment .
three assignments has been sent, send the number of
points to the client and terminate. """
__init_ (self , sock):
threading . Thread. init (self)
self.sock = sock
self.inp = inp(sock)
self.currentAnswer — 0
self.currentPoints = 0
self .timeOut = 50
self .timeCount = 0
self.rnd = random.Random ()
self .sendQ()
run(self):
self .inp.start ()
c = 1
while True:
if self.inp.shutdown:
self.sock.close ()
return
if self.timeCount < self.timeOut and not
self .inp.valid:

39

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

e

78

79

80

81

82

83

84

85

86

87

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

def

time.sleep (0.1)
self.timeCount += 1
continue

if self.inp.valid and self.inp.mess

self.currentAnswer:
self.currentPoints 4= 1
else:

if self.timeCount >= self.timeOut:

self.sock.send("Too slow!")

else:
self.sock.send ("WRONG! ")
if ¢ — 3:
break
self .inp.valid = False
self.sendQ()
c +— 1
self .sock.send ("\nYou earned: %i
points!\n"%self.currentPoints)
self.inp.shutdown = True
sendQ(self):
a = self.rnd.randint (0,5)
b = self.rnd.randint (0,5)
self.currentAnswer = a+tb
self.timeCount = 0

self .sock.send ("%s+%s? "%("(%i)"%a if a<0 else "%i"%a

(%) "%b if b<0 else "%i"%b))

server = socket.socket (socket .AF INET, socket.SOCK STREAM)

server . bind ((

’

, int(sys.argv[1])))

server.listen (1)

#Listen for players

connection .

while True:

sock , details = server.accept ()
print (details)

sen

der (sock).start ()

import sys
import socket
import threading

die

40

= False
class recv(threading.Thread):

"""Receive input from the server and print

def

user . nnn

__init_ (self | sock):
threading . Thread. init (self)

forever and start a game for each

it to the

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

10 self.sock = sock

1 def run(self):

12 while True:

13 if die:

14 return

15 inp = sock.recv(256)
16 print (inp)

17

s class send(threading.Thread):

19 """Receive input from the user and send it to the server."""
20 def _ init (self, sock):

21 threading . Thread. init (self)
22 self.sock = sock

23 def run(self):

24 while True:

25 inp = raw_input ()

26 if inp — "q":

27 die = True

28 sock . close ()

29 return

30 sock.send (inp)

31

22 sock = socket.socket (socket . AF _INET, socket .SOCK_STREAM)
s sock.connect (("localhost", int(sys.argv[1l])))

sa recv (sock).start ()

55 send (sock).start ()

B.3.2 Java
1 package client ;
s import java.io.lOException;
+ import java.net.Socket;

s import java.net.UnknownHostException;

7 public class Client {

8

9 public static void main(String || args) {

10 tI‘y {

1 Socket s = new Socket("localhost", 8080);
12 new CReceiver(s).start ();

13 new CSend(s).start();

14 } catch (UnknownHostException e) {

15 // TODO Auto—generated catch block

16 e.printStackTrace () ;

17 } catch (IOException e) {

18 // TODO Auto—generated catch block

41

19

21

22

10

11

12

13

14

15

16

17

18

19

1

2

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

e.printStackTrace () ;

}

package client ;

public class ClientObj {
String mess = null;
boolean valid = false;
boolean shutDown = false;

}

package client ;

import java.io.lOException;
import java.io.PrintWriter;
import java.net.Socket;
import java.util.Scanner;

public class CReceiver extends Thread {
Scanner sc;
Socket s;
PrintWriter pw;
public CReceiver (Socket s){

this.s = s;
sc = new Scanner (System.in);
try {

pw = new PrintWriter (s.getOutputStream ());

} catch (IOException e) {

// TODO Auto—generated catch block

e.printStackTrace () ;

}

public void run(){
while (true){
String i = sc.nextLine();
pw.println (i);

package client ;

42

10

11

12

13

14

15

16

17

18

19

20

21

22

23

25

26

27

28

30

31

10

11

12

14

15

16

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

import java.io.BufferedReader;
import java.io.lOException;
import java.io.InputStreamReader;
import java.net.Socket;

public class CSend extends Thread {
BufferedReader bf;
Socket s;

public CSend(Socket s){
this.s = s;
try {
bf = new BufferedReader (new
InputStreamReader (s.getInputStream ()));
} catch (IOException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;
}
}
public void run(){
while (true)
try {
System.out . println (bf.readLine());
} catch (IOException e) {

// TODO Auto—generated catch block
e.printStackTrace () ;

}

package server;

import java.io.BufferedReader;
import java.io.lOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.net.ServerSocket;
import java.net.Socket;

public class Quiz {
ServerSocket server;
public Quiz(){
try {
server = new ServerSocket (8080);

} catch (IOException e) {

43

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

17
18
19

20

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55

o)

// TODO Auto—generated catch block
e.printStackTrace () ;

1

public static void main(String || args) {
new Quiz().dolit ();

}

private void dolit () {
ServerOb ob = new ServerOb () ;
Socket client = null;
PrintWriter out = null;
BufferedReader in = null;
try {
client = server.accept();
} catch (IOException e) {
System.out. println ("Accept failed:
System . exit (—1);
}

try {
out = new PrintWriter (

4444") ;

client .getOutputStream (), true);

} catch (IOException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

}

try {
in = new BufferedReader (

new InputStreamReader (

client .getInputStream ()));

} catch (IOException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;
}
new Receiver(in, client , ob).start ();
new Sender(client , ob, out).start();

1 package server;

3 import java.io.BufferedReader;
+ import java.io.lIOException;
s import java.io.PrintWriter;

44

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

import java.net.Socket;

public class Receiver extends Thread {

private final BufferedReader in;

private final Socket s;

private final ServerOb ob;

public Receiver (BufferedReader in, Socket s, ServerOb ob){

super () ;
this.in = in;
this.s = s;
this.ob = ob;

1

public void run(){
while (true){
if (ob.shutDown =— true){

try {
in. close () ;
s.close ();

} catch (IOException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

}

if (ob.valid — true){
try {
Thread . sleep (100) ;
continue;
} catch (InterruptedException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

}

telse{
try {
ob.mess = Integer.parselnt(in.readLine());
ob.valid = true;

} catch (NumberFormatException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

} catch (IOException e) {

// TODO Auto—generated catch block
e.printStackTrace () ;

45

52

53

54

55

56

57

10

11

12

13

14

15

16

17

18

19

30

31

32

33

34

35

36

37

38

39

40

DD143X~ Andreas Gustafsson & Camilla Romander

}

package server;

import java.io.PrintWriter;
import java.net.Socket;
import java.util.Random;

public class Sender extends Thread {

46

private
private
private
private

final ServerOb ob;
final Socket s;
PrintWriter pw;
Random r;

public Sender(Socket s, ServerOb ob, PrintWriter pw){

super () ;

r = new Random/() ;
this.ob = ob;
this.s = s;

this.pw = pw;

}

public void run(){

int
int
int
int

time — 0;

numberOfQuestion =
answer = questions (
numberOfPoints = 0;

L;
)

while (true){

if (ob.shutDown — true){
pw.close () ;
return;

if (ob.valid = false || time =— 50){

try {
Thread . sleep (100) ;
time —++;
continue;

} catch (InterruptedException e) {
// TODO Auto—generated catch block
e.printStackTrace () ;

}
telse if (numberOfQuestion = 3){

It’s Go time!

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

41

42
43
44
45
46
47
48
49
50
51
52

53

54 }

pw.println ("You got " + numberOfPoints +
"number of points.");

break ;

}if(ob.mess = answer){
numberOfPoints++;

telse
pw.println ("Wrong answer stupid!!!"):
}

answer = questions () ;
numberOfQuestion+-+;

}

55 public int questions(){

56
57

58

59
60

61

62 }

63

64 }

1 package

int numberl = r.nextInt (5);

int number2 = r.nextInt (5);

String question = (" " + numberl + " + " 4+ number2+
INADE

pw.println (question);

int answer — numberl + number2;

return answer;

server ;

s public class ServerOb {

1 int mess = 0;
5 boolean valid = false;
6 boolean shutDown = false;

)
B.3.3 C

1 #include
> #include
3 #include
1 #include
s #include
6 #include
7 #include
s #include
o #include

10

<stdlib .h>
<stdio .h>
<pthread.h>
<string .h>
<unistd .h>
<sys/types.h>
<sys/socket .h>
<mnetinet /in.h>
<time.h>

47

11

13

14

15

16

17

18

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

typedef struct pack

{
int valid;
char mess;
int shutdown;
int sock;
tshared t;

void error (const char xmsg)

{

perror (msg) ;
exit (1) ;

void initrand ()

{
1

int randint ()

{
1

//generates a psuedo—random integer between 0 and maz
int randint m(int max)

{
1

//generates a psuedo—random integer between min and maz
int randint r(int min, int max)

{

srand ((unsigned) (time (0)));

return rand () ;

return (int)maxxrand () /(RAND_MAX+1.0);

if (min>max)

{
}
else

{
}

return max-+(int) (min—max+1)*rand () /(RAND_MAX+1.0) ;

return min+(int) (max—min+1)*rand () /(RAND MAX+1.0) ;

}

char send q(int newsockfd)

48

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

57{

58 char a = (char)randint_r(0,5);

59 usleep (1000) ;

60 char b = (char)randint r(0,5);

61 J/char o = ’a’, b = b

6 char snd[6] = {a+48,’+ ,b+48,777,7 7, "\0"};
63 write (newsockfd ;snd ,6) ;

64 return (char) (atb-+48);

65 }

66

¢r void sender(void xarg)

68 {

69

70 int time out = 50, time count = 0, points = 0, ¢ = 1;

7 initrand () ;

7 shared t xshared = (shared tx)arg;

73 char answer = send_q(shared—>sock);

74 Whlle(l)

75 {

76 if (!shared—valid && time count < time out)

s

78 usleep (100000) ;

79 time count-++;

80 continue;

81 }

82 else{

83 if (shared—mess — answer)

84 pOiIltS++;

85 else

86 write (shared—>sock , "WRONG!", 6);

87 if(C::?))

88 break;

89 answer = send_q(shared—>sock);

90 time count = 0;

91 C++;

o // write (shared—>sock,"| nSetting wvalid to falseln”,
24);

93 shared—valid = 0;

94 }
95 }

96 char snd|[21] = "You earned: points!";
o1 snd [12] = (char) (points+48);

os write (shared—>sock ,snd ,21) ;

99 shared —shutdown = 1;

100 pthread exit (0);

49

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

123

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

void receiver (void xarg)

{

}

shared t xshared = (shared tx)arg;
while (1)
{

if (shared—valid)

usleep (100000) ;
continue;

}

if (shared —shutdown)
{
close (shared—>sock);
pthread exit (0);
}
int res = read(shared—>sock ,&shared—>mess 1) ;
if(res 1= 1)
continue;
// shared—>mess+=48;

write (shared—>sock ,"\nSetting valid to true.\n"

shared—valid = 1;

int main(int argc, char xargv|]|)

{

50

int sockfd, newsockfd, portno;
socklen t clilen;
struct sockaddr in serv_addr, cli_addr;
if (arge < 2) {
fprintf(stderr ,"ERROR, no port provided\n");
exit (1);
}
sockfd = socket (AF_INET, SOCK STREAM, 0);
if (sockfd < 0)
error ("ERROR opening socket");
bzero ((char *) &serv_addr, sizeof(serv_addr));
portno = atoi(argv|1l]);
serv_addr.sin_ family = AF INET;
serv_addr.sin_addr.s_ addr = INADDR_ANY;
serv_addr.sin_port = htons(portno);
if (bind(sockfd, (struct sockaddr x) &serv addr,
sizeof (serv_addr)) < 0)
error ("ERROR on binding");
listen (sockfd ,5) ;

, 25);

6

8

9

10

11

16

18

25

26

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

}

clilen = sizeof(cli_addr);
newsockfd = accept (sockfd ,
(struct sockaddr x) &cli_addr,
&clilen) ;
if (newsockfd < 0)
error ("ERROR on accept");

pthread t send, recv;

shared t args = {0, > 7, 0, newsockfd };

pthread create(&send, NULL, sender, ((voidx)(&args)));
pthread create(&recv, NULL, receiver , ((voidx)(&args)));

pthread join (send ,NULL) ;
pthread join (recv ,NULL) ;
close (sockfd);

return 0;

#include <stdio.h>
#include <stdlib .h>
#include <unistd.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
7 #include <netinet/in.h>
#include <netdb.h>
#include <pthread.h>

void error (const char xmsg)

{

1

perror (msg) ;
exit (0);

int sockfd;
17 void sender (voidx arg)

{

1

char in;

while (1)

{
scanf ("%c" ,&in) ;
write (sockfd , &in,1);

27 void receiver (voidx arg)

28

29

{

char in[30];

ol

31

32

33

34

35

36

37

38

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

63

64

65

66

67

68

69

70

71

72

73

74

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

while (1)

{
bzero (in ,30) ;
read (sockfd ,in ,30) ;
printf("%s" ,in);

int main(int argc, char xargv|]|)

{

52

int portno, n;
struct sockaddr in serv_addr;
struct hostent xserver;

char buffer[256];
if (arge < 3) {

fprintf(stderr ,"usage %s hostname port\n", argv|[0]);

exit (0);
}
portno = atoi(argv|2]);
sockfd = socket (AF_INET, SOCK STREAM, 0);
if (sockfd < 0)
error ("ERROR opening socket");
server = gethostbyname (argv|1]);
if (server =— NULL) {
fprintf(stderr ,"ERROR, no such host\n");
exit (0);

bzero ((char x) &serv_addr, sizeof(serv_addr));
serv_addr.sin_ family = AF INET;
becopy ((char x)server—>h addr,
(char x*)&serv _addr.sin_addr.s addr,

server—>h length);
serv_addr.sin_port = htons(portno);
if (connect(sockfd ,(struct sockaddr x)

&serv _addr , sizeof (serv_addr)) < 0)
error ("ERROR connecting");

pthread t send, recv;

pthread create(&send ,NULL,sender ,(voidx)0);
pthread create(&recv ,NULL, receiver ,(voidx)0);
//pthread_join (send ,NULL) ;
//pthread_join (recv ,NULL) ;

return 0;

75

12

13

14

15

16

17

18

19

20

21

23

24

25

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

}

B.3.4 Go!

package main

import
import
import
import
import

func receiver (fd net.Conn, ¢ chan int) {

llfmtll
" net "
" I‘and "
1" tlme "
Hmathll

defer fd.Close()
for {

}

func sender(fd net.Conn, ¢ chan int) {

b := make (|| byte, 1)
_, err := fd.Read(b)

if err != nil {
c <— —1
return

}
¢ <— int (b[0] + 48)

defer fd.Close()
answer := sendQ(fd)
points :— 0
timeOut := 50
timeCount := 0
numberOfQ := 1

for {

if numberOfQ) — 3 {
break
}

select {
case in = <—c:
if in — -1 {
return
}

if in =— answer {
points++

} else {
b = [|byte("WRONG!")
b[5] = uint8(in)
fd . Write (b)

23

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

}
answer = sendQ(fd)

numberOfQ++
timeCount = 0
default:
if timeCount < timeOut {
time . Sleep (int64 (math.Powl10(8)))
timeCount++
continue
}
fd . Write (|| byte("Too slow!"))
timeCount = 0
numberOfQ++
answer = sendQ(fd)
}
}
b := []byte("You earned points!")
b[11] = uint8(points—+48)
fd . Write (b)
}

func sendQ(fd net.Conn) (answer int) {
nl := uint8(rand.Int31n (6) + 48)
n2 := uint8(rand.Int31n (6) + 48)
b = [|byte(" + ?")

b[0] = nl
b[2] = n2
fd . Write (b)
answer = int(nl + n2)
return
}
func main () {
server , err := net.Listen("tcp", "127.0.0.1:8080")
if err != nil {
fmt. Println ("ERRORL!")
return
}
for {
fd, := server.Accept()
fmt. Println ("Recvd conn!")
¢ := make(chan int)
go receiver (fd, c¢)
go sender (fd, ¢)
}
}

54

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

package main

import "fmt"
import "net"

func recv(fd net.Conn, ¢ chan int){
buf := make ([| byte, 1)
defer fd.Close()

for{
select {
case il = <—c:
if i1 = -1
return

}

default:
fmt . Scanln (buf)
fd . Write (buf)

func send(fd net.Conn, ¢ chan int){
b := make (|| byte, 256)
defer fd.Close()

for {
r, err := fd.Read(b)
if err !=nil{
c<—1
return

}

fmt. Println (string (b[:1]))
fmt. Printf ("%d\n" ,r)

Create a connection to the server and start the two
goroutines.
Wait for them to terminate.
*/
func main () {
¢ ,err := net.Dial("tep", "", "127.0.0.1:8080")
if err != nil{
fmt. Println ("ERROR! :(")

%)

46

47

48

49

50

51

53

54

55

56

57

58

10

11

13

14

15

16

17

18

DD143X~ Andreas Gustafsson & Camilla Romander

It’s Go time!

return

}

defer c.Close()

ch := make(chan int)

go recv(c, ch)

go send (¢, ch)

select {

case il := <—ch:
ch <— il
return

return

}
B.4 The Wiki
B.4.1 Go

package main

import (
" http "
1" 0s n
"io/ioutil"
"template"
"regexp"
"strings"
llfmt 1"

)

type Page struct {
Title string
Body |[]byte
Menu [|byte

const lenPath = len("/view/")

var internalLinkingHidden =

regexp . MustCompile (" \ \ [[a—2A—Z0 —9]+\\ || a—2zA—Z0 —9]+\\|")
var internalLinking = regexp.MustCompile ("\\ [[a—2A—Z0—9]+\\]")

var newLines = regexp.MustCompile("\n")
func viewHandler (w http.ResponseWriter, r xhttp.Request, title
string) {
p, err := loadPage(title)
if err !'= nil{

o6

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

28 http.Redirect (w,r, "/edit/"+title , http.StatusFound)

29 return

30 }

31 p.Body = newLines.ReplaceAllFunc(p.Body, func(item |[|byte)
|| byte {return [|byte("<br /br>")})

32 p.Body = internalLinkingHidden .ReplaceAllFunc (p.Body,
replaceHiddenLinks)

33 p.Body = internalLinking.ReplaceAllFunc (p.Body,
replaceLinks)

34 renderTemplate (w, "view", p)

35 }

36

s func listOfLinks () |[]byte{

38 datadir, err := os.Open("data", os.O RDONLY, 0666)

39 if err != nil{

10 fmt. Println ("FACKA UUUUUUUUUUUUUR! ")

41 }

4 conts, _ := datadir.Readdir(—1)

43 ret := ""

a4 var pageName string

45 for |, x := range conts{

46 pageName — strings.Split(x.Name,".", 2)[0]

a7 ret += ""+pageName+"<br
/br=>"

48 }

49 return [|byte(ret)

50 }

51

s» func replaceLinks (item [|byte) []byte{

53 return ||byte(""+string (item[1:len (ite:

54 }

55
s func replaceHiddenLinks (item [|byte) |[]|byte{
57 s := strings.Split(string (item), "|", 2)
58 return |[|byte(""+s[0][1:]+ "")
59
}

60

¢1 func saveHandler (w http.ResponseWriter , r xhttp.Request, title

string){
62 body := r.FormValue("body")
63 p :— &Page{Title: title, Body: [|byte(body)}
61 err := p.save()
65 if err != nil{

o7

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

}

http.Error(w, err.String(),
http.StatuslnternalServerError)
return

1

http.Redirect (w, r, "/view/"+title , http.StatusFound)

func editHandler (w http.ResponseWriter, r xhttp.Request, title

1

string) {
p, err := loadPage(title)
if err != nil {

p = &Page{Title: title}
}

renderTemplate (w, "edit", p)

func makeHandler (fn func (http.ResponseWriter, xhttp.Request,

}

string)) http.HandlerFunc{
return func(w http.ResponseWriter, r xhttp.Request){
title := r.URL.Path|lenPath :|
if !titleValidator.MatchString(title){
http . NotFound (w, 1)
return

}

fn (w,r, title)

func repl(item |[]|byte) [|byte {

}

return |[|byte(""+string (item [1:len (item) —

func renderTemplate(w http.ResponseWriter , tmpl string, p

//

o8

«Page) {

p.Menu = listOfLinks ()

err := templates[tmpl]. Execute (w, p) //uncomment this line

to enable template caching

err =
template. MustParseFile ("tmpl/"+tmpl+" . html" nil) . Execute (w,
p) //comment this line to enable template chaching

if err != nil{
http.Error(w, err.String(),

http.StatuslnternalServerError)

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

133

134

135

136

137

138

139

140

141

142

143

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

func loadPage(title string) (xPage, os.Error) {

filename := "data/"+title + ".txt"
body, err := ioutil.ReadFile(filename)
if err != nil {

return nil , err

}

return &Page{Title: title , Body: body}, nil

}

func (p xPage) save() os.Error {
filename := "data/"+p. Title + ".txt"
return ioutil.WriteFile(filename , p.Body, 0600)

}

func getTitle (w http.ResponseWriter, r xhttp.Request) (title
string , err os.Error){
title = r.URL.Path|[lenPath :]
if !titleValidator.MatchString(title){
http . NotFound (w, 1)
err = os.NewError("Invalid page title")

}

return

}

var titleValidator = regexp.MustCompile(" " [a—2zA—Z0—9]+$")
var templates — make(map|string|*template.Template)
func init (){

for _,tmpl := range ||string{"edit", "view"}{
templates [tmpl| =
template. MustParseFile ("tmpl/"+tmpl+" . html" nil)

func main () {

http . HandleFunc (" /view /", makeHandler (viewHandler))

http . HandleFunc (" /edit /", makeHandler (editHandler))

http . HandleFunc (" /save /", makeHandler (saveHandler))

http . HandleFunc("/", func (w http.ResponseWriter, r
xhttp.Request){http.Redirect (w,r,"/view /Welcome" |
http.StatusFound) })

http.ListenAndServe(":8081", nil)

29

10

11

12

13

14

15

16

17

18

19

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

B.4.2 HTML

“IDOCIYPE html PUBLIC "—//W3C//DID XHIML 1.0 Strict //EN"
"http://www.w3.org/TR/xhtmll /DID/xhtmll—strict .dtd">

<html>
<head>
<meta http—equiv="Content—type" content="text /html;
charset=utf-8" />
</head>
<body style = "background:

url ("http://www.suksamaipile.com/image/BlueToWhiteGradient.jpg’);
background—repeat:repeat—x; ">

<div style = "width: 1000px;">
<img
src="http://news.cnet.com/i/bto/20091109/go gopher color logo 250x249.png"
width = "100" height = "100"/>
<h4 style = "margin: Opx; padding: Opx;"> It’s Go time!</h4>
<h5 style = "margin: Opx; padding: Opx;"> The Ultimate
Gowikil < /h5>

</div>

<div style="margin: Opx; width: 1000px; height: 1000px">

<div style="float: left; margin: 10px; width: 200px; height:
100%; background—color:clear">
{Menu}
</div>

<div style="float:right; width: 780px">
<div style="margin: Opx; height: 60px;">
<div style="float:left;">

<h1>{Title}</hl>
</div>
<div style = "float: right;">
<p>|edit |</p>
</div>
<div style = "clear:both;">
</div>
</div>

<div style="margin: Opx; height: 600px; background—color:white;
border—style: solid; border—color: black; border—width:

60

37

38

39

40

41

43

44

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

5px;clear:both;padding:5px;" >

{Body}
</div>
</div>
</div>
</div>
</body>
</html>

<!DOCTYPE html PUBLIC "—//W3C//DID XHIML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtmll /DTD/xhtmll—strict .dtd">
<html>

<head>

<meta http—equiv="Content—type" content="text /html;
charset=utf-8" />

< /head>
<body style = "background:

url ("http://www.suksamaipile.com/image/BlueToWhiteGradient.jpg’);

background—repeat : repeat—x; ">

<div style — "width: 1000px;">

<div>

<img
src="http://news.cnet.com/i/bto/20091109/go gopher color logo 250x249.
width = "100" height = "100"/>

<h4 style = "margin: Opx; padding: Opx;"> Tt’s Go time!</h4>

<h5 style = "margin: Opx; padding: Opx;"> The Ultimate
Gowikil< /h5>

</div>

<div style="margin: Opx; width: 1000px; height: 1000px">
<div style="float: left; margin: 10px; width: 200px; height:
100%; background—color: clear">
{Menu}
</div>

<div style="float:right; width: 780px">
<div style="margin: Opx; height: 60px;">

61

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

DD143X~ Andreas Gustafsson & Camilla Romander It’s Go time!

<div style="float:left;">
<hl>Edit {Title}</hl>

</div>
<div style = "clear:both;">
</div>
</div>
<form action="/save/{Title}" method="POST">
<div><textarea name="body" rows="20"
cols="80">{Body | html}</textarea ></div>
<div><input type="submit"
value="Save"></div>
</form>
</div>
</div>
</div>
</div>
</body>
</html>

62

	Introduction
	About Go
	Project description
	Approach

	Interview with Prof. Stefan Nilsson
	Experiments
	Computation of Fibonacci series
	Generation of Prime Numbers
	Simple math-game

	The Wiki
	Implementation
	User Interface Design

	Results
	Source of errors
	Computation of Fibonacci series
	A note about the recursive generator
	Java
	C
	Python
	Go!

	Generation of Prime Numbers
	Java
	C
	Python
	Go!

	Math game
	Java
	C
	Python
	Go!

	Conclusion
	Go vs. Java
	Go vs. Python
	Go vs. C
	Performance

	Web services in Go
	Graphical Design of the Wiki

	Final Evaluation
	Litterature
	Fib(9000)
	Source Code
	Computation of Fibonacci series
	Python
	Java
	C
	Go!

	Generation of Prime Numbers
	Python
	Java
	C
	Go!

	Math-game
	Python
	Java
	C
	Go!

	The Wiki
	Go
	HTML

