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Abstract
Transparency with Deferred Shading using Alpha-blending is a proto-
type that enables use of the Deferred Shadings technique to render trans-
parent objects. The main feature of presented prototype is the ability
to render transparent object in a post-pass using a front renderer with
alpha-blending. A satisfactory performance of this designed method is
demonstrated both for rendering speed as well for it being an artifact
free for scenes with a low amount of lights.



Referat

Vi har skapat en prototyp som med Alpha-blending, tillsammans med
Deferred Shading, kan rendera transparenta objekt. Vad som känneteck-
nar vår prototyp är att den bygger på front rendering som renderar alla
transparenta objekt i en s.k. post iteration. Vi har visat att vår metod
är artefakt lös samt inom acceptabel hastighet kan rendera scener med
ett lågt antal ljuskällor.
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Chapter 1

Introduction

Deferred shading has become a popular technique often used for development of
main stream video-game applications. The deferred shading technique renders a
scene in two passes, submitting only the geometry in the first and calculating light-
ing in the second. The first pass renders a screen space representation of the scene
which is later saved in different buffers. These buffers are later used to calculate
lighting in the second pass. Doing so reduces the amount of lighting calculations
needed when the amount of light sources is high. However, handling transparency
has been a major disadvantage of the deferred shading techniques since the intro-
duction of the concept in computer graphics. In the first pass a visbility test is used
to speed up and prevent rendering of occluded geometry. The test is performed
to ensure that only lighting calculations relevant to the final image are included.
However, due to graphic hardware limitations, only one pixel worth of information
can be saved at the time of the visibilty test, therefore making it difficult to apply
deferred shading technique for the rendering of transparent objects. Proper ren-
dering of transparent objects dependents upon the visibility of each pixel. There
are several ways to calculate this visibility. There are two most common techniques
used for the final pixel color calculation: order-dependent and order-independent.
The first one is based on the order of the rendered polygons. This method often
requires that all the polygons are sorted in back-to-front order, thereby providing
an artifact-free result. The second group of techniques is indifferent to the order of
processed polygons. The purpose of our work was the development of an efficient
technique for deferred rendering of transparent objects and solving the following
problem:

How can we render transparent object using deferred shading?

Within the frame of this project, several techniques for rendering transparent ob-
jects were examined on their advantages and disadvantages. Below we suggest a
review of previous studies on deferred shading as well as some of the practical so-
lutions for application of this technique in transparency. We propose a prototype
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CHAPTER 1. INTRODUCTION

of own developed technique for rendering of transparent objects. The built of our
deferred shader is described along with actual integration, of the front renderer and
deferred shader techniques, is explained in particular. We discuss the test results of
our prototype in terms of performance and image quality and describe the model
we used for this testing.
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Chapter 2

Background and related work

There are several techniques used for handling transparency in a rasterizer. Below
is an overview of some of these techniques.

A fragment holds just enough information to calculate a single pixel worth of color,
in the framebuffer, which is later displayed on our screen. When dealing with mul-
tiple transparent fragments the final pixel color can be computed with the following
equation recursively:

C0 = a0c0 (2.1)

Cn = ancn + (1− an)Cn − 1 (2.2)

Where a is the alpha value, C the color, Cn-1 the color of the previous fragment and
Cn the final color. This technique is known as alpha-blending and was introduced
by Porter and Duff[1] in 1984. The technique does not, however, yield a valid result
unless the fragments are computed in a back-to-front order. To do so, each fragment
needs to be sorted. Sorting the fragments is difficult, costly and does not always
provide the satisfactory results.

The A-Buffer was introduced by Carpenter[2] in 1984. The A-Buffer is an algo-
rithm implemented in hardware that stores transparent fragments for each pixel in a
list. However, all of these fragments must be stored at the same time, which leads to
an unbounded memory usage. In order for the algorithm to operate in a fixed mem-
ory space, dynamic memory allocation and management is required/mandatory.
This is often associated with difficulties and, in most cases, costly to perform.

Techniques that avoid the sorting of polygons when rendering transparent ob-
jects is considered to be order-independent. Depth-peeling is one such technique and
was introduced by Everitt[3] in 2001. It achieves order-independent transparency by
peeling away one layer of transparent fragments at a time. By performing a depth
test, the nearest visible fragment can be acquired. By doing additional n passes,
n layers of fragments can be acquired. By doing n passes in this way may become
costly with increased number of stacked fragments. There are, also, techniques
which reduce the number of passes. In 2006, Liu et al[4] introduced a technique
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that makes use of newer graphics hardware to render several layers in one pass. The
technique uses a fragment program that sorts and writes multiple fragment colors
and depth via multiple renderer targets[5]. The technique was later improved in
2008 by Bavoil and Meyers[6] using the min-max buffer to peel two layers at a time
— one from the front and one from the back. This technique is known as Dual
depth-peeling In 2009, Liu et al[7] improved the technique further by using bucket
sorting to sort fragments by depth on the GPU.

Another technique that doesn’t need sorting is screen-door transparency. With
screen-door transparency, bitmasks are used to prevent certain pixels from being
rasterized. This gives the illusion that the object is transparent. However, this
technique fails to produce desirable image smoothness when compared to other
techniques. Later, Mulder[8] (1998) suggested an improvement by optimizing the
selection of stipple patterns. The screen-door transparency technique was further
expanded by Eric et al[9] in 2010 and became known as stochastic transparency.
This technique uses random sub-pixel stipple patterns, where each fragment of
transparent geometry covers a random subset of pixel samples of a size proportional
to alpha. This results in alpha-blended colors, on average. The disadvantage of this
technique is, however, the noise.

One of the latest techniques for rendering transparent objects is adaptive trans-
parency. This technique was introduced by Salvi et al[10] in 2011 and approximates
closely to that of the A-Buffer. The difference is that it runs in a fixed memory space
similar to that of the Z-Buffer. The Z-Buffer is responsible for performing visibility
test of each fragment. Fragments that are occluded are discarded by the Z-Buffer
and only visible fragment saved into the final framebuffer. The key point of the
adaptive transparency algorithm is to adaptively compress visibility representation
during rendering. However, results show that the technique can not truly run in a
fixed memory space unless changes are made to the current graphics hardware.

In this work we will use the alpha-blending as the primary method to render
transparent objects along with deferred shading for handling of nontransparent ob-
jects. Even though previously presented techniques may be faster and may produce
a better result, alpha-blending is by far one of the simplest methods to implement.

Rendering using an off-screen buffer called the G-Buffer was first introduced in
1990 by Saito and Takahashi[11]. However, the contemporary graphic cards could
not support the real-time application of this method. However, as the programmable
pipeline was introduced along with Multiple Render Targets (MRT), it became
possible to perform deferred shading in real-time.

There is one method to render transparent objects using deferred shading in-
troduced by Kircher and Lawrance[12] 2009. Inferred lighting saves transparent
objects as stipple patterns in G-Buffer.

Various popular video games have been developed using the deferred shading,
i.e. S.T.A.L.K.E.R[13] and Tabula Rasa[14].
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Chapter 3

Algorithm overview

Rendering transparent objects with deferred shading impose some problems as the
depth-buffer used for rendering during deferred shading only supports one fragment
at a time. In our work, we have chosen to use alpha-blending in a post pass using
front rendering. Despite the flaws of alpha-blending, it is still very straightforward
and is easy to implement into a deferred shader. In the next section we discuss
basic functions of our algorithm. Blinn Phong[15] shading is a method often used
for rendering the lighting in both the deferred shader and the front renderer and
can used together with alpha-blending. A detailed overview of the front renderer
algorithm is presented along with description of its’ use of the basic functions.
Finally, a more detailed description of deferred shading is presented along with
comparison of this method to front rendering.

3.1 Basic functions

3.1.1 Alpha-blending
The alpha channel is used to store transparency in images. The data stored in the
alpha channel ranges from 0.0 to 1.0. 1.0 indicates that the object is fully opaque,
or does not let any light through, and where 0.0 indicates that the object is fully
transparent. Common for most computer images is that the color and alpha value
per pixel are often represented as RGBA, where RGB is the red, green and blue
components and A the alpha component. Each of these is 1 byte in size, making up
a total of 32 bits per pixel. We can use the alpha value to calculate the final color
of a pixel. The first calculated fragment uses the function 2.1 which multiplies the
alpha with the corresponding RGB color. The calculated value is then stored for
the pixel in the frame buffer. All fragments are thereafter rendered using equation
2.2 , which takes the alpha of the current fragment multiplied with its RGB color.
It then adds the previous rendered fragments’ color multiplied with the 1-alpha of
the current fragment. Thus, if the current fragment only has 0.75 alpha, only 0.25
of the previous fragment will be visible. In OpenGL, the blending equations 2.1
and 2.2 can be activated within the rasterizer by using the OpenGL commands :
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// Activate Blending
glEnable (GL_BLEND);
// Set blend function
glBlendFunc (GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

3.1.2 Blinn-Phong Shading
The lighting model we used for our deferred shader and front renderer is the Blinn-
Phong lighting model. We chose this model because it is easy to implement for both
the deferred shader and the front render, and is thereby also easier to compare. The
model works as follows:

Half = Light + V iew/||Light + V iew|| (3.1)

By using formula 3.1, we can calculate the half vector between the light and the
view vector:

I = Diffuse ∗ (Normal · Light) + Specular ∗ (Half ·Normal)n (3.2)

We can later use the half vector to calculate the amount of specular reflection at a
given point using equation 3.2. If the angle between light and normal as well as eye
and normal is equal then we have a perfect reflection and the maxium amount of
specular color. n is the specular power.

3.2 Front Rendering
Front rendering is the traditional technique for rendering graphics. It sends data
on geometry and lighting to the shader in order to calculate the final color for every
pixel. However, for multiple lighting different approaches can be used. One way is to
bind all lights into a single shader using a so-called uber shader. This does not scale
as we have a fixed set of lights; one can, of course, approximate what light sources
affect the object the most. However, doing so can be both difficult and expensive
to perform. Also, there is the risk of maxing out the number of uniform bind-able
values for the shader. The two other methods do scale and work similarly. The
first method shown below renders all objects for each light. Successive passes then
blend together the result. The second method does just the opposite and renders
all lights for each object which are then also blended together.

For each light n
for each object k

calculate light n on object k

for each object k
for each light n

calculate light n on object k
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However, there is a risk, with described techniques, to shade polygons and fragments
that are not visible in the final image. The Z-buffer is used to perform the visibility
testing to remove the non-visible fragments. and all geometry must be sent each
time. Of course we can cull our geometry in our application but this is both very
complex and very costly. Therefore these techniques has the time complexity of O
(lights * objects ) which rather poorly for scenes with many lights but works well
when the number of lights is low.

3.3 Deferred Shading
Instead of rendering all lights for all objects, like in front rendering, one can render
all scene geometry to an off screen buffer. Then, one can use this buffer to apply
the lighting for all lights in screen space. This will allow to reduce the amount of
wasted shading for fragments that are not visible in the final image.

The efficiency of Deferred shading is in its ability to effectively use the Z-Buffer
to filter out any non-visible fragment. The depth value of the final visible fragments
will be stored in the depth buffer.

The buffer used by Deferred Shading is called the G-Buffer a.k.a. Geometric
buffer. The G-Buffer stores relevant information about the geometry of the scene
used for lighting calculations such as depth, normals and various material properties.

// First pass
For each object n

render object n to G-Buffer

// Second pass
For each light n

for each pixel k
calculate light n on pixel k

Calculation of lighting in this manner may reduce the complexity to O (lights +
objects). Note that constant O is higher due to the fact that each pixel has to be
rendered at least once.
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Figure 3.1: Geometry Stage: First geometry is sent to shader, then each material
property is saved into the G-Buffer. Lighting Stage: The G-Buffer is later bound
as texture in order to calculate the final color. The color is saved in the P-Buffer
and later copied to the framebuffer
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Chapter 4

Implementation

The deferred shading and the front rendering pipeline have already been imple-
mented in various games and applications, the game S.T.A.L.K.E.R being on of
them. Compared to game as S.T.A.L.K.E.R. our implementation uses newer graph-
ics API for later generations of graphic hardware. However the G-Buffer have been
simplified and only support one type of material which in this case is Blinn-Phong.
Combining deferred shading with several types of materials as well as being com-
patible with older graphics hardware was considered to be outside the scope of this
work. Our implementation does not have any major optimization apart from using
newer API. Many of the optimization that could be done are either too difficult or
take to long to be fitted inside this work. The whole application was built from
scratch using C++, nvidia CG and OpenGL.

4.1 Deferred shading with Front Rendering

The front render is used to process transparent objects and fits well into the de-
ferred shading pipeline. It renders all opaque objects first with the deferred shader
and then renders the transparent objects on top using the front renderer. This is
important as the depth buffer has to be filled with opaque objects first, to prevent
rendering of non-visible transparent objects. When the front renderer is performed,
the final picture can be rendered to the frame buffer for display.

The implementation has the following rendering stages:

1. Render all opaque geometry to the G-Buffer
2. Bind the G-Buffer as texture. For each light in the scene draw a full screen rect-
angle and calculate lighting at each pixel using the data from the G-Buffer. Save
result in the P-Buffer.
3. Sort all transparent entities in back to front order.
4. Render all transparent geometry using the front renderer. Blend the result to the
P-Buffer using the depth buffer to filter out any non-visible transparent geometry.
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5. Copy P-Buffer to frame buffer.
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4.1. DEFERRED SHADING WITH FRONT RENDERING

Figure 4.1: After the final color from the Lighting Stage have been calculated, we
bind the G-Buffer depth buffer as texture for the front renderer. The depth buffer is
used to filter out any non-visible transparent geometry. The front render its result
on top of the P-Buffer which is later copied to the framebuffer.
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4.2 OpenGL Extentions
In order to simplify the deferred shading process, OpenGL FrameBufferObjects[16]
are used for storing all information in the G-Buffer. This FrameBufferObject can
easily be switched with the default frame buffer, as well as able to be rebound as
texture. When the buffers are bound as texture they can be used in the same way as
normal textures and can be used in lighting calculations. Note that FrameBufferOb-
ject extension is only available on graphic hardware that supports OpenGL 4.1 and
does requires shader model 5.0. In order to accelerate the drawing process OpenGL
VertexBufferObjects[17] are used to store all relevant information regarding the
model attributes such as positions, normals, tangents and texture coordinates.

4.3 G-Buffer and P-Buffer
The G-Buffer which holds the geometry information in the deferred shader is very
simple. It only holds the least amount of data to perform simple Blinn-Phong shad-
ing.

The first buffer is the depth-buffer which uses 3 bytes. The remaining buffers

Table 4.1: Structure of the G-buffer.

R8 G8 B8 A8 Target
Depth24 - - Unused Depth
Diffuse R8 Diffuse G8 Diffuse B8 Unused Color0
Normal X8 Normal Y8 Normal Z8 Unused Color1
Specular R8 Specular G8 Specular B8 Shinyness8 Color2

are for the diffuse color, normals and specular color and shininess. Note that all
buffers are in total of 4 bytes as required by the FrameBufferObject in order to
work. The P-Buffer only hold R8 and G6 and B8 components which can later be
copied to the framebuffer.

Table 4.2: Structure of the P-buffer.

R8 G8 B8 A8 Target
Color R8 Color G8 Color B8 Unused Color3

4.4 Sorting
For sorting of transparent objects we use the built in stl::sort using Visual C++
2010 with compiler version 16.00.40219.01. The average of a sort complexity is O(N
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log N), where N = last – first[18]. Transparent objects are sorted by the distance
from the camera to the object itself. It is preferable to sort each polygon for each
entity in the scene in order to decrease the number of arte-facts. However, this may
result in severe performance loss as each polygon would have to be translated each
frame and reloaded into the video memory. The sort by object was chosen in this
work due to simplicity of implementation.
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Chapter 5

Results

Efficiency of our deferred shading renderer was compared with Front renderer.

5.1 Test Model
A simple cube model was used to test our deferred shader. The model consists of 36
vertices which make up for the total of 12 polygons. The rendering was performed
100 times both for opaque and transparent geometry. We used VertexBufferObjects
to ensure the efficiency of time usage. The model properties including its texture
are stored in video memory which improves the speed for loading these properties
when the GPU need to render the model.
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Figure 5.1: Diffuse color texture used for the test model

Figure 5.2: Normal map used for the test model

Table 5.1: Model properties.

Model CUBE
Vertices 36
Polygons 12
Data Vertex positions, normals, tangents and texture coordinates
Size in bytes 432 bytes
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5.2 Performance
All tests were performed on a Intel Core i7-2600 3.40 Ghz CPU using a Radeon
HD 6570 GPU on Windows 7 64 bit system. Resolutions tested were 1280 x 800
and 800 x 600, we choose these resolutions because we want to reflect resolution in
modern applications.

The tables 5.2, 5.3, 5.4, 5.5 were used to calculate the performance diagram
5.3. The three columns to the right in each table represent the running time in
application for each stage. Tests were done for 100 opaque (OP) CUBE models
as well as 100 transparent (TR) CUBE models at both resolutions. In total there
were 4 tests and as we can confirm from figure [5.3] deferred shading scale better
for many lights. Even at 50 lights the deferred shader preforms well in 800 x 600
resolution. The front renderer does well with one light however as the number of
light increases it directly losses it’s ability to perform within the acceptable limits
of a real time application which is around at least 30 Fps. From table 1 to 4 we
note that for transparent objects the front renderer increases dramtically in running
time as the number of light increases. This is most likely due to the front renderer
doing matrix calculations in application.
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Figure 5.3

Table 5.2: 100 Transparent objects at 1280 x 800 resolution

Number of lights FPS Deferred Shader ms Sorting ms Front Renderer ms
1 55 0 1 2
10 6.18 0 1 10
50 1.25 0 1 53
100 0.6 0 1 88

Table 5.3: 100 Opaque objects at 1280 x 800 resultion

Number of lights FPS Deferred Shader ms Sorting ms Front Renderer ms
1 190 2 0 0
10 91 2 0 0
50 24 2 0 0
100 13 2 0 0
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Table 5.4: 100 Transparent objects at 800 x 600 resolution

Number of lights FPS Deferred Shader ms Sorting ms Front Renderer ms
1 97 0 1 2
10 11 0 1 10
50 2.23 0 1 45
100 1.28 0 1 88

Table 5.5: 100 Opaque objects at 800 x 600 resolution

Number of lights FPS Deferred Shader ms Sorting ms Front Renderer ms
1 250 2 0 0
10 156 2 0 0
50 50 2 0 0
100 27 2 0 0

Figure 5.4: Buffer with diffuse color
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Figure 5.5: Buffer with normals

Figure 5.6: Buffer with specular color
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Figure 5.7: Depth buffer

Figure 5.8: Final picture produced by the deferred shader using the previous 4
buffers
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Figure 5.9: Same pictures but rendered transparent with a front renderer
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5.3 Image Quality
If we take a look at a sample from the front renderer figure 5.10 we can clearly see
that the result from using multiple lights doesn’t look right. This has to do with
the order for which objects are rendered. We render for each light all objects in the
scene, however what this does is that we do not render in back to front order. If
we had rendered all lights for each object and sorted all polygons, we could have
avoided these artifacts.
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Figure 5.10: Artifacts
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Chapter 6

Conclusion and future work

As we increased the number of lights we effectively multiplied the number of objects
that needs to be rendered. So given that we have 10 lights then each objects has
to be rendered and blended ten times. This is not true for the deferred shader as
noted by the results, for each added light we only draw one extra rectangle. We
do lighting calculations at pixel level but the number extra calculations are far less
than rendering all objects one more time.

We have shown that front rendering with alpha blending perform well enough to
complement scenes rendered with deferred shading. We can use a low amount of
transparent objects or reduce the number of lights that effect the transparent ge-
ometry. However in order to render transparent geometry in the same manner as
deferred shading in term of performance newer techniques needs to be used. Tech-
niques that do not use sorting but are order-independent.
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