
DoS Mitigation Using Proof Of Work

An example utilizing the UDP protocol

ANTON LUNDQVIST antlu@kth.se
JONATAN LANDSBERG jonlan@kth.se

DD143X, Degree Project in Computer Science, First Level
CSC KTH

Mikael Goldman

iii

Abstract

In this report, we review the types of proof of work systems that already exist
and are used in different environments. The main work that we have done is an
implementation of our own protocol on top of UDP in order to make a server more
secure against DoS attacks. After studying the results shown by the tests we found
that there are good chances for a proof of work protocol to mitigate DoS attacks. We
also show that it can not give complete protection as there will always be an upper
limit on how much data a computer can handle.

v

Sammanfattning

I rapporten går vi igenom vilka typer av proof of work-system som redan idag finns
och används i olika miljöer. Det stora arbetet vi själva utfört är en implementation av
vårt eget protokoll ovanpå UDP i syfte till göra en server mer säker mot DoS-attacker.
Efter att ha studerat de resultat som visats av testerna kom vi fram till att det finns
goda chanser för ett proof of work protokoll att lindra DoS attacker mot servrar. Vi
visar också att det inte går att få ett fullständigt skydd då det alltid kommer att finnas
en övre gräns för hur mycket data som en dator kan hantera.

STATEMENT OF COLLABORATION vii

Statement of collaboration

The work has been divided equally between both the authors. Basically every row in both
the report and the code has been either written, rewritten, commented on or discussed by
both of the authors.

Contents

Statement of collaboration . vii

Contents ix
1 Introduction . 1

1.1 Background . 1
1.2 Problem statement . 3

2 Method . 3
2.1 The protocol . 3
2.2 Implementation . 4
2.3 Testing . 4

3 Results . 5
4 Discussion . 9

4.1 Analysis of results . 9
4.2 Conclusions . 10
4.3 Further research . 10

Bibliography 11

ix

1. INTRODUCTION 1

1 Introduction

Since the dawn of the Internet our dependency on services that use it for communication
has escalated. We have reached a point where we become paralyzed if the services we use
every day are not online. Essentials such as communication, payment, government services
as well as all other applications we use can be overloaded and made unavailable with ease
unless precautionary measures are taken. One way to remedy this is having clients that
wish to connect to a server perform some work on their computer and show this to the
server. The client will have to provide a proof of work (POW).

1.1 Background

Attacks aimed at overloading a server or service are called denial of service (DoS) attacks.
When performed by multiple hosts simultaneously they are called distributed DoS (DDoS)
attacks. Protecting yourself against DDoS attacks can be very difficult because of the
sheer amount of data received. The attacks are also virtually impossible to protect your
server from by just installing protective software or by configuring iptables because they
will crumble under all the traffic. DDoS protection has to happen upstream by hardware
that is load balanced and able to cope with up to tens of gigabits of data per second.[1]
POW will not suffice as protection against DDoS.

DoS protection is perhaps more essential, because any client on the Internet can perform
DoS attacks on their own. If you are not protected against DoS attacks and you use a
protocol such as TCP (Transmission Control Protocol) you are vulnerable to attacks from
any single computer. Having your service use an implementation of POW could aid with
handling DoS attacks.

A core protocol driving communication on the Internet is TCP. It provides applications
such as HTTP (the World Wide Web), BitTorrent, email etc. with reliable lossless transfer
of data. When you want to send data to another host over TCP you have to perform a
three-way handshake to establish a connection. First the initiating party, the client, sends
a SYN-packet (SYNchronize) to the server telling the server it wants to connect. The
server responds with a SYN-ACK (SYNchronize-ACKnowledgement) and finally the client
responds with an ACK (ACKnowledgement) back to the server. After this a connection
has been established and data can be sent.

However the three-way handshake is flawed. A common DoS attack is simply to flood
a server with SYN-packets but never respond to the servers SYN-ACK-packets (TCP SYN
flood). The server can have a limited number of outstanding SYN-ACKs and when the
queue is full it will drop incoming SYNs. To anyone trying to access the server it will seem
like it is unavailable. Because TCP was meant to be lossless and accommodate for e.g.
slow clients, it will generally wait quite some time before dropping outstanding SYN-ACKs.
Of course this time can be configured by server administrators but doing so could have
ramifications on connectivity. Generating and sending enough SYN-packets to DoS a server
is an easy chore for a computer. Implementing a POW into the three-way handshake could
remedy exactly this. If a client has to perform some work before being allowed to connect it
will not be able to overload the server as easily. The work per connection is very little but
multiplied by a hundred thousand it will be a significant amount. This means that regular
clients will not be affected by the POW, only clients who try to spam the server.

2 CONTENTS

POW variants

There are different ways to implement POW and different algorithms/puzzles to use for the
actual work. The general idea of POW is that a client should perform work that can not
be precomputed or faked. There are two ways to implement a POW protocol.

Figure 0.1. Challenge response process[7]

Challenge response. In a challenge response implementation the client wishing to con-
nect to a server first asks the server for a puzzle or problem to solve. The client then
solves the puzzle and sends it back to the client for verification. These events can be
seen in Figure 0.1.

Figure 0.2. Solution verification process[8]

Solution verification. A solution verification implementation does not require the client
to contact the server for a puzzle to solve. The work the client is supposed to do is
predefined and the server only has to verify that the solution is valid for the data
the the host for example wants to send. This is the case in email spam prevention
algorithms such as Hashcash[6]. These events can be seen in Figure 0.2. POW to
mitigate email spam does not prevent precalculation of solutions, but to send one
million spam emails the sender would have to precalculate one million solutions.

Puzzle

Regardless of how you implement you POW protocol you need a puzzle algorithm. Puzzle
algorithms can exhaust different resources of client computers. If an algorithm is CPU-
bound it requires some CPU-time from the client. CPU-bound functions can vary greatly
in execution time between computers with different performance.[5]. Hashcash is such an
algorithm. In Hashcash the client has to concatenate a random number with a string several
times and hash this new string. It then has to do so over and over until a hash beginning
with a certain amount of zeros is found. Algorithms can also be memory bound. These
algorithms strive to cause significant amounts of cache misses instead of just needing CPU
time. Because the size of caches does not vary as much between different computers as
CPU, this may be a better approach if you want puzzles that are solved equally fast on
different computers.

2. METHOD 3

1.2 Problem statement
With this report we wanted to answer the following questions:

• What are the principles of POW?

• Can our implementation mitigate a DoS attack?

• Does our protocol slow down communication significantly compared to a normal TCP
connection?

2 Method

To answer the questions defined in the problem statement we needed we first read up on
what has previously been done. We found no protocol that tried to mitigate DoS attacks or
were adapted to work in the transport layer. This forced us to come up with our own version
of a POW that we could implement over UDP[10] and that had the following characteristics:

• The workload on the server should be drastically lower than on the client

• The protocol needs to scale well when more clients tries to connect

• It should be impossible for a client to do any precalculations

2.1 The protocol
As shown in Figure 0.3, for a client to be allowed to open a connection over the TCP
protocol it first has to solve a puzzle. A request for a puzzle is sent to the server over
the UDP protocol. The puzzle is a SHA1[9] hash made up of the clients IP, the source
port and a seed from the server. The server sends the puzzle to the client along with the
corresponding seed id. The client then has to search for a string that when concatenated
with the puzzle and hashed results in a string beginning with a fixed number of zeros. The
solution is then sent back to the server along with the seed id.

Figure 0.3. Our version of a POW[4]

4 CONTENTS

When the server gets a solution from the client it checks if the hash of the solution
concatenated with the puzzle begins with the specified number of zeros. The puzzle is not
stored anywhere on the server but since the client returns the seed id it can be reconstructed.

2.2 Implementation
Our implementation of a client and a server using our POW protocol can be found at
http://www.csc.kth.se/~antlu/pow.tar.bz2

2.3 Testing
The different setups for testing were configured in a way so that one setup is with a strong
server and a weak client. The other setups were done by increasing the performance of the
client and decreasing the performance of the client.

Setup 1

• Client: Intel Core 2 Duo 1.3GHz. OS: BackTrack Linux 5.

• Server: Intel i5 2.3GHz hyperthreading. Only using one of the virtual cores with 50%
execution cap. OS: BackTrack Linux 5.

• The client tries to spam the server with valid requests to the server, i.e. the client
solves the puzzles.

Setup 2

• Client: Intel Core 2 Duo 1.3GHz. OS: BackTrack Linux 5.

• Server: Intel i5 DualCore 2.3GHz hyperthreading. Only using one of the virtual cores.
OS: BackTrack Linux 5.

• The client tries to spam the server but does not care to solve anything. It only sends
requests for new puzzles.

Setup 3

• Client: Intel Core 2 Duo 1.3GHz. OS: BackTrack Linux 5.

• Server: Intel i5 DualCore 2.3GHz hyperthreading. OS: BackTrack Linux 5.

• The client tries to spam the server but does not care to solve anything. It only sends
requests for new puzzles.

Setup 4

• Client: Intel Atom 1.8GHz. OS: Ubuntu 11.10.

• Server: Intel i5 DualCore 2.3GHz hyperthreading. OS: BackTrack Linux 5.

• The client tries to spam the server but does not care to solve anything. It only sends
requests for new puzzles.

http://www.csc.kth.se/~antlu/pow.tar.bz2

3. RESULTS 5

The first step in setup 1 was to calibrate the number of required zeroes in the POW.
This was done by measuring the time it took for the client to complete a request. When
the time was lower than a tenth of a second we tried to overload the server with valid
connections.

For this setup the source code was left nearly identical to how a regular client would
perform a request. We programmed the client to send packets from 20 different ports. For
each port it sent 15 packets, i.e. requested 15 identical puzzles and solved them. Thus
resulting in 300 requests.

With setup 2, 3 and 4 we tried two different scenarios. The first was when the server
handled all the requests but returned empty puzzles. The second scenario was when the
server calculated new puzzles and returned them to the client.

The source code of our working implementation was edited to allow the client to spam the
server, the client did not have to calculate any hashes, i.e. perform POW. We configured
the client to send 1000 packets per port from 380 ports, meaning that the client would
attempt to send 380,000 puzzle requests.

Tcpdump was used in all setups to count packets and we ran it with the following flags:
tcpdump -n -q -t -s 100 -w output. Two instances of tcpdump ran simultaneously on
both the server and the client. The first one had a filter looking for the host destination ip
and the other had a filter looking for the host source ip. This was done just before running
client and server. Between runs the tcpdump processes were terminated and the number
of packets captured by the filters noted. The time was measured by running the client with
time client. The real time was then noted. CPU peaks were checked using the program
top.

3 Results

In this section we present the data obtained from our tests. We chose to not write any
further description or analasys of the data here. To get a good grip of what this data says
the reader is encouraged to continue to read in Section 4.1 where we make references to the
figures.

Table 0.1. Result from setup 1

run nr time client CPU
peak

server CPU
peak

pkts sent by
client

pkts rec by
server

pkts sent by
server

pkts rec by
client

pkts handled
in server

1 14,517 100 30 600 600 300 300 600
2 4,776 100 60 600 600 300 300 600
3 11,807 100 47 600 600 300 300 600
4 21,832 100 33 600 600 300 300 600
5 10,019 100 64 600 600 300 300 600
6 12,829 100 41 600 600 300 300 600
7 9,198 100 43 600 600 300 300 600
8 10,862 100 47 600 600 300 300 600
9 14,569 100 38 600 600 300 300 600
10 9,784 100 75 600 600 300 300 600

Average 12,019 100 48 600 600 300 300 600

6 CONTENTS

Table 0.2. Result from setup 2

Scenario 1 - empty puzzles
run nr time server CPU

peak
pkts sent by
client

pkts rec by
server

pkts sent by
server

pkts rec by
client

pkts handled
in server

1 20,516 85 60 114 60 114 15 491 15 491 35 205
2 20,462 82 67 556 67 556 15 494 15 494 32 071
3 20,494 81 70 129 70 129 15 493 15 493 34 655
4 20,441 87 35 766 35 766 15 490 14 813 24 379
5 20,511 85 52 898 52 898 15 490 14 927 40 614
6 20,457 90 50 150 50 149 15 490 15 490 34 776
7 20,391 91 44 980 44 979 15 490 15 271 30 782
8 20,450 82 53 289 53 289 15 490 15 490 15 490
9 20,474 89 51 607 51 605 15 490 15 490 31 910
10 20,429 86 45 216 45 216 15 490 15 253 33 889

Average 20,463 86 53 171 53 170 15 491 15 321 31 377
Scenario 2 - real puzzles
run nr time server CPU

peak
pkts sent by
client

pkts rec by
server

pkts sent by
server

pkts rec by
client

pkts handled
in server

1 20,480 95 33 955 33 948 15 492 14 606 16 911
2 20,461 82 61 914 61 906 13 135 13 135 13 135
3 20,475 84 54 438 54 432 13 886 13 886 13 886
4 20,479 92 32 183 32 177 15 492 14 700 15 534
5 20,445 85 52 280 52 274 13 476 13 476 13 476
6 20,484 86 54 807 54 800 13 879 13 879 13 879
7 20,486 93 35 714 35 714 15 492 15 045 17 130
8 20,511 93 41 128 41 120 15 145 14 902 15 145
9 20,430 92 35 986 35 979 15 327 14 312 15 327
10 20,460 87 49 346 49 340 14 188 14 188 14 188

Average 20,471 89 45 175 45 169 14 551 29 777 14 861
Difference between scenario 1 and 2

time server CPU
peak

pkts sent by
client

pkts rec by
server

pkts sent by
server

pkts rec by
client

pkts handled
in server

0,042 3 41 47 939 14 524 19 028

3. RESULTS 7

Table 0.3. Result from setup 3

Scenario 1 - empty puzzles
run nr time server CPU

peak
pkts sent by
client

pkts rec by
server

pkts sent by
server

pkts rec by
client

pkts handled
in server

1 20,564 38 55 155 55 155 32 284 31 068 55 155
2 20,580 42 56 589 56 589 32 284 24 037 56 589
3 20,514 49 54 939 54 939 32 284 26 428 54 939
4 20,548 50 56 812 56 812 32 284 30 005 56 812
5 20,573 48 58 126 57 534 32 284 25 147 57 534
6 20,556 39 51 394 51 394 32 284 32 275 51 394
7 20,579 41 47 286 47 286 32 284 28 412 47 286
8 20,523 42 49 022 49 022 32 284 31 080 49 022
9 20,568 42 49 677 49 666 32 284 30 607 49 666
10 20,529 43 52 258 52 051 32 284 25 682 52 056

Average 20,553 43 53 126 53 045 32 284 28 474 53 045
Scenario 2 - real puzzles
run nr time server CPU

peak
pkts sent by
client

pkts rec by
server

pkts sent by
server

pkts rec by
client

pkts handled
in server

1 20,550 51 35 295 35 294 32 308 30 895 35 294
2 20,554 56 38 813 38 813 32 308 30 542 38 813
3 20,492 61 43 535 43 535 32 308 25 824 43 535
4 20,540 59 46 173 46 171 32 286 30 552 46 171
5 20,492 66 53 432 53 432 32 286 23 845 53 432
6 20,568 79 56 313 53 612 32 286 29 333 53 467
7 20,601 64 48 100 48 099 32 286 28 785 48 099
8 20,560 65 52 100 52 099 32 286 31 798 52 099
9 20,549 63 49 066 49 066 32 286 31 852 49 066
10 20,553 71 53 930 53 930 32 286 25 204 53 930

Average 20,546 64 47 676 47 405 32 293 28 863 47 391
Difference between scenario 1 and 2

time server CPU
peak

pkts sent by
client

pkts rec by
server

pkts sent by
server

pkts rec by
client

pkts handled
in server

0,008 20 5 450 5 640 9 389 5 655

8 CONTENTS

Table 0.4. Result from setup 4

Scenario 1 - empty puzzles
run nr time server CPU

peak
pkts sent by
client

pkts rec by
server

pkts sent by
server

pkts rec by
client

pkts handled
in server

1 20,203 78 379 680 379 675 32 283 32 284 76 831
2 20,206 79 379 645 379 639 32 283 32 283 106 766
3 20,198 71 379 585 379 585 32 283 32 271 90 100
4 20,198 77 379 631 379 611 32 283 32 283 116 103
5 20,192 74 379 654 379 652 32 283 32 281 120 834
6 20,244 76 379 838 379 826 32 283 32 282 116 668
7 20,188 72 379 654 379 642 32 283 32 283 100 004
8 20,187 74 379 609 379 609 32 283 32 283 103 135
9 20,200 77 379 681 379 676 32 283 32 282 100 450
10 20,189 78 379 568 379 559 32 283 32 282 96 598

Average 20,201 76 379 655 379 647 32 283 32 281 102 749
Scenario 2 - real puzzles
run nr time server CPU

peak
pkts sent by
client

pkts rec by
server

pkts sent by
server

pkts rec by
client

pkts handled
in server

1 20,187 79 379 649 379 645 32 283 32 283 74 046
2 20,193 78 379 604 379 604 32 283 32 283 65 883
3 20,194 79 379 606 379 605 32 283 32 283 76 195
4 20,194 77 379 681 379 680 32 283 32 283 73 557
5 20,193 79 379 629 379 629 32 283 32 283 80 445
6 20,192 77 379 655 348 074 32 283 32 283 59 844
7 20,192 78 379 660 379 660 32 283 32 283 79 107
8 20,206 79 379 805 379 790 32 283 32 283 78 233
9 20,189 79 379 607 379 607 32 283 32 283 76 204
10 20,198 79 379 696 379 695 32 283 32 283 76 011

Average 20,194 78 379 659 376 499 32 283 32 283 73 953
Difference between scenario 1 and 2

time server CPU
peak

pkts sent by
client

pkts rec by
server

pkts sent by
server

pkts rec by
client

pkts handled
in server

0,007 3 5 3 149 0 2 28 796

4. DISCUSSION 9

4 Discussion

4.1 Analysis of results

The purpose of the first setup was to verify that the protocol worked as expected when a
host tried to spam the server with legitimate traffic. In setup 1 we used a quite slow server
and a moderately good client. As can be seen in table 0.1 the client CPU peak average was
100% while the server peak average was 48%. The client has to work very hard to send 300
legitimate packets to the server. The reason that the times are quite scattered is because a
random number is generated and then incremented until a solution is found. The average
time to solve all puzzles is approximately 12 seconds. During these 12 seconds the client
sent 300 requests, solved 300 puzzles and sent 300 solutions to the server. The client sent
300/12 = 25 packets per second, alternatively it took 12/300 = 0.04 seconds to send a single
packet. The measured times are true for the client computer used in setup 1. If the client
is run on a better computer it will produce packets faster. This is a drawback of using a
CPU-bound POW as we have done. Alternatives are presented in Section 1.

When choosing a way to measure the CPU load during the tests the best way would be
to calculate the area under the graph CPU load versus time. An easier measurement and
the one that was available to us was to read the peak of the graph. In setup 2, 3 and 4
this described very well the overall load on the server CPU but not in setup 1. During the
major part of each test with that setup the server CPU load increased by only a few units
from normal use with the exception of one short peak.

In tables 0.2, 0.3 and 0.4 there is a lot of packet loss at different places. The packets that
are received by the server but not taken care of are probably due to a poor implementation
of the server. It is possible that a better implementation could fetch data faster from the
network card’s buffer. Although it would let the server handle more packets there will
always be a limit to the number of packets it can cope with. Some packets are also lost
when the server tries to send puzzles back to the client. This could also be the result of
us overflowing the network card’s buffer. We believe that the small differences in packets
sent and received (differences of less than 100) are due to the unreliable nature of UDP. At
every hop the packets run the risk of being dropped and since these setups were meant for
spamming we commented out our simple resending function.

The time in setups 2 and 3 is constant. This is because we try to send a fixed number
of packets, 380,000, every time we ran the client and because it ran on the same computer.
In setup 4 the same client ran on a different computer and it went marginally faster. The
client computer in setups 2 and 3 has a faster CPU than the computer in setup 4 and hence
should execute faster. The reason for this is unknown.

The most interesting data is in the differences between the two scenarios in setups 2, 3
and 4. In these tables we are able to see how much POW affects the performance of the
server. The server CPU in setup 2 and 4 is nearly the same with and without POW. It was
unable to handle all packets even before POW was turned on but the amount of packets
not handled increased when POW was turned on. This is an indicator that the server was
already working at it is max capacity before POW was turned on. It also confirms that
POW affects the performance negatively as the server handles even less packets with POW.

A close look at setup 3 reveals that no packets were dropped by the server, i.e. all
packets received were handled. In this setup we can also see a clear CPU increase when
we turned on POW. This is very likely because the server in setup 3 was powerful enough
compared to the client that the server had no problem coping with the load produced by
the client. There was even enough CPU left to accommodate the POW hashing.

10 CONTENTS

4.2 Conclusions
Hellman and Rios [2] wrote in the beginning of their report that POW should not be used in
systems that rely on fast request processing since the main principle of POW is that extra
work needs to be done. As one can see in the analysis of the results the time it takes for
a client to do POW when opening a web page can be up to 0.24 seconds. For most people
this wont be noticeable. If a system requires more focus on speed than on security it is easy
to lower the number of required initial zeros. For more suggestions see Section 4.3.

By using the POW protocol the limit on how many incoming connections the server can
handle is transfered to the CPU. In a normal setup the limit is memory bound and limited
to the number of available slots. It is therefore possible that POW could mitigate a DoS
attack.

Setup 1 also shows us that it is difficult for a client to overload a server when it provides
a POW. This gives us some proof that a POW can work as a protection for the TCP slots.
A possible setup is a firewall that only allows connections to pass through if the client
provides a POW.

The conclusion one can draw from setups 2, 3 and 4 is that POW is not bulletproof.
No matter how you build your system it will be vulnerable to too much traffic. All packets
coming in to a device must be handled in some way so it is just a matter of sending a large
enough amount of packets.

4.3 Further research
Here we present a few ideas on what could be interesting to do if one wants to continue
upon the research that we have begun.

In the current implementation of the protocol the puzzle includes a static seed. The
idea from the beginning was that the server should continuously create new seeds to make
any precalculations impossible for a client. For this to work the server has to keep a short
history of the most recent seeds so that even though new connections are using new seeds a
client still has the possibility return a solution with an old seed. By defining the length of
the history one also defines the time a client has to solve a puzzle before it is invalidated.

In this report we have chosen to not discuss how the server and client should continue
their communication after the POW is provided. There are many possible ways one can
think of and each have their pros and cons. The scenario we have talked about earlier is
to implement a POW system into a firewall. This is an important step when evaluating if
POW is effective as a means of DoS mitigation.

As written earlier in Section 4.1, using 16 as the required number of initial zeros is not
always satisfactory. The situation could require either faster communication or stronger
protection against attacks. Another example of how to comply with this varying need is
suggested by Kaiser and Feng[3]. The idea is that you vary the difficulty of the puzzle
depending on server load and how fast a client has solved earlier puzzles. This could easily
be done by not letting the number of initial zeros be a fixed value but rather to tell the
client on each request how many zeros it should find.

Bibliography

[1] Darren Anstee. DDoS Attack Trends Through 2010, Infrastructure Security Re-
port & ATLAS Initiative. Available from http://ripe62.ripe.net/presentations/
88-Darren-Anstee-AA-RIPE-2011-DDoS_Trends.ppt.pdf, 2010. [cited: 2012 april
12].

[2] Christian Hellman and Felix Leopold Rios. Proof of Work. Available from
http://www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2010/
rapport/hellman_christian_OCH_rios_felix_leopoldo_K10039.pdf, 2010. [cited:
2012 March 2].

[3] Ed Kaiser and Wu chang Feng. mod kaPoW: Mitigating DoS with Transparent Proof-
of-Work. Available from http://conferences.sigcomm.org/co-next/2007/papers/
studentabstracts/paper46.pdf, 2007. [cited: 2012 March 6].

[4] Anton Lundqvist and Jonatan Landsberg. File:Proof of Work protocol for DoS Mit-
igation. Available from http://www.nada.kth.se/~jonlan/kex/clientserver.png,
2012. [cited: 2012 may 20].

[5] Aron Sharma and Damon Sharivar. Proof-of-Work. Available from http:
//www.csc.kth.se/utbildning/kth/kurser/DD143X/dkand11/Group8Mikael/
final/Aron.Sharma.Damon.Shahrivar.report.pdf, 2011. [cited: 2012 March 5].

[6] Wikipedia. Hashcash [homepage on the Internet]. Available from http://en.
wikipedia.org/wiki/Hashcash, 2011. [cited: 2012 april 12].

[7] Wikipedia. File:Proof of Work challenge response.svg. Available from http://en.
wikipedia.org/wiki/File:Proof_of_Work_challenge_response.svg, 2012. [cited:
2012 april 12].

[8] Wikipedia. File:Proof of Work solution verification.svg. Available from http://
en.wikipedia.org/wiki/File:Proof_of_Work_solution_verification.svg, 2012.
[cited: 2012 april 12].

[9] Wikipedia. SHA-1 [homepage on the Internet]. Available from http://en.wikipedia.
org/wiki/SHA-1, 2012. [cited: 2012 may 20].

[10] Wikipedia. User Datagram Protocol [homepage on the Internet]. Available from http:
//en.wikipedia.org/wiki/User_Datagram_Protocol, 2012. [cited: 2012 april 12].

11

http://ripe62.ripe.net/presentations/88-Darren-Anstee-AA-RIPE-2011-DDoS_Trends.ppt.pdf
http://ripe62.ripe.net/presentations/88-Darren-Anstee-AA-RIPE-2011-DDoS_Trends.ppt.pdf
http://www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2010/rapport/hellman_christian_OCH_rios_felix_leopoldo_K10039.pdf
http://www.csc.kth.se/utbildning/kandidatexjobb/datateknik/2010/rapport/hellman_christian_OCH_rios_felix_leopoldo_K10039.pdf
http://conferences.sigcomm.org/co-next/2007/papers/studentabstracts/paper46.pdf
http://conferences.sigcomm.org/co-next/2007/papers/studentabstracts/paper46.pdf
http://www.nada.kth.se/~jonlan/kex/clientserver.png
http://www.csc.kth.se/utbildning/kth/kurser/DD143X/dkand11/Group8Mikael/final/Aron.Sharma.Damon.Shahrivar.report.pdf
http://www.csc.kth.se/utbildning/kth/kurser/DD143X/dkand11/Group8Mikael/final/Aron.Sharma.Damon.Shahrivar.report.pdf
http://www.csc.kth.se/utbildning/kth/kurser/DD143X/dkand11/Group8Mikael/final/Aron.Sharma.Damon.Shahrivar.report.pdf
http://en.wikipedia.org/wiki/Hashcash
http://en.wikipedia.org/wiki/Hashcash
http://en.wikipedia.org/wiki/File:Proof_of_Work_challenge_response.svg
http://en.wikipedia.org/wiki/File:Proof_of_Work_challenge_response.svg
http://en.wikipedia.org/wiki/File:Proof_of_Work_solution_verification.svg
http://en.wikipedia.org/wiki/File:Proof_of_Work_solution_verification.svg
http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol

	Statement of collaboration
	Contents
	Introduction
	Background
	Problem statement

	Method
	The protocol
	Implementation
	Testing

	Results
	Discussion
	Analysis of results
	Conclusions
	Further research

	Bibliography

