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Abstract
Denial of Service attacks are a serious threat to server robustness and
stability. This thesis seeks to examine the possibility of implementing
a proof-of-work protocol which effectively prevents this type of attacks.
Its main focus is to investigate a general concept that includes sending
puzzles over the Internet layer, creating a cost as a puzzle per request
which is easily adjusted depending on current server load. The cost
validates that the request is in fact legitimate by forcing the client to
process a solution to the given puzzle before granting resources on the
server. An implementation of the protocol is explained and the results
of the testing confirm that proof-of-work could be an effective method
to counter standard DoS attacks.



Referat

Denial of Service-attacker är allvarliga hot mot servrars robusthet och
stabilitet. Den här kandidatuppsatsen ämnar att undersöka möjligheten
att implementera ett proof-of-work-protokoll som effektivt motverkar
den här typen av attacker. Fokus ligger på att utreda ett generellt kon-
cept som skickar pussel över internetlagret. Detta görs genom att införa
en kostnad per efterfrågan som enkelt regleras beroende på serverns be-
lastning. Kostnaden är ett pussel som verifierar att en efterfrågan är
legitim och inte en attack genom att tvinga klienten att lösa pusslet
innan den kan fortsätta. En implementation av protokollet beskrivs och
resultaten av körningarna bekräftar att proof-of-work kan vara en bra
metod för att hindra vanliga DoS-attacker.
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to both parties. In spite of this, the following paragraph describes which sections
the members have focused on the most during the course.
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Implementation/Protocol, Performance and Challenges. Johan has written most of
the following sections: Background, Purpose and Implementation/Puzzle. Remain-
ing sections were written in complete collaboration.

The implementation code in Java was to a large extent written by Johan with
some contributions provided by Jonatan.
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Chapter 1

Introduction

One of the most common and critical security threats to web servers are DoS (De-
nial of Service) attacks. DoS attacks are targeted efforts to deny a service from
functioning properly on a computer system. In the case where multiple clients fo-
cus on overwhelming one system the attack is referred to as DDoS (Distributed DoS
attack).[1] These types of attacks exploit bugs or features in the operating system
or vulnerabilities in the TCP/IP implementation. Unlike many other targeted at-
tacks, a DoS attack is not aimed towards stealing or compromising data, but to
keep authorized users from accessing resources on a computer system.

The typical attack is when clients send tremendous amounts of requests to a
web server, in hope for a host malfunction, due to the limit of requests that can
be handled by the system hardware. Its purpose is often to express ideological
criticism, political discontent or personal harassment.[2] The goal of the authors of
this thesis is to create and implement a security protocol which may effectively deny
some of these requests with malicious intent.

1.1 Background
There is a lot of research in the field of DoS attacks. Different countermeasures
and methodologies have been discussed extensively by academia. The general idea
is to force clients requesting a resource to prove that the request is in fact legiti-
mate. One popular tool that is common for this type of verification is reCAPTCHA
(CAPTCHA stands for Completely Automated Public Turing test to tell Comput-
ers and Humans Apart). It generates distorted pictures of words that the user has
to interpret and send as a part of a request to the server. The server only has to
compare two strings to verify a valid request.[3]

There are several other services that work almost in the same way. Some ex-
amples are Gimpy, Bongo, Pix and Eco. Not all use words like reCAPTCHA.
Bongo, for example, uses geometric shapes and lets the user solve a visual pattern
recognition problem.[4]
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CHAPTER 1. INTRODUCTION

The downside of using services like reCAPTCHA is that it is implemented in the
application layer. The Internet Protocol Suite consists of several layers. Depending
on the model used the layers are labeled differently but we chose to use application
layer and Internet layer according to RFC122.[5] If an attacker decides to mount
an attack on a lower layer than the application, the protection is futile. Another
criticism to CAPTCHA systems is that they are not very good in terms of usability.
Users with impaired sight that mainly rely on the content of the web page to be
read to them cannot complete the puzzle.[6] The reCAPTCHA implementation also
requires the user to do an active response. An optimal solution should work without
the user noticing any part of the protection process.

Another type of defense is to apply a cost for every request sent to the server that
clients must pay before accessing resources on the server. The cost is represented as
a puzzle the client must solve before the host can process the request. Cryptographic
puzzles are a widely-known concept in proof-of-work. The idea is that the puzzle
being used by the protocol is the proof that some work has been done to solve the
puzzle before substantial resources are allocated by the server. Ideally the puzzle
should be hard to solve and comparatively easy to verify its solution, it should be
easy to regulate its hardness, and be small in size. Puzzle fairness is the property
that all clients should have the same delay when processing a puzzle. Another
important property is non-parallelizability, meaning the problem should not easily
be solved by multiple machines.[7] This last property is not something this thesis
will focus on due to lack of knowledge.

1.2 Purpose
This thesis is part of the degree project for computer science bachelor students
at KTH. The goal of this study is to investigate an effective way of denying DoS
attacks without affecting normal users. In order to fortify the defense mechanisms,
a different approach than the one offered by applications such as CAPTCHA is
needed. The best solution would be a fully automated system that carries out a
protocol in which the user needs to verify its legitimacy, implemented globally in
a network so that an attacker cannot avoid it. Describing an optimal scheme is
difficult because of the great amount and diversity of different attacks available,
and moreover the various hardware configurations in a network.

This thesis seeks to remedy some of these problems by analysing previous re-
search and determining which is most favorable. It describes the possibilities of
such a protocol and presents an implementation of it - evaluating its strengths and
weaknesses and overall performance.
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Chapter 2

Problem Statement

The main problem is to identify a distinguish request from a DoS attack. Only
accepting requests from trusted sources has its downsides, such as false positives or
the non-inclusive behaviour towards unknown but legitimate clients.

It is imperative that the server can process the requests regardless of source.
If the server can force clients to compute a solution of a puzzle for each request,
some DOS attacks could be prevented and the threat mitigated. Placing a cost
in the form of a puzzle on each request makes clients pay with computing power
for each request done. As a side effect the average amount of requests sent is
decreased and if the solution to the puzzle is invalid or nonexistent the request will
be detected as an attack. Furthermore, the puzzle needs to be implemented in a
way so that it can verified much quicker than it can be solved, to prevent the server
from being overwhelmed with verification requests. The simplicity of verification is
also important so that the server cannot be attacked with huge amounts of incorrect
solutions.

Another area that needs to be addressed is the distribution of the puzzles to
clients. There are several approaches: host server distribution, the use of bastions
as an intermediary, or even a distributed network of these.

Additionally, puzzle design needs to be of a very simplistic nature without affect-
ing the hardness. This is because the proof-of-work is meant to be implemented as
far down in the Internet protocol suite layers as possible. Using a complex problem
such as trees structures to describe puzzles might cause problems during implemen-
tation since one can only work with a limited set of bits set by industry standards in
communication protocols.[8] This could cause it to become unfeasible to implement
in the desired Internet layer.

Lastly, having a puzzle that is easily adjustable with minor changes to the
protocol gives the advantage of being able to set thresholds depending on current
server load. For instance, if it is known that a server is under attack, the hardness
of the puzzle should be elevated so that the client sending requests takes longer to
solve these, giving prolonged time for the server to clear enough requests to stabilize.

In conclusion the central subjects to be answered are: determining an effective
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and balanced puzzle that is easily generated and verified, how to distribute these
to clients and how these should be implemented as a proof-of-work protocol.
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Chapter 3

Method

In the scope of this thesis there is not enough time to implement a full-scale protocol
in the network layer. The focus lies therefore in researching the possibilities of such a
protocol and evaluating its features for future research. First the subject is explored,
with an overview of puzzles and distribution of these. Naturally these findings are
not complete but are a starting point for the upcoming section Implementation.
Here the protocol proposal is introduced and described in detail, along with the
extension possibilities.

In conjunction with the report, an application is programmed in Java according
to the outline of conclusions in Research and the approach described in Implemen-
tation, which includes a server and client and a simulation of handling IP headers.
Instead of implementing the protocol in the network layer the environment is sim-
ulated in the application layer due to time constraints. The application is tested
on various systems and its performance efficiency evaluated. With this theoretical
research and empirical prototype several conclusions can be drawn that may be used
for further research and proper implementation.
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Chapter 4

Research

4.1 Puzzles

Typically, the method used for a proof-of-work is to transmit the puzzle in the ap-
plication layer of the network since most attacks originate from designated software.
However, it restricts the protocol to work in a more general environment and must
be applied to all applications in need of security. It is therefore desirable to find a
solution applicable to all systems. The optimal implementation needs to be located
on the Internet layer, also known as the network layer according to the OSI (Open
Systems Interconnection) model. In order to be able to send it in the Internet layer,
such as with a packet, the size of the problem must be minimal. Currently the IPv4
implementation allows at most 255 bytes in the options field, thus being the upper
bound for maximum puzzle size. However since the packet already could have other
options defined there might not always be enough space. In the future, concerning
the upcoming IPv6 standard, this protocol could be implemented in an Extension
Header and is therefore not limited by other options.[9]

According to previous statements, a puzzle in a proof-of-work must be relatively
hard to solve and it must be easy to verify its solution. Due to these two require-
ments one can directly associate the puzzle problem with different problems in the
area of cryptography.

For instance, when protecting passwords, hashes and salts are used to protect
the integrity of the password. It is widely known that a SHA-1 (Secure Hash
Algorithm) hash function is easy to compute but very difficult to cryptanalyze and
most computer languages already implement hash functions as part of their default
library.[10]

Another subject in computer security using computationally hard problems is
encryption of information. It is known that one can crack a RSA key with enough
computer power and time, however as the key length becomes longer it becomes
exponentially harder to break.[11] As a part of cracking RSA keys one must calculate
integer factorisation or try to brute-force a value for d inm = cd(mod n), also known
as the discrete logarithm problem.[12]
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CHAPTER 4. RESEARCH

These three are identified as apt problems to be reviewed: reverse hash, integer
factorisation and the discrete logarithm problem, and will be studied as potential
puzzles.

4.1.1 Integer Factorization

According to the fundamental theorem of arithmetic, every positive integer can
be represented as a product of one or more prime numbers.[9] Prime factorization
is unique and gives a representation of an integer as a product of primes.[9] Not
all numbers are equally hard to factorize, semiprimes (the product of two prime
numbers) being the hardest of these instances. By virtue of their supreme difficulty,
semiprimes are a core part of the RSA algorithm, used when calculating the totient
function in the algorithm.[9]

There are several advantages with using integer factorization as a puzzle. The
concept is extremely simple, the server sends a single, large integer to the client and
expects a correct factorization as a result. The puzzle is easily adjustable by the
server, being able to send larger integers, or even semiprimes, to the client if under
great pressure. However, there are some difficult implications. The representation
of the result is a set of integers, in an arbitrary order depending on the algorithm
used, and according to our requirements must be sent all at once. Setting and
getting the integers may be hard to do effectively for all integer sizes. Because of
the IPv4 option size limitation, the maximum amount of integer factors that can
fit are 63 if every integer is 32 bits (total size 255 bytes). Since the integers are
usually represented with 32 bits, one can assume this is the best practise when
retrieving the integers. Verification of these numbers could prove challenging for a
server handling many different integer factorization puzzles simultaneously.

Owing to the hardness of the problem there are currently no efficient general-
purpose integer factorization algorithms for large integers. Knowing additional
information about an integer, such as any of its factors, greatly simplifies the
problem.[9] Using a defined type of numbers in a very specified size range and
applying a good algorithm for these predefined integers is a feasible solution as a
proof-of-work puzzle. Unfortunately this approach slightly constrains the freedom
of adjusting the problem according to server load.

4.1.2 Discrete logarithm

Similar to integer factorization in its properties and solving techniques, the discrete
logarithm problem is yet another hard to solve mathematical problem. The problem
is used in the Diffie-Hellman Key Exchange where two parties compute an algorithm
to acquire a shared secret value for encrypted communication.[13] Given the prime
number n and an arbitrary number a, relatively prime to g and n, there exists
exactly one number µ among the numbers 0, 1, 2...φ(n)−1 that satisfies the relation
a ≡ gµ(mod n).[9] Relatively prime implies the greatest common divisor(g, n) = 1
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and gcd(a, n) = 1 must be fulfilled for g and n, and is the crux of achieving a hard
to solve relation.[5]

Provided the client solves µ the verification for the server is incredibly quick and
easy - at its best it is constant O(1) in terms of complexity. It is because it merely
uses a simple hash table lookup to identify the puzzle and verify the solution. The
easiest and most intuitive naive algorithm is to augment µ to higher powers of g
and test for each value of µ if the relation is satisfied - worst-case solving complexity
is O(φ(n)). Several other more efficient and sophisticated algorithms such as the
Baby-Step-Giant-Step method, or Pohlig-Hellman method exist that ought to be
considered when implementing discrete logarithm as a proof-of-concept puzzle.[14]

The naive algorithm is easy to implement and should be hard to compute for
all standard desktop computers for large input integers. Naturally, devices with
more computational power will solve these quicker. Assuming adversaries are not
using systems with extremely potent hardware the puzzle is solved with little time
difference between computers. These things in mind, CPU power disparity or the
existence of slightly more effective algorithms do not impair discrete logarithm as a
possible puzzle.

The major feature of this problem is the fact that the communication between
server and client is merely three integers one way and one integer back to verify a
puzzle. The simplicity of the problem and constant size makes it easy to implement
in an IPv4 option header.

It is important to study how the time complexity changes for the algorithm for
different integer sizes. Using the naive algorithm one needs to be aware of its average
computation time for a desktop computer and send an appropriately hard problem
to solve without affecting network service to a large extent. This average data is
also used to set the time limit for a client to respond to its request for solution.
An implementation suggestion and performance analysis is explained later in the
thesis.

4.1.3 Hash inversion

In several papers the reverse hash problem is used as a proof-of-work puzzle and it
is also partially used by Hashcash, which tries to compute partial match to a hash.
It requires the email sender to generate a header to attach with the email that can
easily be verified by the server. The sender tries to compute a hash that includes
at least 20 (adjustable) zeroes as the beginning of the hash and keeps trying until
successful. The recipient must only verify that the hash actually includes these
zeroes to verify that work has been done by the client. It has many advantages:
it is easy to implement and no central server is required, its postage system does
not affect email sending speed noticeably and has been tested extensively by the
community.[15]

Hash inversion of difficulty d takes 2d−1 hash operations to compute its solution.
The drawback is that depending on the setting of d the difficulty of the problem
varies a lot, and depends heavily on the resources available client-side. An attacker
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with a designated ASIC (Application Specific Integrated Circuit) can solve these
inversions incredibly quick and will overwhelm a server if no precautions are taken.[7]
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4.2 Distribution
In several puzzle-centered proof-of-work the communication between server and
client is described as "challenge-response protocol". The client requests a service
from a server, which responds with a puzzle and demands the client to solve it
before admitting the client to any resources. When the response is given, the server
verifies the solution and either grants access to the system for a time period or
denies the request. Depending on protocol the server may respond in different ways
to wrong solutions. It may ban the IP from any additional requests or send a lower
difficulty puzzle if the server is not as loaded as when the original request arrived.
[8]

Figure 4.1. Challenge-response protocol.[16]

4.2.1 Server
A simple solution for puzzle distribution is to simply let the server handling requests
issue the puzzles. The server holds a database of a set of puzzles. One of these
puzzles is sent to a client when it tries to connect, unless that client is already
trusted or banned from the server. It is important that the server also keeps track
of which client got what puzzle otherwise there is no way of validating that the
client solved a valid puzzle. Since the server needs to keep track of all these things,
a banlist, a list of accepted connections and a list of connecting clients, it will create
some additional server load. To avoid a fast overload the server should also remove
stale connections that are not responding fast enough.

4.2.2 Bastion
Previous research at Princeton University and RSA Laboratories, shows that use of
Bastions as an intermediate puzzle distributor is effective.[17] A bastion is described
as a secure external entity, that can be a robust independent server or a network of
these that serves with the purpose of distributing puzzles. The bastion does not need
to be a specific server, it could be a publicly accessible data source. The importance
lies in being able to eliminate puzzle distribution as a point of compromise. The
bastion can hold puzzles of an arbitrary number of servers without knowledge of
these. It is one level above of the servers using the bastion and can function for many
types of puzzles. The flow for a bastion can be implemented in a number of ways
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CHAPTER 4. RESEARCH

as long as high importance is given to the anonymity and security of distribution.
However, little attention has been given to the possibility of mounting DoS or other
attacks on the bastion itself, compromising the protocol and putting the protected
server at risk.

Letting a bastion act as an intermediate when distributing the puzzles makes it
harder to overwhelm the actual server. But since the server does not keep track of
the puzzles or its original solver, the bastion is a target nevertheless. If an attacker
decides to mount an attack on the bastion itself this would lead to complications
since the server cannot verify incoming requests correctly.
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Chapter 5

Implementation

5.1 Protocol

Proof-of-work at the network level implies that a puzzle must be sent as a header
in an IP packet. Servers cannot know which clients want to access resources and
which of these are legitimate, therefore the client needs to request the puzzle from
the server before a solution algorithm is run. The challenge-response protocol ad-
heres to this methodology and is the core principle of the proposal. As previously
described, the client first requests the puzzle and the server responds with a puzzle
of appropriate difficulty - depending on the current server load. The server then
either gives the client a time slice in which it may operate on the server or a tempo-
rary IP ban depending on the solution provided. This section provides a description
of how to implement the proposed protocol and an actual implementation of it in
Java can be provided by the authors via e-mail.

The protocol is initiated when a request arrives to the server. The server does
a contain check on the three hashed tables for the client IP. The client can then
be contained in one of three states: banned, accepted and connecting or be missing
altogether.

Banned: the client has previously solved a puzzle incorrectly or failed to answer
in time and is then placed in the banned table for a period of time specified by the
administrator.

Accepted: the client has solved a puzzle successfully and may run the current re-
quest on the server.

Connecting: the client has been issued a puzzle and is now responding to the query
with a solution. The header is read and the client changes state into either accepted
or banned.

Requests not contained in any of these are regarded as new and are handled by
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merely sending a puzzle to them and adding their IP to connecting.
If the client IP already is in the ban list the packet is immediately dropped.

The variable setting the time a client should be banned is set depending on type
of server. On the other hand, if the client is in the accepted list, the client may
run its request on the server with no further processing. In addition to the free
request, the client is admitted for a short period of time in which it may request
data from the server before another puzzle is submitted to be solved by the client.
It should be allowed enough time so that the user can get some work done on the
server before proving more work. But it should also have a reasonable limit so
the server cannot be overwhelmed during the time slice. Testing showed that a
simple Java TCP server that accepts a connection and then immediately drops it,
was almost instantly depleted of its resources when bombarded through a socket
by another netbook. As soon as the requests started to enter the system resources
were utilized at maximum. Although it was done in the TCP layer, it is reasonable
to believe it would be similar at a lower level. This concludes that the time slice
given for every valid puzzle solution should be very short.

The time given is a parameter that should be configured for each setup because
it greatly depends on the resources available on the server and the current level
of efficiency of DoS-attacking software. As a rule of thumb, to avoid the risk of
having a client that has solved a puzzle crashing the server, the grace period given
on the server should probably be scaled to seconds. Because of the insecurity of
the measurements no exact values are proposed and are up to the implemented to
set the appropriate values. Our own testing and values set are shown in the section
Results.

5.2 Puzzle
Working with the Internet layer puts a few restrictions on practicalities regarding
puzzle design. When implemented in the IPv4 header, the option header cannot
exceed 255 bytes. However in the IPv6 the option header is replaced with extension
headers. An IPv6 packet can have several extension headers so it is plausible to
have larger numbers than allowed by the IPv4 Option header. Even though the
standard is slowly shifting towards IPv6 our suggested protocol will be backwards
compatible. The puzzle has to be of minimal processing power to put together and
to verify. The discrete logarithm problem is very easy to implement and is notorious
in academia for its comparatively hard computation. This is why it is used as part
of the DH key exchange. The integers used as a part of the exchange are much larger
because these puzzles should not be feasible to solve. These attributes confirm the
discrete logarithm problem as optimal for our approach.
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To understand how the numbers are placed in the header it is important to
understand how an option header is composed. The first eight bits consist of the
header to the option, the following eight express the total size of the option that is
to be transmitted and the rest belong to the actual data.

Figure 5.1. IPv4 Option Header layout.

Distributing the puzzle server to client, the discrete logarithm problem requires
three integers. We require that all the integers are represented as the same number
of bits, in practical terms the size will be 32 bit, 64 bits or 128 bits - although this
may be extended up to the maximum capacity if necessary.

We designed a copy of the IPv4 option header in Java. The header is represented
with a byte array of variable size, depending on the input to the header constructor.
The first byte has a valid value like the first byte of a proper IPv4 header with the
Copy field set to one, option class number set to 2 and the option number set to
31. The second byte, representing the length of the header, is also set to a value at
creation somewhere between 0 and 255 depending on how large the option header
needs to be. What follows is the actual Option Data, whose size is based on the
length set in byte number 2. To mimic the behaviour and the calculations a normal
package needs to do we also ensured that the byte length of the header is always
divisible by four with the help of padding bytes all set to the value zero.

It is up to the server and the client to ensure that the numbers of the puzzles
are written with the right length and to a correct position within the header class.
When issuing a puzzle to a client, the server writes the three integers in the data
field, with no spacing. The sender will be responsible to write the numbers in the
right place into the Option Data field and the receiver will have to check so that it
is a proper option header. If any errors occur when reading the option header the
receiver will drop all the packets from that client for a set time.

In line with previous description of the puzzle structure, it will be sent as three
integers. It will be expected by clients that the numbers arrive in the following
order inside the header: a, g, n.

The integer in the Option Length field also has the condition to be divisible by
three, otherwise it will be assumed to be erroneous. It is also assumed that there
is no padding between the three numbers, hence every integer will be expected to
take up one third of the Option Data field.

The solution will be a single integer µ. This integer is expected to be fill the
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entire size of the Option Data field of the option header. The rest of the puzzle
does not need to be sent since the original parameters are saved server-side with
the hashed IP. In our implementation the client solves the problem with the help of
the naive algorithm described in the section Research.

5.3 Distribution
Puzzles are held by the main server. In order to be able to use different difficulties
they are assigned to different lists. In our implementation they are split into four
lists depending on their difficulty to solve, each one corresponding to a specific
server load. Puzzles are fetched by the protocol from the corresponding list by first
determining the total amount of connections currently interacting with the server.
The very easy list consists of puzzles who are solved on average within a second,
easy about 1-2 seconds, medium 3 seconds and hard 3-12 seconds. The difficulty of
the puzzles was specified by the size of the prime number. Instead of wasting time
generating the prime numbers runtime, these are read from several precomputed
text files. The total time for generating 500 puzzles for each list is barely noticeable
using this method and extending this size will have minimal consequences.

The lists are generated on the server start and refilled at the administrator’s
request. These should be renewed when a majority of the puzzles have been used
to avoid the possibility of attackers saving the puzzles and using these to exploit
the system. A server can keep the same list of primes and generate new a, and
g for each prime with minimum computational power. Puzzles are chosen from
the appropriate list at random and the same puzzle can be sent several times. The
distribution to clients is seemingly random and the probability of receiving the same
puzzle again is in practice low.

The distribution algorithm is simple. An new client requests a puzzle and the
server does a server load check before choosing a random puzzle from the correct
list. The puzzle is then written to a response packet and sent back to the client. A
timer is set which gives the client double the expected time for solving a puzzle to
make up for slow responding clients. If the client does not respond within the given
time the thread on the server that is handling the request is stopped.

5.4 Post-Validation Behaviour
Following a successful validation of puzzle, the client is given a short period of time
where it may request additional resources. We call this time the grace period of a
request. The exact time is not specified due to the aforementioned tests and the
difficulty of measuring these. The protocol should be tested and stress tested on
the hardware to achieve an optimal value of the grace period. For the purpose of
testing, the time slice was set to 10 seconds. If the response is incorrect or faulty in
any way, the server will drop any additional requests by the client for a period of
time. This is done by adding the client to the hashed IP ban list. In our particular
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application we implemented a 15 minute ban but this value could of course be
adjusted appropriately to match the servers resources.

19





Chapter 6

Results

In order to study the performance of the implementation an application was de-
veloped. Its goal was to ensure that the proposal would defend against a live DoS
attack. This testing was also the source of several conclusions discussed later in the
thesis. Most importantly it displayed the advantages and flaws of our approach and
the possibilities of future research on the matter.

6.1 Setup

The environment is a simple server/client environment with our protocol imple-
mented in the application layer. The stress test involves several clients trying to
overwhelm the server simultaneously while the server responds with proof-of-work
requests and adjusts the difficulty of the puzzles according to the load. Since we
do not have an unlimited amount of clients distributed on the Internet, we com-
pletely disregard the IP and simulate it by sending multiple requests from one client
and creating a thread for each on ther server. If we can successfully hold off the
attacks and keep the server stabilized the protocol can be deemed successful. In
addition we look at how a normal client user perceives the protocol, both in a nor-
mal server condition and under attack. The users should only notice minor delays
in the communication. The puzzle threshold below is the amount of connections
held when the server switches to a harder puzzle list. The attack is mounted by a
thread starting new clients continuously which open active connections to the server.

Experiment 1
Grace period time slice: 10 seconds
Ban time: 15 minutes
Puzzle thresholds: 0-10, 11-20, 21-30, 31-∞
Time to solve puzzle type: 0.5, 1, 2, 1-8 seconds
Clients: 1 (same as server)
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Experiment 2
Grace period time slice: 10 seconds
Ban time: 15 minutes
Puzzle thresholds: 0-10, 11-20, 21-30, 31-∞
Clients: 3 computers (4 threads per computer). 12 threads solving puzzles in total.

Experiment 3
Grace period time slice: 10 seconds
Ban time: 15 minutes
Puzzle thresholds: 0-100, 101-200, 201-300 , 301-∞
Amount of clients: 4 computers (4 threads per computer). 16 threads solving puz-
zles in total.

Experiment 4
Grace period time slice: 10 seconds
Ban time: 15 minutes
Puzzle thresholds: 0-2500, 2501-5000, 5001-7500 , 7501-∞
Amount of clients: 3 computers (8 threads per computer). 24 threads solving puz-
zles in total.

6.2 Performance

As stated earlier, before starting work on the proof-of-work application we set up
a simple test server and application to see how quick we could overload the server
with a single client sending a long string. The results were daunting - the server
could not handle more than a few seconds of traffic.

Our first experiment was a single computer running the client/server and proto-
col in Eclipse IDE. The system stabilized at around 40-50% CPU power and 15-30
connections. The very easy puzzles were solved within 1 second, and after the con-
nections passed the threshold of 20 connections, the puzzles took 1-2 seconds to
solve and send back. The next threshold (medium) was rarely reached and often
took between 1-5 seconds. Testing of hard puzzles showed the time was between
1-8 seconds. This experiment allowed us to set the range of difficulty for puzzles.
The very easy puzzle should not be noticed when being solved and the easy ones
should be around a second. Medium and hard ones should note a slight delay since
the server is already at high capacity.

In experiment two, the amount of clients connecting was drastically increased
with the same configuration. The results were better than expected. All clients
were quad core 2.83Ghz client with 4Gb of ram and could not keep up with more
than four processes solving hard puzzles that take on average 4.5 seconds. Since
the threshold was set low, the clients reached hard puzzles easily and struggled
with these. The server (quad core 2.4Ghz 6Gb ram) on the other hand, had no
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trouble verifying puzzles from 12 different threads simultaneously. The system
resources were barely affected by the attacks. The verification stabilized at around
50 connections accessing resources. The server was still not particularly affected
by the attacks and we decided to increase the amount of threads and raise the
threshold for experiment three. Clients still could not solve more than 4 puzzles
simultaneously with 100% CPU power. The server on the other hand still worked
on 10-15% CPU power. The connections stabilized around 150-200 connections.

Figure 6.1. CPU load on a client going from 3 to 4 threads solving medium puzzles
simultaneously.

For experiment four the configuration was altered to increase the load on the
server. Since the server had not been very overworked yet we decided to lower the
threshold a great amount so that clients could solve easier puzzles. The clients
experienced almost no delay when requesting - which is the desired property if the
server is not overloaded. The threshold for connections was 2500 before it would
start issuing easy puzzles. The 24 threads could not send solutions fast enough
to actually reach this limit and stabilized at around 1000 connections. The server
was only using 20% of its resources and the clients used approximately 20% of
CPU power to solve 8 very easy puzzles simultaneously. These findings showed
that the protocol can handle 24 verification threads at the same time without being
particularly affected. Also, the very easy puzzle hardness significantly changed the
load on the clients. Instead of being able to run 4 threads it could now run 8 (and
probably many more). The delay on the clients was for the most part very small.
In an actual attack by more clients the delay would progressively grow longer as
the hardness was increased.

Our results were conclusive. There are three core parameters that change the
configuration of the protocol performance. The prime numbers of the puzzles can
be switched to get a higher/lower puzzle difficulty client-side. Furthermore, the
puzzle threshold can be set so that more connections are available at a given level
- either increasing or decreasing the server load. Lastly, the grace period may be
changed to specific needs. Although increasing the time slice is not recommended
due to the increased risk, is also allows for more connections. The final settings
should be assessed according to server hardware and use.
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Chapter 7

Discussion

7.1 Challenges

The diversity of different computer setups is huge. There are users that still operate
machines from the late nineties and others acquire the latest technology as soon as
it is available. This disparity is an issue when trying to develop a general protocol
that is dependant on the user’s hardware. The goal was that as many users as
possible should feel the same delay when using a proof-of-work as a countermeasure
to DoS attacks, but it is very hard to achieve. Scientists and engineers around the
world are increasing the power of computers continually. According to Moore’s law
the amount of transistors in a computer doubles approximately every two years.
Although this law might not be completely true for upcoming years, the progress
has shifted towards parallel computing and the efficiency of the software linked to
this. Instead of increasing clock power, researchers believe the next performance
growth drivers are: hyperthreading, multicore and caching.[18] It is most probable
the ability to solve hard problems efficiently will increase in the future and is one
of the reasons why we left the size of our integers variable.

We also faced the challenge of simulating a real DoS attack. To test the server
performance under intense pressure there are two ways to proceed. Either the
amount of clients is drastically increased or the time slice given for an accepted
client is longer. The former is hard to simulate without great resources, and as
students we were restricted to using a few machines in our university computer
labs. The later leaves a huge vulnerability since clients in the grace period do not
need to use the protocol and have time to mount attacks in between the puzzles.

Some research argues for memory-bound puzzles that do not depend on CPU
power whatsoever, however these are still open questions. These puzzles assume an
upper-bound on the memory cache and may not be applicable to future technology.
These puzzles are also highly dependant of certain parameters of the memory con-
figuration. Clients without large amounts of memory such as smartphones or PDAs
may not be able to utilize these puzzles at all.[7]

There are several other interesting factors to have in mind. For instance, the
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advances within the domain of algorithms. Several other faster algorithms exist and
there is also the possibility of finding an efficient algorithm if P = NP. However,
this famous uncertainty is still one of the unsolved problems of computer science.
Implementing one of these more efficient algorithms on a client and running it on
our protocol would solve the problem faster than the protocol expects and could
prove to be a vulnerability. Another risk is the danger of attackers developing
specific software to circumvent the protocol or mount attacks on the protocol itself;
this could be injecting code on the headers or exploiting the way the puzzles are
generated. These security risks need to be studied carefully when implementing
proof-of-work on a live system.

An aspect that also should be researched when implementing on a live system
is what happens to the original payload of the inital packet to the server. There
are several ways to handle the data for this type of protocol. For instance, copy the
data to the new packet as a response or drop it and ask the client to resend it with
the puzzle solution packet.

7.2 Possibilties

In the previous section a single bastion was shown to be a good method of dis-
tributing ephemeral puzzles to servers and works well without being especially sus-
ceptible to targeted attacks. We studied the use of bastions but did not implement
this method to distribute puzzles. It was mainly because we had not allocated time
to study this extra complexity. In addition, investigating all security aspects was
not essential for a working protocol prototype. The use of bastions increases the
difficulty to mount a DoS attack on the server but is not fail-proof. We believe that
a system with several bastions would work even better. Decentralized networks
have various advantages. There is not a single focal point to focus attacks on and
usually the different systems are backups for each other if one were to fail. It could
also work with some bastions merely generating puzzles while others are in charge of
sending puzzles. We thought about introducing our own idea called distributed bas-
tion system. This system would work as a tree, unknown to both client and servers
and would serve puzzles as needed depending on the servers requesting. When it
comes to distributed systems distributing puzzles, no research could be determined
on the subject and the idea is left for others to discover its potential.

The discrete logarithm puzzle we used could be modified to another problem to
counter disparity between clients. The tour puzzle described by Abliz and Znati us-
ing hash computations is a good alternative because it was specifically developed to
thwart this problem.[7] A proper evaluation between their puzzle, ours and others’,
is recommended before settling for one. In order to fit the puzzle in the IP header,
the size of the chosen puzzle must be relatively small and is an important factor to
be mindful of. There is the also the possibility of researching a memory-dependant
puzzle that may work better than a heavy CPU using.

Compared to many other protocols we chose to study the implementation as
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part of an IP packet. This idea was simulated with a Java application reading
and writing option headers. The time restriction and our own knowledge of the
subject prevented the implementation in the actual network layer. For someone
knowledgeable in the subject it should not be very hard to apply the ideas we have
presented to the option header in IP packets. It is our hope there will be more
research conducted for this type of proof-of-work.

7.3 Conclusions
We believe that proof-of-work is a good method to counter DoS and DDoS attacks.
Our simulation showed that if every network device would implement an additional
protocol that stores some form of puzzle in the IP header, the impact of these types
of attacks are partially mitigated. Mounting attacks on the actual protocol would
in most cases include the need to reimplement how the IP header is handled at
your specific computer which is very hard for the average user. Attacking with a
DDoS attack implies the reconfigurations needs to be performed on every client the
attacker controls because otherwise the protocol would defend itself. To say proof-
of-work will solve DoS issues is an overstatement. Given the results, the study
suggests it greatly obstructs attackers by forcing clients to show proof of work for
each request.

The findings from the results showed that the server was only affected by how
many connections it had active and not the difficulty of the incoming puzzles. The
client-side on the other hand was greatly affected by the difficulty of the puzzles.
When the difficulty increased to a level above very easy we noticed that the clients’
resources were utilized to a greater extent. Four concurrent easy puzzles were
enough to fully load a client. The quick verification and low server load in all
experiments provides evidence of the discrete logarithm being acceptable according
to our puzzle criterias.

There are some issues that need to be studied in more detail. The protocol would
be improved if it was less dependent on the clients hardware. Another source of
weakness is the lack of research of actual DoS attacks and the software used. Further
research might prove the need for a more secure protocol capable of withstanding
malicious conduct.

The experiments showed that this type of protocol can be implemented and
provide a layer of defense against attackers. Its efficiency in a real environment
is questionable depending on the nature of the attacks and the amount of clients
connected. It is also difficult to say to which degree a user is prepared to wait
for a server response without testing on actual users. Therefore many parameters
are set as variables to be configured. More extensive analysis of distributing puz-
zles over actual IP packets and an authentic implementation would strengthen our
conclusions in the matter.
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