
Finding Clusters of Similar Artists - Analysis of
DBSCAN and K-means Clustering

Walter Nordström
walterno@kth.se
+46705450021

Voxnegränd 24, 12843 Bagarmossen
and

Jacob Håkansson
jacobhak@kth.se
+46767741383

Professorsslingan 39, 11417 Stockholm

DD143X, Degree Project in Computer Science, First Level
School of Computer Science and Communication

Royal Institute of Technology
Supervisor: Michael Minnock

April 2012

1

Abstract

We have applied k-means clustering and DBSCAN to the problem
of finding sets of similar artists based on a large number of artists
and their genres. For our experiments we used data from the Million
Song Dataset, which is a freely available collection of a million popular
music tracks’ metadata created specifically for research. We ran the
algorithms with varying values on their parameters and studied the
effects. The resulting clusters were analyzed and for k-means we found
three different types of clusters. Although the results from k-means
were quite noisy, many of the clusters could be used gain some insight
in the similarity between artists.This implied that using distances as
a representation of similarities between artists is viable. DBSCAN did
not prove to be as useful. This was because its clustering method is
density-based and the density of the clusters in the input data differed
by far too much for DBSCAN to handle. We found that more features
in the input data, such as genre per track, would be desirable and
would probably improve the results of the algorithms. Further study
of other clustering algorithms applied to the same data would shed
light on the actual effectiveness of the algorithms studied here.

2

Referat

Vi har tillämpat k-means klustring och DBSCAN på problemet att
hitta grupper av liknande artister baserat på ett stort antal artister
och deras genrer. Till våra experiment har vi använt data från Million
Song Dataset, som är en fritt tillgänglig samling av en miljon populära
sångers metadata, som skapats speciellt för forskning. Vi körde al-
goritmerna med varierande värden på deras parametrar och studerade
effekterna. De resulterande klustren analyserades och för k-means fann
vi tre olika typer av kluster. Trots att resultaten från k-means innehöll
ganska mycket brus, så skulle många av klustren kunna användas för
att få en viss inblick i likheten mellan artister. Detta implicerar att
man kan använda avstånd som en representation för likheter mellan
artister. Resultaten från DBSCAN visade sig inte vara lika använd-
bara. Detta berodde på att dess klustringsmetod är densitetsbaserad
och densiteten hos klustren i indata skilde sig alltför mycket för att
DBSCAN skulle klara av hitta dem. Vi fann att fler egenskaper i in-
data, såsom genre per spår, skulle vara önskvärt och skulle sannolikt
förbättra resultaten från algoritmerna. Ytterligare studier av andra
klustringsalgoritmer som tillämpas på samma data skulle belysa den
faktiska effekten av de algoritmer studerade här.

3

Contents
1 Statement of collaboration 5

2 Background 6
2.1 Introduction . 6
2.2 Data . 6
2.3 Algorithms . 6

2.3.1 DBSCAN . 6
2.3.2 K-means Clustering 6

3 Approach 6
3.1 Representation of the artists 6

3.1.1 Input data for k-means clustering 6
3.1.2 Input data for DBSCAN 6

3.2 Implementation . 6
3.3 Parameter estimation . 6

4 Results 6
4.1 Results for k-means clustering 6
4.2 Results for DBSCAN . 6

5 Discussion 6

6 Conclusions 6

7 References 7

4

1 Statement of collaboration
The majority of the report and the implementation were written collabora-
tively. This means that the sections not specified below were written with
equal effort from both authors. The sections 2.3 and 3.1 were mainly writ-
ten by Walter Nordström. 2.2, 3.2 and 6 were mainly written by Jacob
Håkansson.

5

2 Background

2.1 Introduction

Today, Cluster Analysis is important for many fields of study, for example
biology, psychology and other social sciences[1]. More importantly for this
paper it provides an effective way of extracting knowledge from large sets
of data, i.e. Data Mining[2]. Specifically, Cluster Analysis is a method for
partitioning data into groups where members of a group is similar in some
way and dissimilar to members outside the group. These groups are referred
to as clusters[1].

In this paper we will examine the nature of some clustering algorithms
when applied to music classification. The classification of music is especially
important for digital music distribution[3]. One goal is to make it easier for
consumers to find new music that fit their taste, by presenting relations
between different music[3]. Music classification can be done in many ways
due to the many different properties a sample of music can have. For example
one could look for similarities on an objective level by examining the tempo,
chord-progressions and rhythm of a sample[3]. Another approach is to look
at relationships between musicians, for example membership in a particular
band[3]. A less objective approach is to look at similarities in music genres[3],
which is the problem to which we will apply clustering algorithms.

Although the characteristics of a specific musical genre are somewhat
arbitrary, there’s clearly a greater chance that an artist which has been
tagged with the same genre as an artist that a consumer already has been
listening to, will cater to the consumers taste, than something as objective
as a specific tempo.

The purpose of this paper is not to provide a definition of genres, however
interesting that debate may be, instead we will examine the properties of a
couple of algorithms when they’re applied to this specific kind of data.

2.2 Data

For our experiment we have chosen to rely on data found in the Million
Song Dataset[4]. The dataset obviously contains musical data from a million
songs, but it also provides us with the specific properties of that data that
we’re interested in, artists and their genres. The Million Song Dataset was
created with projects like ours in mind[4], and as such is freely available from
their website[4]. The dataset is compiled from several sources and songs was
chosen carefully[4], however that is not in this paper’s scope.

The size of the whole dataset is quite large, with each song having 47
properties, as a solution to researchers with limited storage capacity there’s
also several different subsets of that data available, specifically there’s a
dataset which only contains artist IDs and their associated tags. The tags
are mostly musical genres, but also contain geographical information, such

6

as the city of origin of an artists. That subset is the data on which we have
based our experiment.

2.3 Algorithms

2.3.1 DBSCAN

DBSCAN is a density based clustering algorithm. That is, the clusters it dis-
covers consist of elements that in the input data forms a dense subset of the
input. In order to find these clusters parameters must be passed to the al-
gorithm which are used to determine which areas are to be considered dense
and which are not. These fundamental parameters are ε and min_samples.
ε defines the maximum distance between two points for them to be consid-
ered to be in the same neighborhood. min_samples defines the minimum
amount of points in the neighborhood of a point for it to be considered a
core point for a cluster. Elements not found in the dense areas is considered
as noise and are not assigned to any cluster.

Due to its properties DBSCAN can discover clusters of arbitrary shape.
It is also applicable for data in any space and with any distance function.
A shortcoming however is that the different dense regions must have about
the same density or DBSCAN will either include noise in the clusters or
consider less dense clusters as noise. For a more detailed description of the
algorithm, please refer to the original publication[5].

2.3.2 K-means Clustering

K-means clustering partitions a given dataset into k clusters, where the
objects belong to the cluster with the closest center. The task can be for-
mulated as an optimization problem: Find k center points that minimizes
the mean squared distance from each data point to its nearest center point.
K-means solves the problem in an iterative way, and in each iteration new
center points pi+1 are chosen as the centroid of the data points that are
nearest to the center points pi from the previous iteration.[6]

3 Approach

3.1 Representation of the artists

To apply the algorithms to the problem the first task was to determine how
the artists (the input data) should be represented in a suitable way. Since
the input in this case isnít a set of physical objects in a real space there is
a level of freedom in deciding which way the artists should be represented.
The goal here is to make the data as clustering-friendly as possible. This
means that artists which are considered similar should be close to each other,
forming clusters, and these in turn should be far away from other clusters.

7

However, one must consider in what form the algorithms require the input
and potential limitations of the dataset. One limitation is that there is no
possibility to weight the artists genres, so if an artists has some genres that
only apply to a small fraction of its tracks while another is found in almost
all of the tracks there is no way to derive this information from the dataset.

3.1.1 Input data for k-means clustering

In order to apply k-means clustering the data must be represented as points
in an euclidean vector space. A sensible way of doing this, with the prop-
erties of the dataset in mind, is to let the the genres represent dimensions.
In this way an artist can be represented as an boolean vector (point) where
where its components are either 1 or 0 depending on if the corresponding
genre is associated with the artist in the dataset or not.

If the total number of genres was 3, the shape of the data would be a cube
with side 1 in the first octant in R3, and the possible points representing
artists would be the cornerpoints of this cube. In our case the number
of genres are 2274 so the set of data is represented as cornerpoints of a
hypercube in the first orthant in R2274.

This representation has some desirable properties. The euclidean dis-
tance between two artist will be zero only if they have exactly the same
genres. This is a good property since it is convenient to consider them very
similar, based on our data, if they are tagged in the same way. Furthermore,
if two artists have about the same number of tags, the distance between them
is larger the more genres they differ in.

A drawback with this representation however is when the number of tags
differ a lot. There are two different cases when this occurs. The first case
occurs if two artists have one or a few genres in common but one of them has
lots of additional genres as well. This yields an euclidean distance which,
depending on the number of genres, can be larger than between two artists
with no genre in common but less genres in total. The second case occurs
if two artist has no genres in common, then the distance between them will
only depend on the amount of genres they have. Regardless of whether these
qualities are to be considered good or bad (probably depending on artists
being compared) they cannot be altered and will influence the the output.

3.1.2 Input data for DBSCAN

Unlike k-means, the DBSCAN implementation used does not require points
in euclidean space. Instead one can choose an arbitrary distance function.
Because of the drawback discussed regarding the euclidean distance we came
up with an alternative distance function. Let a and b be two artists, then

8

the distance Dab between them is defined as

Dab = 1− inCommon(a, b)
avg(a, b)

where inCommon means the number of genres the two have in common and
avg is the average number of genres of the two.

With this distance function each pair of artists with no genres in common
the distance is 1, which is the greatest distance possible. The distance is
also always nonnegative, and zero only if the two are identical, which is
desirable. Also, the greater the average number of genres is compared to
the number of matching genres the greater the distance will be which also
is a sensible feature.

3.2 Implementation

The input data was given in an SQLite database, so we used that data in the
form we got it. However, as mentioned before, the set of tags contained a
subset that contained purely nationalities, which we found created irrelevant
noise in our data. We therefore removed all nationality tags from the artist
during processing. After this process the dataset contained 7789 artists and
2274 genres.

We found implementations of the algorithms of this study in the Python
language in two separate packages, this combined with the support for nu-
merical analysis from other Python packages left us with the impression that
Python would be the favorable language of choice. The k-means algorithm
used in our study is the one found in the PyCluster package which is based
on The C Clustering Library[7]. The implementation of DBSCAN we have
used is the one found in Scikit-learn, which is a Machine Learning package
for Python[8].

3.3 Parameter estimation

Both k-means and DBSCAN requires some input parameters apart from
the input data. K-means needs the number of clusters to be discovered, this
will be referred to as k. DBSCAN needs two parameters which defines what
should be considered as a dense region in the data.

The parameter k affects the output of k-means significantly. We studied
the properties of this parameter by starting with assigning k the value 5
and successively incremented it up to 30. We observed some patterns in the
output data throughout this process.

DBSCAN has two parameters referred to as ε and min_samples. These
together defines the core density of the target clusters. In both the case
where we used euclidean distances and the case where we used our own dis-
tance function there were only a finite number of possible distances. This is

9

because the vectors used in the euclidean space are boolean and our distance
function depends on a finite set of discrete variables. We ran the algorithm
for all the possible values for ε and let min_samples vary between 10 and
500.

4 Results

4.1 Results for k-means clustering

We found three types of clusters with fundamentally different properties,
we chose to refer to them as type-A, -B and -C clusters. In the type-A
clusters all artists had a single genre that all members of the cluster had in
common. The rest of the genres usually seemed to fit fairly well with the
most common genre. The higher the value of k the more type-A clusters
appear, though the clusters becomes smaller when k increases. The type-B
clusters seemed to be two or three type-A clusters merged. The number
of type-B clusters did not seem affected by the value of k. The type-C
cluster appears only once in each output. It is significantly larger than all
other clusters and always seemed to contain genres that didn’t fit very well
together. We studied how this type of cluster was affected by k, and found
that it shrunk slightly with every increment of k.

Below follows some results for k-means with k = 13, which in our opinion
had the most exemplary clusters of type A and B.

Figure 1: The clusters are presented with their size and the 5 most common
genres found among its artists.

10

Figure 2: Sample clusters with some of the artist found in each of them.
Artists was picked based on familiarity according to Echo Nest.

4.2 Results for DBSCAN

Using euclidean distance, we noticed that more than one cluster was found
only when ε was chosen less than

√
2. One of them were always relatively

large and the rest small, containing only artists with the exact same genres.
When min_samples increased the amount of noise did as well.

When our own distance function were used, the results appeared slightly
different for some values of the parameters. Still, one large cluster seemed
to contain the majority of the artists not considered as noise, and a majority
of the remaining clusters contained only artists with exactly the same gen-
res. Some clusters however, contained differently tagged artists with, in our
opinion, similar genres. This occurred when ε = 0.39 and min_samples in
the interval [10, 30]. For other values the results seemed similar to the ones
found using euclidean distances. Figure 3 shows a sample output for one of
the relevant clusters found.

5 Discussion
The type-C cluster of k-means can probably be viewed as noise, due to the
fact that it contains many different genres that have no obvious similarity.
It seems as the C-cluster is a union of many type-A clusters that were too
small to be considered clusters themselves. This is supported by the fact
that the type-C cluster keeps shrinking when k is increased.

The type-A clusters can at a first glance look trivial, because all artists
in the cluster share one specific genre. However, this is not the same as

11

Figure 3: Sample cluster from DBSCAN, this run had 3512 artists considered
as noise.

finding all the artists tagged with that genre and deciding they belong to
that same cluster. This can be seen in our example of output data, cluster 4
and cluster 10 both contain artists with genre ”rock and indie”. According to
k-means clustering the artists in cluster 4 is more similar to each other than
to an artist in cluster 10. If this is true in reality is still up for discussion.

The type-B clusters are in our opinion the most interesting. In these
clusters there is no single genre that unifies a cluster, yet the genres of
the artists within are musically similar. This means that k-means can find
clusters with artists that are not directly connected to each other through
one genre, but instead has piecewise intersections of genres connecting them.

Considering the parameter k, its effect when increasing was not only
making the type-C cluster smaller, but also all other clusters. In our opinion
the most interesting clusters were found when k was chosen between 11 and
14. Otherwise the clusters just became too small, or too few to really give
any insight.

One thing that probably would improve the results is more information
about the artists genres. For example, with information about the percent-
age of tracks an artist has with its different genres, the data points would
move from the corner points to inside the hypercube which would give a
more precise position for the artists.

Regarding the results from DBSCAN using euclidean distance, it seems
like the density in the different regions with artists were too diverse. This
is due to the fact that we were unable to find any values for the parameters
for which the algorithm did not find either one large cluster or one cluster
per genre. Using our own distance function the algorithm produced a bit
more interesting clusters, but this is still not sufficient to make it usable for
finding actual similarities.

12

6 Conclusions
We have found k-means clustering can give some insight in the similarity
of different artists. This implies that using distances as a representation of
similarities between artists is viable. The actual effectiveness of k-means
is questionable, as the output always contained a relatively large portion
of noise. This clearly depended on our input data, which essentially had
only two features. With more features available the results would certainly
improve. DBSCAN was largely ineffective on this data, and only in fringe
cases did it find useful clusters. Note that this was only while using a
specially constructed distance function. Further exploration of other types
of clustering algorithms regarding this particular input data is encouraged.

13

7 References
1. Tan, Pang-Ning. Steinbach, Michael. Kumar, Vipin. Introduction to
Data Mining. Pearson Education, 2005. p. 487- 490.

2. ACM Special Interest Group on Knowledge Discovery and Data Mining.
Curriculum Proposal. Available at http://www.sigkdd.org/curriculum.php
(Accessed 4/3/2012).

3. Pachet, Francois. Westermann, Gert. Laigre, Damien. Musical Data
Mining for Electronic Music Distribution. Sony Computer Science Labora-
tory Paris, 2007.
Available at http://www.csl.sony.fr/downloads/papers/2001/pachet01c.pdf
(Accessed 4/3/2012).

4. Bertin-Mahieux, Thierry. P.W. Ellis, Daniel. Whitman, Brian. Lamere,
Paul. The Million Song Dataset. In Proceedings of the 12th International
Society for Music Information Retrieval Conference, 2011. The Dataset is
available at http://labrosa.ee.columbia.edu/millionsong/ (Accessed 6/3/2012).

5. Ester, Martin. Kriegel, Hans-Peter. Sander, Jo‡rg. Xu, Xiaowei. A
Density-Based Algorithm for Discovering Clusters in Large Spatial Databases
with Noise. In Proceedings of 2nd International Conference on Knowledge
Discovery and Data Mining, Portland, Oregon, 1996.

6. Kanungo, Tapas. Mount, David M. Netanyahu, Nathan S. Piatko, Chris-
tine D. Silverman, Ruth. Wu, Angela Y. An Efficient k-Means Clustering
Algorithm: Analysis and Implementation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 24, No. 7, 2002.

7. de Hoon, Michiel. Imoto, Seiya. Miyano, Satoru. The C Cluster-
ing Library. The University of Tokyo, Institute of Medical Science, Hu-
man Genome Center, 2010. Documentation: http://bonsai.hgc.jp/ mde-
hoon/software/cluster/cluster.pdf PyCluster distribution:
http://bonsai.hgc.jp/ mdehoon/software/cluster/software.htm#pycluster
(Both accessed 3/4/2012)

8. Pedregosa et al. Scikit-learn: Machine Learning in Python. The Journal
of Machine Learning Research 12, pp. 2825-2830, 2011.
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html (Accessed 3/4/2012)

14

