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Abstract

In this report I present a partial implementation of the mix-
net protocol described by Khazaei, Moran and Wikstrém
in "A Mix-Net From Any CCA2 Secure Cryptosystem" for
use in electronic voting. The report goes into detail how
the different components of the mix-net work and how the
voting system works. The implementation is not complete,
but is seen as a good start towards what could become a
secure electronic voting system.



Referat

Mix-nat for rostning

I denna rapport presenterar jag en partiellt genomférande
av protokollet som beskrivs av Khazaei, Moran och Wik-
strém i rapporten A Mix-Net From Any CCA2 Secure Cryp-
tosystemfor anvéindning i elektronisk réstning. Den hér rap-
porten gar in pa detaljer om hur de olika komponenterna i
mix-nétets implementationen och réstningssystemet funge-
rar. Implementationen anses inte vara fullstdndig, men ses
som en bra start mot vad som kan bli ett sdkert elektroniskt
rostningssystem.
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Chapter 1

Introduction

Many of todays electronic voting system are implemented using mix-nets or mix
networks, a term first introduced by David Chaum [1]. The goal of a mix network,
abbreviated as mix-net, is to hide correspondence between an input and an output,
and was originally intended to be used for anonymous emailing. Todays examples of
other applications which use mix-nets can, but is not limited to include anonymous
web browsing such as the Tor project[2] as well as in payment systems][3].

The basic decryption mix-net works as a chain of proxy servers, each with its
own public and private key. In this report the proxy server will be henceforth be
called a mix-server. The client encrypts its input once using each of the proxy
servers’ public key in a certain order. The mix-servers then decrypts the input in
that same order. Each mix-server takes a list of encrypted texts. It decrypts them
using its private key, shuffles the order and then sends it to the next mix-server.

This method ensures that each mix-server has to be part of the decryption
process. However, certain vulnerabilities still present themselves in this basic model.
For example, if the last server is corrupt, it could tamper with the plaintext result
since it will do the last decryption step.

In this report I describe an implementation of a mix-net as well as a basic voting
system built on top of it. I look at the performance of a small sample election and
the general feasibility of implementing voting systems using mix-nets.






Chapter 2

Background

2.1 Related Work

There are a numerous amount of commercial electronic voting systems available as
well as controversy surrounding them. For example in 2004 an electronic voting
system made by Diebold used in the U.S. elections was found to be vulnerable to
a number of different attacks [5]. This shows the need for secure voting systems.
There are also open source voting systems, such as Helios[10] and Scantegrity[11].
Helios is a web based voting system served via HT'TP to be used for smaller elections
while Scantegrity is an enhancement for (physical) optical scan voting system. Both
systems provide end-to-end auditability, providing users with a method to track
their votes. Another electronic voting system is Prét-a-Voter[12] which uses mix-
nets and RPC (randomised partial checking) to audit the voting mechanism.

2.2 The Khazaei, Moran and Wikstrom mix-net

This project will attempt to implement and demonstrate the mix-net described
by described by Khazaei, Moran and Wikstrém in "A Mix-Net From Any CCA2
Secure Cryptosystem" [4] . The protocol described should be secure against CCA2
(Adaptive chosen-ciphertext attack) and have the following features which expands
upon the original mix-net architecture described by David Chaum in 1981[1]:

o Anonymity for which sender sent what value.
o Resistance against corrupt mix-servers

o Resistance against corrupt senders

2.3 Users and Trust

It is important to identify the actors, i.e. users, involved in using the system and
what trust is given to each. This way we can look at what kind of corruption and or
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vote tampering can occur depending on the trust given. For this project there are
4 defined actors depending on their role in the election: voters, mix-net controllers,
verifiers and an election controller. Each actor can be a single individual or a group.
We say that an actor is corrupt if they attempt to tamper or hinder the vote. An
honorable actor will follow the given protocol as instructed and not be corrupt.

The voter has very little trust, only able to place a vote once using its own
unique authentication hash. The voter is also responsible for encrypting its vote
and as such is able to tamper with the encryption of its own vote. However, if
the protocol defined by Khazaei, Moran and Wikstrém[4] is implemented correctly
the mix-net will be able to throw out any misformed votes during the decryption
process. Thus the voter can not impact the result of the vote more than as if he
would abstain the vote. The voter is only able to register one vote per valid hash
and this is controlled by the election server and/or a third party server.

The mix-net controller is responsible for a single mix-net server. It has to provide
the functionality to decrypt using its private key. We do not trust that the mix-net
node will behave honestly and using verifiers we can single out any misbehaving
mix-net node. A corrupt mix-net node or a coalition of corrupt nodes will only be
able to tamper with the vote if they are a majority, otherwise the verifiers should
be able to detect foul play.

The verifiers’ task is to verify that the mix-net operations were performed prop-
erly. They make sure that the encrypted values match the decrypted final values
in different stages of the decryption process. In the implementation of this project,
each mix-net node will also act as a verifier, but the verifier interface is separate
from the mix server interface. Separating the verifier-functionality has the benefit
of enabling external verifiers. In real life, the external verifiers could for example be
the European Union or the United Nations which have monitored elections in weak
or developing democracies.

The final decryption protocol will have at least two steps where the rest of the
actors wait on the verifiers and act depending on their result. We trust that each
verifier will objectively verify that the encryption progress and notify the system if
it detects any anomalies. We can then decide how we should model the trust on a
group of verifiers. For example we can trust the verifiers only if all verifiers report
the same result, because different results from the verifiers would imply that one or
more verifiers are corrupt or performing the verification wrong.

The election controller will be in control of the vote server, which acts as a
temporary storage for the votes. This implies a lot of trust in the election controller.
The election server is responsible for sending the collection of encrypted votes to
the mix-net. This means that it could replace all the votes if it wanted to, but
it can not determine who voted for what since the votes it receives are encrypted.
Therefore the vote server should be made as transparent as possible as well as
perhaps implemented as a distributed peer-to-peer network to spread the trust to
more than one individual. To begin with, the project will only implement the
election server as a single centralised server and therefore great trust is taken that
the election server will behave accordingly. Some verification is possible by adding



functionality to the verifiers and voters so that they also communicate directly with
the mix-net servers. Each vote could also be propagated directly to the verifiers.






Chapter 3

Implementation

The project will be separated into four different applications: a vote server, a mix-
server, a verify server and a simple voting-client. The mix-server and verify-server
are seen as mandatory parts of the mix-net while the vote server and voting-client
are seen as optional external parts and provided as additions on top of the protocol.

The vote server, which will collect votes from the vote clients and then send
the votes to be decrypted by the mix-net. The client application which will send
encrypt and send input to the vote server. The mix-servers which will work together
to decrypt and shuffle the inputs. The verify servers will verify that both the mix-
servers and voters are not corrupt.

The following diagram shows which applications communicate with each other
and in which direction the communication is sent.

VoteClient = \oteServer
Y 4
MixServer |= » VerifyServer




3.1 Libraries

The mix-net library and voting application will both be written in Java 1.7. For
cryptography the Java Cryptography Extension[6] will be used. Java RMI[7] will
be used for setting up communications between the mix servers, the registry server
and the clients. JUnit 4[8] is used for unit testing the core classes and applications.
A lightweight Java JSON library[9] is used to parse JSON config files .

3.2 General Architecture

The mix-servers will decrypt and shuffle the collection during different stages of the
protocol. The protocol is divided into 5 different layers where each layer represents
at least a basic Chaum mixnet and therefore each mix server has a keypair for each
layer. The verifiers will verify using different verifications during certain stages of
the protocol to ensure that it is followed properly.

The protocol requires communication for mix-server to mix-server as well as
mix server to verify server. The Verify servers implement the Observable/Observer
pattern to notify each observing mix server of any verification results. This way the
input of each mix-server and verify server can customized. E.g. a mix-server can
choose to only observe the verify servers that it trusts.

The mix-server pushes the collection of votes to the next mix-server in the
sequential chain of mix-servers. If it is the last server in the chain, it assumes that
the chain overlaps and it pushes to the first mix server in the chain. Each mix
server also pushes collections that it decrypts to the verify servers. Each mix-server
also listens back to each verify-server to get the results back for different types of
verifications. Additionally, it is assumed that any server used to publish the final
results of the vote will get its result from the last mix server in the chain.

Each mix server will also serve as a pull service for its released private and public
keys. The public keys will be released as soon as they have been generated, while
the private keys are released once they are required for the verification-protocol to
continue. Attempting to get the public or private keys before they are released will
return null. Any client is able to request keys from a mix server.

The vote server will provide an RMI interface for insert votes and will utilise
the RMI interfaces of the verify and the first mix server to push the collection of
votes into the mixnet. This will also start the decryption process.

The clients will be basic command line applications and only connect to the vote
server to input their encrypted values. They will encrypt the message they wish to
send using public keys from the each mix server. These public keys are obtained
through the RMI interface provided by the mix servers.



3.3 CryptoSystem

The encryption of each message is handled by a CryptoMessage class. The Cryp-
toMessage class takes a message and stores it internally as an array of bytes. It
supports operations to add layers or remove layers of encryption where each layer
is added or removed using a RSA keypair. To encrypt, an RSA public key is used
and thus to decrypt the corresponding private key has to be used.

Under the hood, when adding a new encryption layer, the CryptoMessage first
generates a AES key and a byte array seed. It then encrypts the byte array message
and the seed using the new AES key and then encrypts the AES key using the passed
RSA public key. The now encrypted AES key as well as seed are pushed on top of
a stack. This stack represents the encryption layers of the CryptoMessage and can
theoretically contain any number of layers.

In order to decrypt, the reverse order of the corresponding RSA private keys
are needed. E.g A CryptoMessage encrypted in order using keys Publ, Pub2, Pub3
will have to be decrypted in the order of Priv3,Priv2,Privl to attain the original
plaintext.

When decrypting a layer from the CryptoMessage, it uses the private key to
decrypt the topmost AES key on the stack. It then decrypts the topmost seed as
well as the byte array encrypted message. If decryption is successful the AES key
and the seed are both popped off the stack. In order to enable backwards tracing,
which is required for finding culprits, the decrypted AES key and seed are pushed
onto a new stack. This is so that the same ciphertext can be attained, which is
necessary for the backward tracing operation. However it also effectively removes
any further privacy using that AES key/seed combination.

The CryptoMessage class also optionally supports signing the message. It im-
plements the Java Serializable interface and can thus be sent over the network.

A subclass of CryptoMessage, ConcatCryptoMessage, exists to concatenate sev-
eral CryptoMessages into one combined encrypted message. It does this by acting
as a container class for the CryptoMessages it will concatenate and using the same
AES key and seed to encrypt each of the aforementioned concatenated messages
with. Thus decrypting handles much like the original superclass CryptoMessage.
The ConcatCryptoMessage class also has a split method which returns the original
concatenated messages if and only if no encryption layers are present on top of the
ConcatCryptoMessage.

Using the CryptoMessage and ConcatCryptoMessage classes we can now create
specific chains of encryptions that can fork and merge.

Additional classes that make up the core cryptosystem are described briefly:

1. CryptoMessageCollection: A simple Serializable collection of CryptoMessages
with methods that decrypt, encrypt or sign all messages contained within.

2. CryptoHistory and CryptoHistoryltem: Classes that represents a recorded
chain of decryptions. Works like a linked list, where each CryptoHistoryltem
is a node and references to the next and previous items. The CryptoHis-



toryltem can verify, using a RSA keypair, that a decryption from one Cryp-
toMessageCollection to another CryptoMessageCollection has been performed

properly.

3. Verification and VerificationResult: Interface and simple class used to imple-
ment different kinds of verifications.

4. ExplicitVerification: A class which verifies a chain of CryptoHistoryltems and
returns a VerificationResult based on the verification.

5. Dummy Verification: A class which creates dummy messages which work as
"trip wires" and verifies that they exist in a certain CryptoMessageCollection.
If not, they should be traced back to find the culprit, but this has not been
implemented yet.

6. TracingVerification: A class which checks so that each message contains ex-
actly T number of messages at the FINAL decryption stage of the protocol.
On a failed verification it should then trace back the faulty messages to de-
termine the culprit, but this has not yet been implemented.

3.4 Voting Client

The voting client application is a simple application used to insert votes to the
VoteServer. The simple version supplied with the project takes a message to vote
for either as a program argument or from STDIN. The client loads its settings from
a JSON-formatted file containing the addresses for the VoteServer and Mixservers.
It then connects to each of the mixserver and gets each of the mixservers’ public
RSA keys. The following diagram describes how the message is encrypted before
being sent to the vote server using t=3 repetitions.
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Using the CryptoMessage class, the voting plaintext is first encrypted using the
FINAL public key for each mixserver in reverse order. It is then cloned into three
identical messages and each message is separately encrypted using the REPETI-
TION, MIX1 and MIX2 public keys in the same way as the FINAL encryption
layer, that is by encrypting using each mixserver’s public key for the layer. Af-
ter having added the REPETITION and MIX-layers the messages should contain
different ciphertexts but yield the same plaintext once decrypted. The cloned mes-
sages are concatenated using ConcatCryptoMessage and finally encrypted using the
OUTER layer before being sent to the VoteServer through a Java RMI interface.

It should be noted that no authentication is implemented. In a real world sce-
nario you would most likely expect some sort of authentication to ensure a premise
such as each voter only getting one vote.

3.5 Vote Server

The vote servers function is simple. It receives votes from one or more Voter Clients
in the form of encrypted CryptoMessages, which it adds to a CryptoMessageCollec-
tion. Once the vote is finished it sends the collection of votes to the first mixserver
in the mix-net. The state of the vote is controlled by the VoteServer, reading a new
line from STDIN closes the vote. In general, the VoteServer has a lot of control
over the security of the Vote. It is meant to be a simple application to demonstrate
sending input to the mix-net, rather than a secure voting server.

3.6 Mix Server

The main role of the mixserver is to decrypt one or more layers of encryption of
CryptoMessages which are sent to it. It publishes its public keys for the clients to
use, but keeps its private keys secret until after the decryption is finished. Using
more than one mixserver we can divide up the responsibility of keeping the votes
secure and anonymous, so long as the majority are trustworthy.

Fach mixserver follows a strict protocol. It receives a CryptoMessageCollec-
tion, decrypts it and then sends it to the next mixserver and each of the verifiers.
Depending on the current state of the decryption, it waits for result from the veri-
fiers to see if it should continue or not. If it fails to decrypt any CryptoMessage it
removes it from the collection. The operations of a mixserver are as follows:



1. Generate RSA keypairs for each encryption layer. Publish public keys.
2. Register self as listener on each of the verifiers.

3. Decrypt OUTER layer. If the mixserver is the first in the chain, split the
ConcatCryptoMessage into the T duplicates contained within.

4. Decrypt MIX1 layer and shuffle the collection.

5. Decrypt MIX2 layer and shuffle the collection. Do not send decrypted
collection to verifiers.

6. Publish private keys used for OUTER and MIX1 layers.

7. Wait for Explicit verification of OUTER and MIX1 layer decryptions, stop
on failed verification.

8. Decrypt REPETITION layer.
9. Wait for Tracing verification, stop on failed verification.

10. If the mixserver is the last in the chain, group CryptoMessages which
have the same ciphertext and remove those which do not have exactly T
in count. Save the unique values of cipher texts as the new collection.

11. Wait for Dummy verification. If verification fails, stop. Otherwise wait
for dummy messages to be published by the verifiers. If the mixserver
is the first in the mix-net chain, remove the dummy messages from the
collection.

12. Decrypt FINAL layer and publish private key used.

13. Optionally wait for Explicit verification of FINAL layer decryptions.

Mix Server Protocol

Each mixserver acts a Java RMI server and has an interface for clients to put a
CryptoMessageCollection as well as get a KeyCollection of published private or pub-
lic keys. Using this interface the VoterClients grabs the public keys for encryption,
each mixservers passes the current CryptoMessageCollection to the next mixserver
and each verifier fetches private keys used for Explicit verifications.

In the current implementation the last mixserver is also responsible for publish-
ing the result of the vote, which it does by just printing it in its terminal.



3.7 Verify Server

The verify server’s purpose is to verify that each mixserver and voter behaves ac-
cordingly. It acts as a Java RMI server and provides an interface for any client to
register as a listener callback interface. It uses three different kinds of verification:
Explicit, Dummy and Tracing.

Explicit verification takes a chain of CryptoMessageCollections and verifies a
subset of these by attempting to perform the same operations as that the mixserver
should have performed. If the decryption of each CryptoMessageCollection’s content
matches that of the previous CryptoMessageCollection’s, that step of the chain is
considered verified. If it does not, the mixserver responsible for that decryption has
likely tampered with the collection and has to be reported. However, due to the
fact that the verification is separated from the mix operations, it is possible that a
mixserver has sent the correct CryptoMessageCollection to the verifier while sending
a tampered version to the next mixserver. Perhaps in an effort to frame the next
mixserver as a bad one. Thus we can not assume that the mixserver that decrypted
it is at fault. This inconsistency could be prevented by adding a synchronization
step between the receiving mixserver and the receiving verifiers. This is costly,
nearly doubling the amount of traffic sent by each mixserver to the verifiers. Each
collection would also have to be signed, so that a mixserver does not try to frame
the mixserver it is receiving the collection from.

Dummy verification works by adding a faked Dummy message to the Cryp-
toMessageCollection during the vote and then verifying that the message still exists
in the decrypted collection at at certain step.This way we can trap mixservers at-
tempting to replace the entire collection of votes in the MIX2 layer. The vote is
inserted through the VoteServer, the same way as a VoteClient would add a vote.

Tracing verification is performed before the FINAL decryption layer is removed.
It verifies by making sure there are exactly 3 copies of each ciphertext in the collec-
tion. If there is not, either a voter has submitted an incorrect vote or a mixserver
has tampered with the vote. In the original protocol definition, this verification is
performed more thoroughly by first tracing backwards to find the duplicate cipher-
texts and then tracing each duplicate forward again. This way we could find out if
it was a mixserver or a voter misbehaving, however due to time constraints it was
not implemented.

The protocol of the verify server is tied in directly to that of the mixserver. Its
operations are as follows:

1. Send dummy vote to the VoteServer.
2. Wait until encryption layer MIX2 is decrypted.

3. Verify using Explicit Verification that the OUTER, and MIX1 layer was
decrypted properly. Publish results to any listeners.




. Wait until encryption layer REPETITION is decrypted

. Verify using Dummy Verification. Check so that dummy vote is still in
the latest collection. Publish results and dummy message to any listeners.

. Verify using Tracing Verification that there are T copies of each unique
ciphertext. Publish results to any listeners.

Verify Server Protocol




Chapter 4

Performance / Results

As a test to evaluate performance, the time taken for different sized mix-nets to
decrypt a collection of varied sizes was measured. Time was measured from the
closing of the vote to when the result was published. The time taken to insert the
votes was excluded. Tests were only performed using servers running on the same
machine, running the servers over the network will likely take a longer time. The
machine on which the tests were run has a 2.0Ghz Quadcore with Hyperthreading
(Intel i7 2630QM) with 8 Gb DDR3 RAM. The tests were run in a virtual machine
running Crunchbang (linux).

With a 3 mix server and 3 verify server mix-net and input of 1000 votes with
2 repetitions it took around 70 seconds for the mix-net to process the collection to
plaintext. Using the same settings, but without any verify servers, the mix-net was
able to decrypt the collection in about 40 seconds.

The current project implementation has the features of the functionality “mix-
net with Abort” described in the report by Khazaei, Moran and Wikstrom [4]. It has
limited functionality to determine the culprit, but is able to abort the decryption if
it detects tampering.
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Chapter 5

Discussion

The brief performance test shows that the mix-net implementation is functional and
is able to decrypt the votes in a fast enough. As expected, not using any verification
speeds up the decryption but not by as much as I initially thought. However, turning
of verification means that mix servers and senders can quite easily get away with
corrupting the votes.

Compared to the original Helios implementation the performance at this point
is decent. In an experiment running Helios on a significantly slower machine in 2008
with 500 votes it was able to obtain results within a few minutes, which one could
assume would run faster today. However, this does not take into account the time
needed to generate the decryption and shuffling proof, which took several hours [10].
Compared to this implementation the auditing of Helios takes a significantly longer
time. However, I am certain that my verifications do not hold the same quality of
that of Helios and it should be mentioned that Helios has different features to this,
such as open-auditing which lets a voter track their vote. In general it should be
stressed that the Helios system is a fully working application and as such comparing
it with my limited implementation can be misleading.

5.1 Issues and Vulnerabilities

The biggest issue of the implementation is currently the lack of authentication and
input validation. In the mix-net no authentication between mix server or verify
servers is performed, each mix- and verify server waits for input which essentially
could come from anyone. Obviously this is a pretty big security risk and should
be fixed before considering this for any practical use. One simple way to do this
would be to add some sort of unique token hash for every user. It is possible that
some interfaces could be blocked using a firewall, which would negate the need of
authentication in some places.

The decision to separate the Verification functionality from the Mix server has
the downside of adding a window of opportunity for mix-server to "frame" each
other. If a mix-server sends a correct version of the vote collection to the verify
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servers and a corrupt version to the next mix-server in line, the next mix-server
will still decrypt the corrupt collection and therefore be blamed when one of the
verifications fail. In order to prevent this some sort of synchronization could be
implemented to compare vote collections received and/or sent between the mix-
servers in question and the verify servers. One way to do this without requiring
synchronization with every verifier would be to have each mix-server load a separate
subset list of trusted verifiers at startup. Then that mix-server would only trust the
output from those verifiers, while still sending decryption results to all of the other
verifiers. Using only one trusted verifier hosted on the same server as the mix-server
would mimic the behaviour of the original protocol.

It also has to be mentioned that the implementation is far from a complete
version of the Khazaei, Moran and Wikstréom protocol. The original intention was
to implement the whole protocol, but due to time constraints certain parts were left
unfinished. Primarily the error tracing is missing, which means that in the event
of a missing or extra duplicate the implementation will not be able to track down
where the corruption originated from. Additionally, there is no guarantee that the
cryptosystem implemented in this project is CCA2 secure, which is one of the main
selling points as to say of their report. However, the CryptoMessage class is likely
not that difficult to modify so that it uses an algorithm to encrypt and decrypt in
a CCA2 secure manner. All encryption is abstracted to the CryptoMessage class,
thus probably making necessary modifications relatively easy.

The system is also very easy to obstruct using a Denial of Service attack. A mix
or verify server can simply chose to not partake in the decryption, effectively wasting
the entire vote. In this case it is easy to determine who the culprit is however.

Performance-wise the protocol can be improved by pipelining the decryption of
individual CryptoMessages instead of whole collections. This way two mixservers
and even verifiers can work in parallel, decrypting messages at the same time instead
of the current sequential implementation where each mixserver decrypts each of
the message in the collection. The only layer of encryption where the sequential
decryption is necessary is the MIX2 layer, because of the shuffle operation performed
to hide the source of the vote, so a predicted 80% of the decryption process could
be sped up using a parallel pipeline. At the same time, time measurements were not
taken of failing mixnet decryptions. l.e. decryption processes where a mix-server
tries to manipulate the ballot were measured by time.



Chapter 6

Conclusion

The protocol desbired by Khazaei, Moran and Wikstrom is partly implemented in
Java for a voting system with features to prevent The implementation described in
this report should be considered as an example application rather than something
to be used in a real election. Still, it performs reasonably efficiently and can be
seen as the beginning of something greater. With some modifications, such as
adding authentication between the different components and a full implementation
of the error tracing described in the original protocol it could perhaps be seen as
a relatively secure electronic voting system. If you are interested in the code, it is
available under the GNU General Public License at https://github.com/Tethik/
mixnet
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