
Optimal Yahtzee performance in multi-player
games

Andreas Serra
aserra@kth.se

Kai Widell Niigata
kaiwn@kth.se

April 12, 2013

Abstract

Yahtzee is a game with a moderately large search space, dependent
on the factor of luck. This makes it not quite trivial to implement an
optimal strategy for it. Using the optimal strategy for single-player
use, comparisons against other algorithms are made and the results
are analyzed for hints on what it could take to make an algorithm that
could beat the single-player optimal strategy.

Statement of Collaboration

We planned the project together and came up with which parts each one of
us would do. Kai focused more on the AI bot while Andreas who already
knew Python focused more on implementing the other strategies. The other
parts of the report and implementation was done with us working in pairs.

Contents

1 Introduction 1
1.1 Problem Statement . 1

2 Background 1
2.1 Yahtzee Rules . 1
2.2 Optimal Strategy . 3

3 Method 3
3.1 Problem Representation . 4
3.2 State Definition . 4
3.3 Roll-state Definition . 5
3.4 Bots . 6

3.4.1 Single Optimal Bot . 6
3.4.2 Greedy Bot . 6
3.4.3 Random Bot . 7
3.4.4 AI Bot . 7

4 Results 7
4.1 Implementation . 8
4.2 Expected Score . 8
4.3 Comparison . 9

5 Discussion 12

6 Conclusion 13

References 14

1 Introduction

What makes the topic of optimal Yahtzee interesting is the way that it
demonstrates the potential of being able to traverse a full search space in
order to find an optimal solution. It is somewhat different from most other
optimal solution finding problems in the way that the topic at hand also is
dependent on the factor of luck and therefore an optimal algorithm does not
per se imply perfect results. Our task will be to develop an optimal algo-
rithm, compare it against other Yahtzee algorithms and analyze the resulting
differences.

1.1 Problem Statement

A topic such as optimal Yahtzee can be researched from many different an-
gles. In order for us to limit the range of research, we will focus mostly on
answering the following questions.
1. How long does it take for our implemented optimal Yahtzee algorithm to
run?
2. Does an optimal Yahtzee algorithm for single-player use necessarily also
mean it being an optimal algorithm for multi-player use?
3. If not, what does it take to make an algorithm that can beat the single-
player optimal algorithm in multi-player?
4. What are the average win-lose ratios for the single-player optimal algo-
rithm compared to simpler algorithms such as greedy or random algorithms?

2 Background

Yahtzee is a dice game made by Milton Bradley. It got inspiration from such
games such as Yacht and Generala and has been released in several different
versions. The version that is used here is the non-Scandinavian variant.

2.1 Yahtzee Rules

Yahtzee is a game played with five dice and a scorecard. The goal of the
game is to gather as many points as possible, which is done by getting differ-
ent combinations of dice. There are in total thirteen different combinations
divided in a lower section and an upper section.

The lower section is made up of the combinations:
Three-Of-A-Kind: Three of the five dice are of the same value, e.g. (1, 1,

1

1, 4, 3). The sum of the dice determines the points received.
Four-Of-A-Kind: Four of the five dice are of the same value, e.g. (2, 2, 2,
2, 5). The sum of the dice determines the points received.
Full House: Three are of the same value and the other two are of another
value, e.g. (4, 4, 4, 2, 2). 25 points are given for this combination.
Small Straight: Four consecutive numbers, e.g. (1, 2, 3, 4, 3). The number
of points given are 30.
Large Straight: Five consecutive numbers, e.g. (2, 3, 4, 5, 6). The number
of points given are 40.
Yahtzee: Five of the same value, e.g. (6, 6, 6, 6, 6). The number of points
given are 50.
Chance: Any combination. The number of points received is determined by
the sum of the dice, e.g. the combination (3, 3, 5, 6, 2) gives 19 points.

The upper section is made up of six categories, one for each of the faces
of a die. In these categories the points received are equal to the amount of
eyes on the die face times how many dice are showing that specific face. If
the total of points received in the upper section are 63 points or more, then
35 points are added to the total score, which is called a Yahtzee bonus [2].

Each combination can only be filled in once, i.e. if the player gets full
house twice, he can only receive the points for it once. However, if the player
gets another Yahtzee he receives 100 points on top of the points received
in the matching upper category if it is not already filled in. This is one
part of the so called Joker rule which also states that if the matching upper
category is already filled in, then Yahtzee can be used as a wild card. I.e. the
user can choose one of the currently unused lower categories and receive the
maximum possible points of that category. If no lower category is available
then an upper category must be filled in with a zero. If the player gets a
second Yahtzee and have already filled in the Yahtzee category with a zero
then the above Joker rule still apply, though the extra 100 points are not
awarded [2].

Each turn starts with the player throwing all the five dice together. The
player can now choose to either fill in a category or throw a subset of the dice
again, which can be done up to two times. For example, the player throws
(3, 3, 3, 2, 5) on the first throw, which is a three-of-a-kind, but an even
better combination is e.g. Yahtzee, so the player can keep the three threes
and hope for getting even more threes.

The player can always choose to fill in a zero in one of the unused cate-
gories if he wants to. Also if none of the available categories gives any points
this has to be done.

There are thirteen turns in total so with luck and by having a good

2

strategy the player can try to maximize his total score. A simple strategy
can e.g. be to never go for a category where the points are determined by
the sum of the dice if the first throw contains low values (1, 2, 3), but rather
go for a category with fixed points, and vice versa.

2.2 Optimal Strategy

The current state of research considering the game of Yahtzee is that an opti-
mal strategy for maximizing the average amount of points has been developed
[1]. Furthermore research in developing an optimal multi-player strategy, an
algorithm for maximizing the amount of victories, has been done but as of
yet, a fully optimal strategy has not been found [3]. How the single optimal
algorithm works is basically that we start at the end state of the game and
then layer by layer calculate us towards the beginning state by means of dy-
namic programming. Through calculating the probability of getting specific
dice rolls and going from one state to another we can for each state know
what the potential (expected value) will be and in order to maximize ones
score we then only need to make the decisions that makes the potential as
high as possible.

3 Method

The first thing that has to be done is the implementation of the single optimal
algorithm as described by Glenn, James article. After that, in order to
evaluate the performance of the algorithm, alternative algorithms will also
need to be implemented. When all of this is done, data about win-lose
statistics will be gathered through battling the algorithms against each other.
Statistics about what typical scores the algorithms get will also be gathered
by letting the algorithms play single-player Yahtzee a large amount of times.

One could also try to implement an improved version of the single optimal
algorithm using multi-player specific information, but since this makes the
search space increase by a large amount we believe that the required resources
to finish such a task would be out of scope for this project.

Comparing the single optimal algorithm against the other algorithms is
done in order to evaluate the effectiveness of the algorithm when playing
multi-player Yahtzee and gather data about whether it really can be a multi-
player optimal algorithm or not.

3

3.1 Problem Representation

Yahtzee can be represented as a graph of states and so called roll-states
being the vertices and the edges being the transition possibilities from one
state/roll-state to another state/roll-state.

Figure 1: Connection between states and roll-states

The graph shows how a state moves to a roll-state and then finally to
another state. Here S1, S2, S3 are different states and C1, C2, C3, U1, U2, U3

are different categories and upper section scores. The roll-states are like
states but also has information of what roll was obtained and how many
rerolls are left.

3.2 State Definition

As we saw in the previous section, states play an important role in the opti-
mal Yahtzee strategy, therefore a more formal definition is required:

Definition:
A state is defined as the categories that are used and how many points

there are currently in total in the upper section. Also a flag indicating
whether one has got Yahtzee is classified as a category. If we define the
set of all category combination as C and the set of all possible upper point
total scores as U , then the set of all states Sa, is just the Cartesian product
of the two sets, i.e.

Sa = C × U

so a state is just a tuple of a binary string representing the used categories
and a number indicating what the upper section total score is.

4

To compute the number of states we only have to compute the size of the
sets C and U . The size of U is 64 since the upper points total score can be
any value in the range 0, 1, 2, ..., 63. For the size of C we can just think of a
14 digit binary string where each digit corresponds to each category so that
if the digit is 1, then the category is used and otherwise it is not. So the
total number of such combinations are 214. The total number of states Sa

are therefore:

|Sa| = |C × U | = |C| · |U | = 214 · 26 = 220 = 1048576

However, every state is not reachable, since e.g. if one has not used any
of the upper categories, then the upper section total score cannot be any-
thing but 0. Finding the reachable states mathematically is rather hard, and
therefore a programming approach was used. By using dynamic program-
ming one can compute the reachable states more efficiently [1]. The number
of reachable states |S| were computed to 726016.

3.3 Roll-state Definition

Since the potentials for different states are highly dependent on probabilities
of throwing certain rolls, there is also a need of having states which store
information on what roll is obtained and how many rerolls can be done. It
can also be seen in the graph, that between the states there are different
roll-states which are necessary for the computation of the probabilities to go
from a certain state to another. Formally we define a roll-state as:

Definition:
A roll-state is a triple containing a state, a roll and how many rerolls

there are left, so symbolically:

p = (s, r, n) ∈ P, s ∈ S, r ∈ R, n ∈ {0, 1, 2}

where R is the set of all distinct rolls, e.g. the roll (1, 2, 3, 4, 5) is the same
as the roll (5, 4, 3, 2, 1). The total number of such rolls can be determined
with the following reasoning: We want to choose five values (one for each
die) out of six values with repetition and where the order doesn’t matter.
This is calculated by using the following expression:(

m + n− 1

m

)

5

where m = 5 is the number of values to choose, and n = 6 is the number of
options to choose from, so:

|R| =
(

5 + 6− 1

5

)
=

(
10

5

)
= 252

Therefore the total number of roll-states are:

|P | = |S ×R× {0, 1, 2}| = |S| · |R| · |{0, 1, 2}| = 726016 · 252 · 3 = 548868096

3.4 Bots

In order to evaluate the performance of the single optimal strategy for multi-
player use, a few other strategies will be implemented, which we call bots.
The name bot is used since they are thought to compete against each other
in multi-player battles. The different strategies are described below.

3.4.1 Single Optimal Bot

The single optimal bot works in the way that, given a state, find the maxi-
mum potential from that state. Therefore, the average score that this bot will
get is just the potential score given the state that has 0 points in the upper
section and no category used. To compute the potential score for each state,
one can use recursion and compute it effectively with dynamic programming
[1]. Since the computation of the potential scores is rather time consuming,
computing all the potential scores beforehand and dumping them to a file is
done.

To increase the efficiency of the bot, the probability of going from one
roll or a subset of it to any other roll is calculated beforehand and stored in
an array.

In the state definition it was mentioned briefly that just combining up-
per section points and categories available would include many unreachable
states. In order to find the reachable states a dynamic programming algo-
rithm was used as described in the article by Glenn, James.

3.4.2 Greedy Bot

The greedy bot plays like the single optimal bot but instead of going through
the whole game, it just checks the next state. Since the greedy bot only checks
the next state, generating the data file becomes unnecessary and therefore
the algorithm can be implemented faster than the single optimal bot.

6

3.4.3 Random Bot

The random bot is, just as the name suggests, a bot which plays randomly,
i.e. it has not a set rule of what dice to keep. What dice to keep is instead
determined at random, with the probability of 1/4 of keeping each die.

When choosing which category to fill in, it will use the category that gives
the most points and thus category selecting uses a greedy approach.

3.4.4 AI Bot

The AI bot is designed to play like a regular human, and therefore has a set
of rules and priorities of which categories to use and what rolls to keep.

For instance, if the roll contains a three-of-a-kind, the algorithm now aims
for a four-of-a-kind or Yahtzee, and therefore saves only the dice belonging
to the three-of-a-kind. Since the score received in both three-of-a-kind and
four-of-a-kind is determined by the sum of the dice, it is a bad choice to go
for these categories if the dice contained in the combination are of low values
(1, 2, 3) etc. Instead the algorithm tries to go for full-house or one of the
upper categories in this case. What is considered low values is controlled by
a threshold value. If a roll instead contains a straight, i.e. three consecutive
numbers, the algorithm aims to get a small straight or large straight. In most
cases the categories are already in use, and if that is the case, the algorithm
can as the last resort reroll all the dice.

After obtaining the final roll, the algorithm now has to choose a category
to fill in. Generally the algorithm just goes for the category that gives the
most points. Though, there are exceptions to this rule, e.g. when a roll
such as (1, 1, 1, 1, 6) is obtained, using the chance category, it will give 10
points, while the category ones will only give 4 points. If this is the case,
the algorithm fill in the ones category instead (if it’s not already used) since
10 points is considered a low score in the chance category. When the points
exceed the average score of chance (30+5)/2 = 17.5 and the chance category
gives the most of all categories, then the chance category is used.

4 Results

The gathering of data between the different algorithms has been done using a
battling platform that we have called the battlefield. Using the battlefield, we
were able to gather data both about the single-player statistics as well as of
the multi-player statistics and as it supports arbitrarily many simultaneously
playing bots we could use it to take statistics over how well each bot played
against all the other bots at the same time as well.

7

4.1 Implementation

Our implementation was written in Python and therefore the running of the
algorithm was quite slow. The first runs of the algorithm took a little over 24
hours to finish on a computer with an Intel Core i7 2600K 3.4 GHz CPU. We
then proceeded to optimize our solution through pruning impossible states,
generating all data such as the likelihood of getting a specific combination
of dice beforehand, store temporary results such as roll-states in memory
instead of having to generate them over and over as well as optimizing the
state class and implementing more efficient memory structures.

The final implementation of the algorithm run on the same computer as
above, took a total of 7 hours to generate the solution which we output to a
file of size 9 MB. In order to use the actual algorithm we only need this file
and therefore the generator is not required anymore once the data has been
successfully generated.

The information that is stored in the file is the potential given each pos-
sible state. This is the bare minimum that the algorithm requires, one could
also store intermediate steps such as roll-states but we noticed that the algo-
rithm in actual games just needed a few seconds in order to come up with the
best available move even when this information was not available. Having
to store this information as well would also make the data file much larger
since there are many more roll-states than there are states in the solution,
so we decided not to store it.

4.2 Expected Score

The expected score (potential) of the single optimal algorithm was with bonus
Yahtzees 254.589 points and without 245.871 points. These values were gen-
erated by the algorithm itself and could possibly be wrong, therefore in order
to prove that they were correct we made the algorithm play a large amount
of games and we noticed that the resulting mean values gradually converged
towards the expected values and the algorithm was therefore deemed correct.

8

4.3 Comparison

After having played 10000 games between the single optimal bot and all of
the other bots individually the following results were found:
Single optimal bot vs random bot: 99.68% win chance.
Single optimal bot vs AI bot: 80.86% win chance.
Single optimal bot vs greedy bot: 72.99% win chance.

This means that it is extremely unlikely that the random strategy will beat
the optimal strategy, AI strategy will win every fifth game or so and the
Greedy strategy will win 27% of the games.

Figure 2: Diagram showing wins and losses for the different algorithms after
10000 games played

9

Figure 3: Graph showing how many times each score are obtained for the
single optimal bot when run 100000 times

Figure 4: Graph showing how many times each score are obtained for the
random bot when run 100000 times

10

Figure 5: Graph showing how many times each score are obtained for the
greedy bot when run 100000 times

Figure 6: Graph showing how many times each score are obtained for the AI
bot when run 100000 times

11

As can be observed in the graphs, the different bots have their peaks
accordingly to the average scores which was expected, but a phenomenon we
see in every bot except the random bot is that there are several peaks. The
reason why this happens could be because, there are many ways to obtain
a certain score. For example, getting 5 points as a total score can only be
done in one way, that is only filling in the chance category with the roll (1,
1, 1, 1, 1). In the same way there are only a few ways to get a certain score
for the higher scores as well.

One can also see that all bots besides the random bot has a great variance
of scores with the single optimal bot having the most. This is probably
because getting scores higher than 200 points often requires a Yahtzee, but
getting a Yahtzee for the random bot is so unlikely since it has no strategy to
go for a Yahtzee, but rather have to hope for the low probability of getting
it.

5 Discussion

As can be seen in the data, random was the worst performing bot which is
only natural since what it essentially does is roll all the dice once and then
take the category that gives the highest amount of points. Since it does not
save any dice and also does not try to get the upper-bonus it is no surprise
that it also can not compete well against other bots. Even implementing
such a simple heuristic as to save all of the dice when you have a Yahtzee
makes the expected score raise by about 10 points so it does not take much
to improve it.

The AI bot had several parameters which after some adjustment improved
the score. For instance, one parameter controlled when the algorithm would
consider going for a three-of-a-kind or four-of-a-kind over other categories.
The performance was at best when this value was set to five, i.e. if a roll
does not contain more than three fives or sixes, then go for other categories.
This means that, e.g. for the roll (3, 3, 3, 3, 2) the algorithm would go for a
full house or Yahtzee rather than four-of-a-kind. Setting the value to 6 didn’t
make any difference at all. The reason why 5 and 6 gives the best results
might be because, with this rule, the worst possible three-of-a-kind that the
algorithm would score would be 5 + 5 + 5 + 1 + 2 = 18 points, which is higher
than the average three-of-a-kind score of (30 + 5)/2 = 17.5 points. With the
same reasoning the other parameters, like when to consider using chance over
other categories was determined. The AI bot is just a simple heuristic so its
performance is far from being optimal. As of now the AI bot does not even
consider the upper section total score at all, so with some more thought the

12

algorithm could be improved.
The greedy bot which is basically the single optimal bot without the data

file uses the same algorithm as the single optimal bot and this therefore makes
it play quite well but since it only takes the potential of the next state and
not the potential of the whole game into consideration, it will make greedy
decisions sometimes that are quite far from optimal.

None of the bots uses the multi-player feature of being able to accom-
modate ones play in order to score higher than the opposing players. It is
a requirement that an algorithm that is able to win over the single optimal
strategy use this information since without this information the algorithm
can at best play just as well as the single optimal one, thus itself also being
a single optimal algorithm. If an algorithm using that feature were imple-
mented then it would be able to beat the single optimal strategy and since
we know that such an algorithm exists we can therefore conclude that the
single optimal strategy is not a multi-player optimal strategy [3].

6 Conclusion

Our results show that the single optimal strategy is also a well-playing strat-
egy for multi-player use. Since the single optimal strategy maximizes the
average score, the only way for an algorithm to be able to beat it is to have
it being able to take the opponents current score and available categories
into consideration when determining what to do. Research about this has
already been done but unfortunately no statistics about win-lose ratios has
been published [3]. What is certain is that an algorithm that maximizes the
likelihood of reaching a specific score will win more than 50% of the time
against the single optimal strategy. Since there still exists a lack of statistics
and that the fully optimal multi-player strategy has not been developed yet
we can therefore conclude that there exists further potential in the research
of this topic.

13

References

[1] James Glenn. An Optimal Strategy for Yahtzee. May 2006. url: http:
//www.cs.loyola.edu/~jglenn/research/optimal_yahtzee.pdf.

[2] Hasbro. Instructions 1 or more players Yahtzee. 2010. url: http://
www.hasbro.com/common/instruct/Yahtzee.pdf.

[3] Jakub Pawlewicz. A Nearly Optimal Computer Player in Multi-player
Yahtzee. 2010. url: http : / / www . mimuw . edu . pl / ~pan / papers /

yahtzee.pdf.

14

http://www.cs.loyola.edu/~jglenn/research/optimal_yahtzee.pdf
http://www.cs.loyola.edu/~jglenn/research/optimal_yahtzee.pdf
http://www.hasbro.com/common/instruct/Yahtzee.pdf
http://www.hasbro.com/common/instruct/Yahtzee.pdf
http://www.mimuw.edu.pl/~pan/papers/yahtzee.pdf
http://www.mimuw.edu.pl/~pan/papers/yahtzee.pdf

	Introduction
	Problem Statement

	Background
	Yahtzee Rules
	Optimal Strategy

	Method
	Problem Representation
	State Definition
	Roll-state Definition
	Bots
	Single Optimal Bot
	Greedy Bot
	Random Bot
	AI Bot

	Results
	Implementation
	Expected Score
	Comparison

	Discussion
	Conclusion
	References

