VETENSKAP

39 OCH KONST %

Wt

KTH Computer Science
and Communication

Suggested fingering for keyboards

BASSAM ALFARHAN
DAVID SANDBERG

Bachelor of Science Thesis
Supervisor: Anders Askenfelt
Examiner: Marten Bjorkman

Stockholm, Sweden 2013

Abstract

Learning to play the piano can be a difficult task since it is
often not clear which finger should play which key on the
keyboard. An algorithm that provides the pianist with a
suggested fingering for a piece of music would therefore aid
in learning to play the piano as efficiently as possible. All
the algorithms developed to date have made use of different
rules to calculate the difficulty of a specific fingering. The
aim of this study was to take some of these rules and add
additional functionality in order to create an algorithm that
was able to produce reasonable fingerings.

The question was if it was possible to add support for
interleaved triads and different articulations to the set of
rules and create a reasonable algorithm.

The results confirmed that it was possible but that fur-
ther development would be needed in order to prove that
the added functionality was consistent.

Sammanfattning

Att ldra sig spela piano kan vara svart eftersom det ar oklart
vilken not som skall spelas med vilket finger. En algoritm
som foreslar en lamplig fingersdttning for ett musikstycke
skulle darfor kunna underldtta inldrningen. Alla algorit-
mer utvecklade hittills har anvént sig av olika regler for
att rdkna ut en viss fingersdttnings svarighetsgrad. Malet
med denna studie var att anvidnda nagra av dessa regler och
lagga till extra funktionalitet for att skapa en algoritm som
kunde producera ldmpliga fingersattningar.

Fragan var om det var mojligt att addera stod for tre-
klanger och olika artikulationer till reglerna och skapa en
anvandbar algoritm.

Resultaten visade att detta var mojligt men att mer
utviardering behdvs for att kunna bevisa att algoritmen
fungerar for alla fall.

Statement of collaboration

Bassam was responsible for implementing the algorithm in Java code as well as test-
ing and debugging the proof of concept. David was responsible for the collaboration
with the pianist and structuring the essay.

The majority of the essay was written by both authors. However, the sections
where one of the authors has contributed to a greater extend can be found in the
table below.

Section Main contributor

Abstract, Sammanfattning, Introduction, Background David
Method, Discussion Bassam

Contents

1 Introduction

1.1 Purpose e
1.2 Problem statement
1.3 Terminology

2 Background

3 Method

3.1 Algorithm

3.2 Rules.

321 Stretch

3.2.2 Small and Large-span

3.2.3 Position-Change-Count

3.2.4 Position-Change-Size L.

325 Weak-Finger

3.2.6 Three-Four-Five

3.2.7 Three-to-Four

3.2.8 Four-on-Black.

3.2.9 Thumb-on-Black

3.2.10 Five-on-Black oL

3.2.11 Thumb-passing

3.2.12 Sub-Phrase

3.2.13 Polyphonic-Melodies

3.3 Evaluation.
4 Results

5 Discussion
6 Conclusion

Bibliography

NN =

w

© © 00 0 00 00 IO O O Ut Gt

13

15

17

19

Chapter 1

Introduction

Learning to play an instrument can be an extremely difficult task. Not only are
you expected to understand how to read musical notation, but there are also other
aspects to be taken into account, such as how fast a sequence should be played and
what kind of intonation to use. There is also the problem of deciding which finger
plays which note. For instruments such as woodwinds (clarinet, saxophone etc.) the
fingering is usually predetermined due to the instrument design. On the clarinet
for example, it is ergonomically inconvenient to play the key closest to the bell with
one of your thumbs. To reach all the keys the fingers may have to stretch but no
hand movement is needed, and each finger is mapped to a certain key. For people
learning to play woodwinds, the question of fingering is not a problem. The same
cannot be said about the piano where there is no standard fingering for a certain
note. In this case the “optimal fingering of a note depends [...] almost entirely on
the context- both physical (on the keyboard) and musical (as expressed in the score)
- in which it appears.” (Parncutt, Sloboda, Clarke, Raekallio and Desain 1997).

Experienced pianists usually have their own idea of which fingering works best
for a given piece of music. The fingering they choose might depend on the musi-
cal articulation (e.g. legato, staccato, marcato), tempo or physiological constraints
among other properties. For less experienced pianists, however, the choice of finger-
ing might not be obvious and an automated guidance to an appropriate fingering
would be helpful as they learn to play the instrument and develop their own playing
technique.

1.1 Purpose

The purpose of this study was to develop a proof of concept that a piano player
can use to obtain a suggested fingering. The program takes a musical sequence in
MIDI format (from a file or directly from a MIDI keyboard) as input and outputs
the suggested fingering as a sequence of digits symbolizing the different fingers.
Previous research performed in this field was studied and some of the developed
algorithms were implemented in the proof of concept. The difficulties that arise

1

CHAPTER 1. INTRODUCTION

when trying to develop a working software of this kind are also discussed. The
programming of the algorithm was done in Java.

1.2 Problem statement

The goal of this study was to create an algorithm that produces viable piano fin-
gerings for a given musical sequence. The algorithm uses the rules presented by
Parncutt et al. (see Chapter 2, Background for more information) and is limited to
monophonic melodies with interleaved triads. The study examines how articulation
can be used to relax the requirements on the algorithm (e.g. whether it is appro-
priate to reset the hand position after playing a staccato note). Consequently, the
objective of this study was to answer the question:

“Is it possible to create an algorithm that produces a reasonable piano
fingering and add support for interleaved triads and different articula-
tions to the set of rules presented by Parncutt et al. ?”

1.3 Terminology

Fingering - The choice of which fingers and hand positions to use when playing
certain musical instruments.

Legato - A form of musical articulation that indicates that musical notes are played
or sung smoothly and connected.

Marcato - A musical instruction indicating a note, chord, or passage is to be played
louder or more forcefully than surrounding music.

MIDI - Musical Instrument Digital Interface. A technical standard that describes
a protocol, digital interface and connectors and allows a wide variety of electronic
musical instruments, computers and other related devices to connect and commu-
nicate with one another.

Monophony - A musical texture that consists of a single melodic line.
Polyphony - A texture consisting of two or more simultaneous lines of independent
melody.

Staccato - A form of musical articulation. In modern notation it signifies a note
of shortened duration.

Triad - A set of three notes that can be stacked in thirds.

Dynamic programming - A method for solving complex problems by breaking
them down into simpler subproblems, eliminating overlapping subproblems.

Chapter 2

Background

Previous research in this field has been rather sparse. One of the more substantial
articles on this topic was published by Parncutt et al. (1997) and presents a model
that takes a musical sequence of eight notes as input and produces a suggested
fingering as output. The model is based on twelve rules that assign degrees of
difficulty to a certain finger pair (see Section 3.2 for a complete list of rules). The
rules are mainly based on ergonomic constraints of the hand, such as the difficulty to
stretch two fingers to reach certain keys and the general weakness of the little finger.
All input is interpreted as playing legato and the model ignores the variations in
different pianists’ hand sizes. To narrow down the number of possible fingerings
before assigning difficulties based on the rules, the authors decided to set limits
to the maximum and minimum amount of semitones that a certain finger pair can
play. Any suggested fingering that contains a finger pair exceeding this span will
be ignored.

The experiment was made by letting 28 pianists write down their preferred
fingerings of selected musical sequences. These fingerings were then compared to the
fingerings proposed by the model. The results are comprehensive and the authors
state that “in general, the model successfully predicts the most commonly selected
fingerings out of the typically very large number of possible fingerings”.

Other research includes a study by Al Kasimi, Nichols and Raphael (2005) which
differs from the work of Parncutt et al. in that the authors choose to include chords
when calculating the difficulty of a certain fingering. The difficulty is calculated
through the use of what the authors call vertical and horizontal costs. The vertical
cost “corresponds to the stretch induced by a given hand position, where the value of
the cost is proportional to the difficulty of the stretch.” The horizontal cost function
on the other hand “accounts for transitions between two successive chords.” The
authors stress that the research is a work in progress and the credibility of the first
preliminary results should therefore be regarded as not too high. The article also
lacks information about the methods used to achieve the results.

The study by Hart, Bosch and Tsai (2000) focuses on finding optimal fingerings
for monophonic sequences played with the right hand, similar to the previously

CHAPTER 2. BACKGROUND

mentioned model developed by Parncutt et al. The difficulty of playing two notes
in sequence with two different fingers is calculated through the use of four rules. The
rules assign a difficulty level based on the color of the keys of the played notes, and
the number of seminotes in between. For example, playing two white keys with a
certain seminote interval will yield a different difficulty than when the lower-pitched
note is black and the higher-pitched key is white. The color of the keys is the only
aspect taken into account when calculating the difficulty, compared to Parncutt et
al’s model which implements several other parameters as well.

The report contains a thorough description of how to use dynamic programming
to produce an optimal fingering but no test results are presented. The execution
of the algorithm is claimed to require “just a fraction of a second of CPU time to
finger a 65-interval righthand passage” and the authors’ focus seems to be on how
the model can be used rather than on how accurate it is.

After examining these three reports it was clear that Parncutt et al’s model and
research was the most comprehensive and sophisticated. They also present a good
amount of results and a discussion of how the model can be improved.

Chapter 3

Method

3.1 Algorithm

The algorithm will be described as a recursion. It should, however, be implemented
using dynamic programming (dynprog) for efficiency. The idea of the algorithm
is to generate all possible fingerings which can be illustrated with an exponentially
growing tree of growth rate 5" (Figure 3.1). Each finger is represented by a number;
1 = the thumb, 2 = the index finger, and so forth. The fingerings are represented
as paths in the tree (excluding the first node). Some of the fingerings, however,
are ergonomically infeasible (such as 2 3 2 3 2 for a one-directional sequence) and
can be eliminated prior to knowing the musical sequence by defining which finger
transitions are allowed. The difficulty of the fingerings is thereafter calculated by a
set of rules which is the core of the algorithm. To minimize the computation load,
only paths of the same length as the sequence are processed.

0
e — e
1 2 3 4 5
A g gl A N T
i 2345 12345 12345 123 435 1234 5
S L L e e e O B P
TZBAD o oo s o s e e e s e e s o e s s o e 12345

Figure 3.1. The tree of generated fingerings.

The core of the algorithm consists mainly of the twelve rules presented by Parncutt
et al. (described in Sections 3.2.1 - 8.2.11). The rules are based purely on the
ergonomic limits of the hand denoted with the stretch spans between finger pairs in
semitones - divided in three different states, when the stretch can be accomplished
while the hand is relaxed (Rel), when the stretch is somewhat larger but can still be
accomplished comfortably (Comf) and when the stretch is even larger but still can
be accomplished practically (Prac). These limitations will be referred to simply by
their abbreviations noted in the parentheses. The determination of the difficulty of

CHAPTER 3. METHOD

a specific fingering is based on the sum of the values assigned by all the rules (e.g.
the higher the sum - the harder the fingering). The algorithm is also extended by
two rules to increase efficiency and usability (sections 3.2.12 - 3.2.13).

3.2 Rules

The following sections briefly describe the rules used to calculate the difficulty of a
specific fingering. All rules were written in Java code but in order to enhance the
readability their implementations are presented in pseudo-code. In these pseudo-
code snippets each finger is symbolized by a number from 1 to 5; 1 being the thumb
and 5 being the little finger.

3.2.1 Stretch

This rule increases the difficulty by a constant whenever the stretch exceeds the
bounds of (Conf) for a finger pair.

//if the stretch is lower than the minimum or higher than the maximum
//comfortable span for the first and second finger in
//a group of two increase the difficulty by a constant
if (handSpan.MinComf (fingl, fing2) > stretch || (handSpan.MaxComf (fingl,
fing2) < stretch) {

increaseDifficulty(Constant) ;

}

3.2.2 Small and Large-span

These two rules increase the difficulty by a value relative to the number of semitones
that exceeds the bounds of (Rel) for a finger pair. This value is multiplied by 2 if
the finger pair does not include the thumb.

//if the stretch is lower than the minimum or higher than the maximum
//relaxed span for the first and second finger in
//a group of two
if (handSpan.MinRel(fingl, fing2) > stretch
|| (handSpan.MaxRel(fingl, fing2) < stretch) {

//if either the first or second finger is the thumb
//increase the difficulty by a relative constant
if (fingl == 1 || fing2 == 1) {
increaseDifficulty(Constant * exceededSemiTonesCount);
Yelse{
increaseDifficulty(Constant * exceededSemiTonesCount * 2);

}

= W N =

B W o =

3.2. RULES

3.2.3 Position-Change-Count

This rule increases the difficulty by a constant whenever the hand changes position.
A hand position change is divided in two levels; a full change and a half change. The
difference is that full changes require more effort, thus the constant is multiplied
by 2. A hand position change occurs whenever the bounds of (Comf) are exceeded
by the first and third fingers that play a group of three notes. A full change occurs
when the second finger is the thumb; the pitches of the three notes go in the same
direction (either rising or falling) and not exceeding the bounds of (Prac).

//if the stretch is lower than the minimum or higher than the maximum

//comfortable span for the first and second finger in

//a group of two

if (handSpan.MinComf (fingl, fing3) > stretch || (handSpan.MaxComf (fingl,
fing3) < stretch) {

//if the second finger is the thumb

//and the notes go in the same direction (pitch wise)

//and the span of the first and second note is lower or equal to
//the the maximum practical span for the first and third fingers

if (fing2 == 1 && sameDirection(notel, note2, note3) &&
noteSpan.getSpan(notel, note3) <= handSpan.MaxPrac(fingl,
fing3)){
increaseDifficulty(Constant * 2);
Yelse{
increaseDifficulty(Constant) ;
}

3.2.4 Position-Change-Size

This rule increases the difficulty by a value relative to the number of semitones that
exceeds the bounds of (Comf) for the first and third notes in a group of three.

//if the stretch is lower than the minimum or higher than the maximum
//comfortable span for the first and third finger in
//a group of three
if (handSpan.MinComf (fingl, fing3) > stretch || (handSpan.MaxComf (fingl,
fing3) < stretch) {
increaseDifficulty(Constant * exceededSemiTonesCount);

3.2.5 Weak-Finger

This rule increases the difficulty by a constant whenever the fourth or fifth finger
are used, assuming that they are weaker than the other fingers.

= W N =

TR W N =

T = W N =

Y GUR R

CHAPTER 3. METHOD

//if finger 4 or 5 is used increase difficulty by a constant
if(fingl == 4 || fingl == 5){
increaseDifficulty(Constant) ;

}

3.2.6 Three-Four-Five

This rule increases the difficult by a constant whenever the third, fourth and fifth
finger are used consecutively, in any permutation.

//if any permutation of fingers 3, 4, 5 is used in a group

//of three, increase the difficulty by a constant

if (sort(fingl, fing2, fing3) == {3, 4, 5}){
increaseDifficulty(Constant) ;

3

3.2.7 Three-to-Four

This rule increases the difficulty by a constant whenever the third finger is imme-
diately followed by the fourth finger.

//if finger 3 is followed by finger 4,

//increase the difficulty by a constant

if (fingl == 3 && fing2 == 4)){
increaseDifficulty(Constant) ;

}

3.2.8 Four-on-Black

This rule increases the difficulty by a constant whenever the third and fourth fingers
is used consecutively; the third on a white key and the fourth on a black key.

//if finger 3 and 4 is used consecutively in any permutation,

//increase the difficulty by a constant

if (sort(fingl, fing2) == {3, 4} &% !isOnBlack(fingl) && isOnBlack(fing2)){
increaseDifficulty(Constant) ;

3

3.2.9 Thumb-on-Black

This rule increases the difficulty by a constant whenever the thumb plays a black
key. The constant is increased if the keys played immediately before and after are
white.

TR W N =

Tt = W

3.2. RULES

//Increase whenever thumb is on black, increase more if
//preceding and/or the finger immediately after is on white.
if (fing2 == 1 && isOnBlack(fing2)){
increaseDifficulty(Constant) ;
if (1isOnBlack(fingl)){
increaseDifficulty(Constant) ;
}
if (!isOnBlack(fing3)){
increaseDifficulty(Constant) ;

}

3.2.10 Five-on-Black

This rule increases the difficulty by a constant whenever the fifth finger plays a
black key and the keys played before and/or after are white.

if (fing2 == 5 && isOnBlack(fing2)){
if (!isOnBlack(fingl)){
increaseDifficulty(Constant) ;
}
if ('isOnBlack(fing3)){
increaseDifficulty(Constant) ;

}

3.2.11 Thumb-passing

This rule increases the difficulty by a constant whenever the thumb is passed under
(or gets passed by) another finger. It increases further if the thumb plays a black
note and the other finger plays a white key.

//1f either of the fingers is the thumb, and it is passing - or

//gets passed by - another finger

if (thumbIsPassedByFinger || fingerIsPassedByThumb){
increaseDifficulty(Constant) ;

//1f the thumb is on black and the other finger is on white.

if(fingl == 1 && isOnBlack(fingl) && !isOnBlack(fing2)){
increaseDifficulty(Constant) ;

}else if(fing2 == 1 && isOnBlack(fing2) && !'isOnBlack(fingl)){
increaseDifficulty(Constant) ;

}

Tt = W

CHAPTER 3. METHOD

3.2.12 Sub-Phrase

This rule and the following extends the algorithm developed by Parncutt et al. The
sub-phrase rule will reset the algorithm whenever a hand position change is possible
without affecting the musical phrase. This kind of behavior happens for example
when a rest is inserted or after staccato notes.

//if the musical phrase inserted contains any sub-phrasing indicators,
//divide it into smaller sub-phrases and process them separately.
Sequence [] subSeq = seq.split("sub-phrasing-indicator");
for(Sequence s : subSeq){

generateFingering(s) ;

}

3.2.13 Polyphonic-Melodies

This rule generates fingerings for polyphonic melodies (chords) by treating the input
as if it is monophonic where finger passing is not allowed and the span between all
pairs of fingers used does not exceed the bounds of (Rel).

//text-pseudo example of how a polyphonic melody is identified

//and allowed

isPolyphonic(fingl,...,fingN,notel, ... ,noteN){

if (! fingerIsPassedByAnotherFinger){
for all pairs of fingers:
stretch = (fingl, fing2).getStretch(){
if (stretch < handSpan.MinRel(fingl, fing2) &&

stretch > handSpan.MaxRel(fingl, fing2)){

setImpossible();
return;
}else
setPossible();
}
Yelse{
setImpossible();
return;

3.3 Evaluation

In order to evaluate the algorithm, a collaboration was initiated with an experi-
enced jazz pianist. The pianist played a monophonic sequence of varying length
from three musical pieces; All of Me (Marks and Simons 1931), Ain’t Misbehavin’
(Waller, Brooks and Razaf 1929) and Alla faglar kommit ren (children’s song). His

10

3.3. EVALUATION

suggested fingerings for each sequence were compared with the results generated by
the algorithm for the same sequences.

Since all of the sequences were monophonic, an additional musical piece (Inter-
leaved Triad) was composed by the authors containing an interleaved triad. This
piece would be used to examine the effect of the Polyphonic-Melodies rule. In order
to evaluate the Sub-Phrase rule the first 27 notes of Fir Elise (Beethoven 1810)
were run by the algorithm. This sequence of notes contain rests that would trigger
this rule. The fingerings generated by the algorithm for Interleaved Triad and Fiir
Elise were then evaluated by the authors.

11

Chapter 4

Results

Figures 4.1 through 4.3 show the musical sequences for (1) All of Me, (2) Ain’t Misbe-
havin’ and (3)Alla faglar kommit ren with the pianist’s fingering suggestions above
the musical staff (circled). The corresponding least difficult fingerings generated by
the algorithm are indicated below the staff.

The figures provide an overview of the notes in the sequence. However, they do
not display the actual note duration. The reason for disregarding the duration is
because the sequences received from the pianist did not contain this information.
Furthermore, there are no rules affected by the duration of a note.

Figures 4.4 and 4.5 display only the fingerings generated by the algorithm.

The pianist’s fingering for sequence (1) was found to be the 12th easiest finger-
ing generated by the algorithm. The number of different notes compared to the
algorithm’s fingering was 4 out of 9 possible.

For sequence (2), the pianist’s fingering rank was 15 and the different notes were
5 out of 13.

For sequence (3), the fingerings differed in 11 out of 14 notes and the pianist’s
fingering was not found by the algorithm. Notice in Figure 4.3 that the middle
finger passes over the index finger when going from the 8th to the 9th note. A
summary of the ranks and different notes can be found in Table 4.1.

Table 4.1. Number of different notes and pianist fingering rank

Sequence Notes where finger differ Total notes Pianist rank
All of Me 4 9 12
Ain’t Misbehavin’ 5 13 15
Alla Faglar Kommit Ren 11 14 -

13

[7

CHAPTER 4. RESULTS
® @ @ o o O

© ® © 0@

Figure 4.1. Fingerings for All Of Me
Figure 4.2. Fingerings for Ain’t Misbehavin’
Figure 4.3. Fingerings for Alla faglar kommit ren

ba

¥ 10

[£ oWl)]
"

hn© © ©® 6

[FanY
[FanY

(]

T I.!d...ﬁl

14

Figure 4.4. Fingerings for Interleaved Triad
Figure 4.5. Fingerings for Fir Elise

Chapter 5

Discussion

The difference between the pianist’s suggested fingering and the fingering generated
by our algorithm for the All of Me sequence is likely due to the rules involving the
3rd, 4th and 5th fingers. Especially the Weak-Finger and Three-Four-Five rules
influence this difference, since they increase the difficulty by higher values than the
stretch rules. That favors the stretch of stronger fingers instead of the use of weaker
fingers.

A pianist should, or at least try, to use all fingers. Even weak fingers should be
used, that is how finger strength and accuracy is built up. The Weak-Finger rule
disregards the fact that an experienced pianist may have significant strength in the
3rd and 4th fingers, thus rendering this rule useless when trying to calculate the
best fingering.

The pianist’s suggested fingering for the Ain’t Misbehavin’ sequence does not
differ much from the one generated by the algorithm. The difference is mainly due
to the Five-On-Black and Weak-Fingers rules, as shown at the 4th and 5th notes
and the longer stretches between stronger fingers.

The fingering suggested by the pianist for the Alla faglar kommit ren sequence is
completely discarded by our algorithm, mainly because of the finger passing between
the 8th and 9th notes. The algorithm does not allow finger passings not involving
the 1st finger (thumb). This technique is practiced by a minority of pianists and is
not advisable. Thus we think that the algorithm did good aside from the exclusive
use of the strong fingers, which again is caused mainly by the Weak-Finger rule.

The fingerings generated by the algorithm for the three sequences above is con-
sidered to be reasonable aside from being different from the pianist’s suggestion.

The fingering generated by the algorithm for the Interleaved Triad sequence
should be considered a step forward towards generating polyphonic fingerings. The
presented fingering is not optimal because this is an experimental version and at-
tention was not paid to all the parameters which should prevent finger intersection.
That is, fingers playing notes before and after a chord intersect with fingers used to
play the chord. This is shown by the notes immediately before and after the chord
in the Interleaved Triad sequence.

15

CHAPTER 5. DISCUSSION

The fingering generated for the Fir FElise sequence is considered to be very re-
liable as there is no extensive stretching of the fingers nor finger passings. This
sequence contains rests which triggers the Sub-Phrase rule. The Sub-Phrase rule
divides the sequence into smaller sequences which eliminates finger stretches. Aside
from that, it improves the runtime of the algorithm considerably which makes pro-
cessing of longer sequences, like Fir Elise, possible.

One problem found when testing the proof of concept was that it was extremely
difficult to determine the relevance of some rules, due to the large amount of rules
that Parncutt et al. use. When trying to optimize the algorithm to produce finger-
ings that resembled the pianist’s fingerings, we experimented with disregarding the
rules that increased the difficulty when using the third, fourth and fifth finger. The
results showed that for some musical sequences the suggested fingerings came closer
to the pianist’s fingerings, whereas for other sequences the fingerings differed even
more. This suggests that some of the rules may be superfluous for certain musical
sequences. Examining what type of sequences require - or do not require - the use
of certain rules is beyond the scope of this study. Such an analysis is, however,
necessary in order to improve the performance of the algorithm significantly.

The main problem with designing a software intended to help pianists is the
large amount of parameters that needs to be taken into account during the imple-
mentation process. Hand size, finger strength and stretchability are just a few of
the parameters that differ from person to person and that need to be carefully im-
plemented in order to provide an efficient model for producing a keyboard fingering.

16

Chapter 6

Conclusion

The proposed algorithm was not able to suggest any fingerings that were similar to
the ones provided by the experienced pianist for the monophonic sequences. How-
ever, the Sub-Phrase rule made the algorithm significantly faster while still provid-
ing a reasonable fingering. The Polyphonic-Melodies rule contributed to creating a
fingering that was not possible to play, but a few adjustments would probably make
it useful. More sequences containing interleaved triads and sub-phrases would need
to be analyzed before concluding the consistency and power of the added rules.

In conclusion, it was possible to add support for interleaved triads and different
articulations to the set of rules presented by Parncutt et al. and create an algorithm
that produces reasonable piano fingerings.

17

Bibliography

[9]

Parncutt R., Sloboda J., Clarke E., Raekallio M. and Desain P. (1997). An
ergonomic model of keyboard fingering for melodic fragments. Music Perception,
Vol.14, p. 341-382 .

Kasimi A., Nichols E. and Raphael C. (2005). Automatic fingering system (AFS).
Proc. 6th International Conference on Music Information Retrieval ISMIR.

Hart M., Bosch R. and Tsai E.,(2000). Finding optimal piano fingerings. The
Undergraduate Mathematics and Its Applications Journal, UMAP, p. 1-10.

Marks G. and Simons (1931). All of Me.
Waller F., Brooks H. and Razaf A. (1929). Ain’t Misbehavin’.
Beethoven L. (1810). Bagatelle No. 25 in A minor (WoO 59) (Fiir Elise).

"Fingering." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 4
April 2013. Web. 12 April 2013. <http://en.wikipedia.org/wiki/Fingering>

"Legato." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 12
March 2013. Web. 12 April 2013. <http://en.wikipedia.org/wiki/Legato>

"Marcato." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 6
April 2013. Web. 12 April 2013.<http://en.wikipedia.org/wiki/Marcato>

[10] "MIDIL." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 11

April 2013. Web. 12 April 2013.<http://en.wikipedia.org/wiki/Midi>

[11] "Monophony." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc.

11 April 2013. Web. 12 April 2013.<http://en.wikipedia.org/wiki/Monophony>

[12] "Polyphony." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc.

21 Feb. 2013. Web. 12 April 2013.<http://en.wikipedia.org/wiki/Polyphony>

[13] "Staccato." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 7

April 2013. Web. 12 April 2013.<http://en.wikipedia.org/wiki/Staccato>

[14] "Triad." Wikipedia: The Free Encyclopedia. Wikimedia Foundation, Inc. 11

April 2013. Web. 12 April 2013.<http://en.wikipedia.org/wiki/Triad (music)>

19

BIBLIOGRAPHY

[15] "Dynamic programming." Wikipedia: The Free Encyclope-
dia. Wikimedia Foundation, Inc. 9 April 2013. Web. 12 April
2013.<http://en.wikipedia.org/wiki/Dynamic_ programming>

20

