Algorithme and Complexity

What ig the course about?

How to golve problemg in an algorithmic way.

Three examples:

/.\ Can be solved easily. But it can
. Sorting of numbers (— be solved more efficiently.

N

3. Dartitioning of a set of numbere. t_ Can not be golved efficiently.

There is a set of natural questions concerning algorithms:

How do we measure efficiency?
How do we find algorithme?

How do we describe algorithms?

How do we know if an algorithm works?
How do we know if a problem can be golved efficiently?
How do we know if a problem can be solved algorithmically at all?

By the way, what i¢ a problem?

We will try to provide some answers.

A general picture:

Instance of 3 Algorithm "\‘/
problem
Ex.
———m———)
- . Yes/No
l¢ (789 aprime? p-[Algorithm Y,
T ~—~—

(Yes)

But an algorithm is usually not designed to solve just one ingtance.
Normally it solves an infinite numbers of ingtances:

—_—— |

Algorithm —p Yes/No

Givenn,ign a
prime? 2

So what is a problem?

A problem congist of [nput and Goal

Ex:
PRIME NUMBER

[nput: An integer n
Goal: [¢ n a prime number?

SORTING

Input: Aligt L = {ly, [z, ... } of numbers
Goal: A sorting L' ={ ', I'2, ... } such that [, ['2, ... ig increasing

SHORTEST PATH

[nput: A graph G. Two nodes a,b
Goal: A path from a to b with as few edges as possible

How do we degribe an algorithm?

An answer would be to just give a program code.
But that can be inconvenient.

Take for instance the most famous sorting algorithm:
[ngertion-Sort.

Informal deseription:

We start with al list A[l], A[2], ...

Take A[l] and set L= A[l].

Take A[2] and sort into L. This gives ug a new list La.
Take A[3] and sort into L2. Thig gives us a new list Ls.
Andsoon...

We describe the algorithm with o called pseudocode.

INSERTION-SORT(A)
for j = 2to A.length
key = ‘:l/'
// Insert A/] into the sorted sequence A[l..; — 1]
= 7 -1
while ; > 0 and Afi] > key
P =1 -1
4 + 1] = kev

of O ' B 0 1) e

.

How do we know that [ngertion-Sort works correctly? -
Think like thie: At step k we know that

All], A[2], ..., Alk]is a part of the start list and
All], A[2], ..., Alk] is sorted.

When the algorithm stops A[l], A[2], ..., A[k] must be the sorted list.
Usually, the problem is to decide if a loop works

correctly. Sometimes we can define a loop-invariant |
that is always true for each step in the lopp

Suppose the loop has the form

While B do

TR

Sowmething happens here

When the loop ends we have [and not B. If we have
choosen [wigely, we will have reached our goal.

What about efficiency? How do we meagure it?

Bagic idea:

We measure the number of steps needed as a
function of the size of the input. This type of
meagure ig called time-complexity.

Ingertion-Sort: If we have n elements we need O(n?)
steps.

Problem: How do we define size of input?

Bagic idea: We use a string to represent the input.
We measure the size of the string. '

[n practice, we use something that is a convenient
approximation of the size of the string. |

Ex: If theinput is n elements in al list we normally
uge n ag a meagsure of the input size.

Ex: If the input is just an integer n we use logzn ag
the size of the input.

But there is a problem with finding good
representations.

A bit more about complexity
\ —

Time-complexity is not the only measure of complexity.

We can measure the size of the memory space the algorithm needs to
complete the computation. This measure is called space-complexity.

Time-complexity more important but space-complexity is also important.

Later we will show that
high space-complexity =) high time-complexity

The opposite is not necessarily true.

Unit cost and bit cost

Aninteresting question is what counts ag a step in a computation.

Unit cost: Each "algebraic operation” counts as one step
Bit cost: Each bit operation counts as a step

Ex:
We want to compute 521* 394. What is the cost?

Unit cost: Just one operation! The cost is [.
Bit cost: 521 has 9 bits. 394 hag 8 bits. Thecost is 9*8 = 72
(The answer i 205274.)

Unit cost is easier to work with and we
normally use it.

Ex: How do we represent a graph?

The natural measure of the input size could be
[VEor [ElorVI+IEI

Usually, the complexity ig given as a function of [V |
andE L.

We will sfudy a special problem in graph theory

[nput: A graph G and a node s.
Goal: Which nodes can be reached by paths from ¢?

/ @v

A simple algorithm

R {s}
While there is (u,v) such thatue R andv e R

Addvito R
End while

When the algorithm stops, R is the set of nodes reachable from s.

But there is an uncertainty. How shall (u,v) be choosen?

Data structures for graphs

There are bagically 3 ways to deseribe a graphin a form guitable for
computation.

}(Adjacency matrix

-K [ncidence matrix

x Adjacency lists

Ex: - adjacencymatrix Alij)=0/1
c 1 1 |
| © o |
A= I O 0O O
| \ 0O 0

Alij)=I @ There is an edge (i,j)

Incidence matrix

110 (liy)=0/!
il | 0 O |
o O \ O lij)=! & nodiisonedge
o | o |
Adjacency lists
LI1:2,3,4 jisinLi & Thereis an edge (iyj)
L2:[, 4
L3 ForallveV
L4:1,2 setvigle) =0
End for
We now present an algorithm which ie Set vigle) = |
amore detailed golution to our graph Set count =0
SetT=0

problem. -

When the algorithm stops;T is a trée

containing all nodes that can be
reached from s.

The complexityis O(IV} +]E})

Set L[O] ={s}
While L[] is not empty
Set L[i+l]=D

For eachu e L[i]

For each edge (u,v)
If vis(v) =0
Set vig(v) = |
Add (uv) to T
Add v to L[i+!]
Endif
End for
End for
Seti=i+l
End while

What i¢ an efficient algorithm? We can start by asking what an inefficient
algorithm is. If the size of the input is n and the algorithm works in time O(2") we
say that the algorithm has exponential complexity. Such an algorithm is clearly
very inefficient.

[n several situations where we have a problem with an input of size n, we have a set
of possible solutions of size exponentialin n. Just one (or a few) of these possible
solutions are real solutions. If we just test all possible solutions to see if any of
them are real solutions we get an algorithm withexponential complexity. [n order to
get a better algorithm we must find a way of “zooming in" on the real solutions.

[t seems natural to say that an efficient algorithm is an algorithm which is not
exponential. But we don't do this. Instead we use the following definition:

We say that an algorithm hag polynomial time-complexity if there ig an integer
k such that the algorithm, if started with input of size n, rung in OlnX)steps.

Efficient algorithme:
The standard definition is to say that an algorithm is efficient if and only if it
has polynomial time-complexity.

An outline of the course

@

AppLLcatLows

@
Algorithme

We describe several types of algorithme and ways to construet algorithms.

We have two parts:

Sowme theory [| Lots of applications

Complexity

Not all problems can be solved efficiently.
Some problems can not be solved at all!
Some of the things we will do in this part are:

Study Turing Machines and formally define
computing

Study uncomputable problems.

Study NP-problems which (probably) can not be
solved efficiently.

Study so called approximation algorithms.

We describe one more search algorithm for graphe: Depth-Firgt Search

Set=1 DFQu):
ForallveV
. Set vig(u) = |
Set viglv)=0 Adduto R
End for For each v such that v is adjacent tou
DFSls) [f vis(v)=O
DFS(s)
End if
End for
SetR=02
The complexity s O(IV1+ [E]). Let S'be a stack and set S ={s}
The algorithm ig defined Foralv € :
recurgively. A non-recurgive Set viglv) =0
definition is: End for
Set vig(s) = |
While S # &
Take the top node u from S
[f vis(e) = O
Adduto R
For each v adjacent to u
Add v to the top of S
End for
End if

End while

