
Approximation Algorithms

Many of the NP-Complete problems are most
naturally expressed as optimization problems:
TSP, Graph Coloring, Vertex Cover etc.

It is widely believed That P 6= NP so that it
is impossible to solve the problems in poly-
momial time.

An approximation algorithm for solving an
optimization problem corresponding to a de-
cision problem in NP is an algorithm which in
polynomial time finds an approximative solu-
tion which is guaranteed to be close to the
optimal solution.



Approximation of Vertex Cover

ApproxVertexCover(G = (V,E))
(1) C ← ∅
(2) while E 6= ∅
(3) Chose an arbitrary edge

(u, v) ∈ E
(4) C ← C ∪ {u} ∪ {v}
(5) Remove all edges in E which

contains u or v
(6) return C

The algorithm always returns a vertex cover.
When an edge is removed both of its vertices
are added to C.

Now consider the edge (u, v). At least one of
the vertices u and v must be in an optimal
vertex cover.
⇒ The vertex cover returned by the algo-
rithm cannot be more than twice the size of
an optimal vertex cover.

Time-complexity: O(|E|)



To measure approximability

The Approximation Quotient for an algorithm
is

max
approx

opt
for minimization problems

max
opt

approx
for maximization problems

This means that the quotient is always ≥ 1

with equality if the algorithm always returns
the optimal solution.

In all other cases the quotient is a measure
of how far from the optimal solution we can
get in the worst case.

The algorithm for finding minimal vertex co-
vers has approximation quotient 2 since it
returns a vertex cover at most twice as large
as the minimal one.



Degrees of approximability

There is a difference between the NP-Complete
problems regarding how hard they are to ap-
proximate:

• For some problems you can, for every
ε > 0, find a polynomial algorithm with
approximation quotient 1 + ε.
Ex.: The Knapsack Problem

• Other problems can be approximated wit-
hin a constant > 1 but not arbitrarily clo-
se to 1 P 6= NP.
Ex.: Vertex Cover

• Then the are problems that cannot be
approximated within any constant if P 6=
NP.
Ex.: Maximal Clique



Approximation of TSP

We show that TSP/∈ APX , i.e. TSP cannot
be approximated. Assume, to reach a contra-
diction, that TSP can be approximated wit-
hin a factor B.

Reduction from Hamiltonian Cycle:

Hamiltoncykel(G)
(1) n← |V |
(2) foreach (vi, vj) ∈ E
(3) w(pi, pj)← 1

(4) foreach (vi, vj) /∈ E
(5) w(pi, pj)← |V |B
(6) if TSAPPROX(pi,t) ≤ |V |B
(7) return TRUE
(8) return FALSE

If TSAPPROX can approximate TSP within
factor B, then the algorithm decides in po-
lynomial time if there is a Hamiltonian Cycle
in G or not. That is impossible!



Approximation of TSP with the triangle
inequality

This is a special case of TSP which can be
approximated.

The triangle inequality: w(i, j) ≤ w(i, k) +

w(k, j) for all nodes i, j, k.

The triangle inequality shows that if i, j, k1, k2, ..., ks

form a cycle in the graph, we have w(i, j) ≤
w(i, ks) + w(ks, ks−1) + ...w(k1, j).

TSP with the triangle inequality is called ∆

TSP.

Theorem: ∆ TSP is NP- Complete.



Assume that we have a minimal spanning tree
T in the graph. If we go back and forth along
the edges in T we get a walk of length 2w(T )

where w(T ) is the weight sum of the edges in
T . This walk of course is no solution to the
TSP-problem since it is not a cycle. Now, let
C be an optimal cycle.

w(C) = OPT . Since C is a spanning tree +
an edge, we get w(T ) ≤ w(C).

2 · w(T ) ≤ 2 · w(C) ≤ 2 ·OPT

We can rearrange the walk along the tree T
to a cycle C1 by visiting the nodes in the
order that is given by the inorder ordering of
the nodes in the tree.

Claim: w(C1) ≤ 2 · w(T )



This can be shown by repeated use of the
triangle inequality.

We now get:

w(C) ≤ w(C1) ≤ 2 · w(T ) ≤ 2 · w(C)

we set APP = w(C1). We the get:

OPT ≤ APP ≤ 2 ·OPT

We can compute APP in polynomial time.
The approximation quotient is B = 2.

There are more advanced algorithms for ap-
proximation of ∆ TSP One is Christofides
algoritm. It uses the same ideas as our al-
gorithm but has an approximation quotient
3
2.


