Flow problems

We will study the so called flow-problem. We start with a directed graph with two
gpecial nodes ¢ (source) and t (gink) given. We agsume that there i¢ at least one

directed path from s to t.

On each edge e we have a capacity cle). [t i a number 2 O

Flow: A flowis given by a number f(e) for each edge. The numbers must
satisfy two conditions.

[. OLfle)<ecle) foralle.
Let [n(v) be the set of all edges going in to v and Out{v) be the set of all
edges going out from v.

2. S fled = § fle) forallv exceptsandt
TInlv) Out (V)

Value of flow: Wesetvallf) = 2 fle)
out(S)

( It's obvious that thigis equalto & fle) -] .
In(t)

Some more notation: If e = (u,v) we write fle) = flu,v)

XSV and YEV weset fIXY)= S & flxy).
xeX‘_\/GY



Cut: A cut is a partition of Vinto two digjoint parts X, Y such that
seX and teY.

[t ig not hard to prove that if (X)Y) s a cut, then vallf) = f(X)Y) - f(¥; X)

Two questions:
(. What ie the maximal posgible value for a flow in G?
2. How do we find a maximum flow?

The capacity of a cut

Def: Given acut (XY)we define C(XY)= ) s elx,y)
xeX Ve[

We gee that for any eut (XY) we have vallf) < CIXY)

This is because vallf) = fIXY) - f{yX) S FIXY)
and, since fle)  cle), we have fIX)Y)<elXY)
Let MC be the minimal capacity for cuts in G. Then we get vall(f) <MC.

The famoug Max flow- min cut theorem says that if f *is a maximum flow we
actually have val(f*)= MC.

We will soon prove this theorem.



Ford - Fulkerson's algorithm

We start with fle) = O for all edges and build up a flow in several steps.
We look for so called augmenting paths.

C
Ungaturated forward edge: O———0O
Pley< ce)
Unsaturated backward edge: O c o
f ( C) >0

An augmented path i a path congisting of unsaturated paths (forward and/or'backward)
going from ¢ to t.

If we can find an augmenting path we can increage the flow. How much?

For each edge e in an augmenting path P we define a number Ale). If e is a forward edge-
(in the path) we set Ale) = ele) - fle). If e is a backward edge we set Ale) = fle). Thenwe

let & be the minimum value of Ale) for all edges in P.

We now increage the theflow by setting f'(e) = fle) + & for all forward edges and
f'(e) = fle) - & for all backward edges.



We will now try to show the following:
We have reached a maximum flow if and only if there are no augmenting paths
left in G.

[t's obvious that if we have reached a maximum flow there can be no augmenting
pathg left. The other direction is the difficult one.

We assume that there are no augmenting paths left. We will construet a special
typeof cut: Starting at ¢ we try to build paths using unsatureted edges. Let "X’
be set of all nodes that can be reached from ¢ by such paths. Let Y be V - X..
Thenwe haves e X' and t € ¥. So(X,Y')i¢ a cut.

For this cut, and this flow, we have val(f) = C(X.Y") !

Why? Let (x,y) be a directed edge going from X 1o Y". Since x but not y cari be
reached by unsaturated edges we must have f(x,y) = elx,y). lf (y,x) is a directed
edge going from Y" to X' we must have fly,x) = O. Thig meang that val(f) = f(X,Y’)
- Iy X) = £(X,Y) = C(X,Y").

We know that if f *igs a maximum flow and MC is the gize of a minimum cut
then val(f) < val(f*) and MC < C(X,Y"). But since val(f) = C(X'Y") we get
val(f) = vallf ¥} = MC = C(X,Y").

Thig gives us
. We see that f is amaximum flow and the Ford-Fulkerson algorithm works.

2. We have proved the Max flow - Min cut theorem.



[mplementing the Ford - Fulkerson algorithm

When we implement the algorithm we use a so called Residual Graph. Let us agsume that
we are given a directed graph G with capacities on the edges.

We want to find augmenting paths in G. [t can be shown that it's better not just
to look for any augmenting paths. Instead we should use BF S and look for
shortest augmenting paths. Thig variant of Ford - Fulkerson's algorithm is called.
Edmond - Karp's algorithm.

We want to uge BF S in gtandard form. The problem is that BF S looks for “forward"
paths. To get around this problem we use o called residual graphs.

Let G be a directed graph and a'flow f (not necessarily maximal). Given G and
f we construet a new graph with some new edges and capacities:

w
. e Vv
G —0
For each edge O< fle) we define a new capacity
¢'(e) = cle)-fle) and we define a new edge and capacity:

W el \V4
O< O
Cle') = f(e)

Then all edges with fle) = ele) are removed. Thig gives us the residual graph Gf .



We then uge the following algorithm:

Ford Fulkerson's algorithm in pseudocode

e[u,v] is the capacity from u to v, flu,v] is the flow, ef{u,v] is the residual
capacity.

foreach edge (u,v) in the graph do
flu,v]:=0; flvu]:=0
eflu,v]:=efu,v]; effvul:=clvu]
while there is a path p from s to t in the residual flow graph do
r:=min(efluv]: (uy) igin p)
foreach edge (uv)in p do
flu,v]:=fluv]+r; flvul:= -fluv]
effu,v]:=elu,v] - fluv]; effvul:=e[vu] - flv,u]

For more on this, see Laboratory exercige |.



We can uge the flow algorithm to solve another problem: The matching problem for
bipartite graphs.

BIPARTITE MATCHING

[nput: A bipartite graph (X Y, E).
Goal: A matching of maximal size.

A matching is a set of edges with no pair of edges having a node in
common.

Start with:

Then we add some nodes and

edges and directions: \

Give all edges capacity | and run the flow algorithm. When the algorithm ends
the edges from the original graph that are saturated (i.e. fle) = ) giveg ug a
maximal matching.

( See Laboratory exercige |.)



Dijkstra's algorithm and shortest paths in graphs

SHORTEST PATH

[nput: A directed graph with edge weights. A start node s
Goal: The distances and shortest paths from s to all other nodes.

(Distance = minimal sum of weights on directed pathe from ¢ to the node.)

Two important cases:
[. All weights are > O.
2. We allow negative weights.

The first case is much simpler and we will start with it.

Two other cages:
[. Directed graphs.
2. Undirected graphs.

We will focus on the first case.



Special case: [f all weights are = { we can uge the BFS algorithm. But if we have
weights not equal to | it's easy to find cases when BF Sg doegn't work.

Dijkstra’s algorithm

Def: lf u € V then d(u) = lenght of shortest path ¢ —uin 6. (By lenght we mean the sum
of the weighte along the path.)

[dea: We compute the distances from s to all other nodes in acertain order. Let Sbe a
set such that at each step in the algorithm the distance from s to the nodes in S are
computed correctly. Then we expand this set with one node at each step.

We start with S = {¢} and d(¢) = O. All neighbors to s are given temporary distance
d(v) = w(s,v). We give all other nodes a temporary distance d(v) = «.

At each step we consider the neighbors to S, i.e. nodes v ¢ S such that there is a

nodeu S and edge (u,v) € E.

We chose the imediate neighbor with minimal temporary distance and put it into S.
The temporary distance will be now be a permanent (real) distance.

For each neighbor q ¢ S to v we see if d(q) > d(v) + wlv,g). If this is the case we set

d(q) = dlv) + wlv,q) ag new temporary digtance.

When S =V the algorithm ends and all distances are computed.



Pgeudo code:

Set 8 ={s},dls)=0
For all neighbors u to s, set d{u) = w(g,u)
For all other nodes, set d(u) = »

While S# V
Chose v & S with d(v) minimal
Set =S u{v}
For all neighbors q to v such that q €8
If d(q) > dlv) + wlv,g)
Set d(q) = dlv) + wlg,v)
End if
End for
End while

Complexity: It depends on what method you use to find the v with d(v) minimal. Without
a clever method thig will take O([V [) steps. Since we have to do thie O([V [) times we
get a complexity O(1V 12). The step " For all neighbors q to v ..." will take O( L E |)
stepeif we use adjacency ligts. For denge graphs thigis O(1V [*). In any cage,
O(1V1?)is an upper bound on the complexity.



Correctness: We will gketch an argument for the correctness.
At the center of the algorithm we have to loop “While S=V .."
We can define an invariant [ for this loop.

[: For all nodes uin S, the values d(u) tell the correct distances from ¢ to uin G. For all
nodes v not in S the valueg d(v) tell the length of the shortest path from ¢ to v only
using nodeg in S (except v). ( And d(v) = o tells that there are no such paths.)

lis obviously true when the loop starts and it can be shown that lig always true.
The loop ends after [ V| - [ steps. Then all distances are computed.

Outgide S, v must b
clogest to ¢

When v is added to S, we
update the digtance to v'.

Comment: The algorithm is stated for directed graphs. [t actually works
equally well (without modificationg) for undirected graphs.



Negative weights

Dijkstra's algorithm does not work for graphs with negative weights.

- loo

There are other algorithms that sometimes work for negative weights. The crucial
question is if a graph contain negative cycles or not. '

/ 3 Negative cycle: 2 +3 -6 =- |
\O

-—

If a graph does not contain any negative cycles there are algorithms for finding
shortest paths. Examples are Bellman - Ford's algorithm and Warshall's algorithm.
_ They both work i time O([V *). '

Obs: When we talk about pathe we means a sequence of nodes connected by edges
such that no node occur more than one time. '

There i no efficient algorithm for finding shortest paths in graphs with negative
eycles. [n fact, it can be shown that the problem is NP-complete. (More about this
later.) '



All this goes for directed graphs. f you have an undirected graph with negative
weighte but no negative cycles there are algorithms for finding shortest pathe but
they are surprisingly complicated



