Flow problems

We will study the go called flow-problem. We start with a directed graph with
two special nodes ¢ (source) and t (gink) given. We ageume that there ig at

least one directed path from ¢ to t.
On each edge e we have a capacity cle). It is a number2 O

Flow: A flow ig given by a number fle) for each edge. The numbers mugt

satiefy two conditions.

[. O<fle)<cle) foralle.
Let [n(v) be the get of all edges going in to v and Out(v) be the get of

all edges going out from v.

2. S fle) = 3 fle) forally exceptzandt
TalV) Out (V)

Value of flow: We set vallf) = 2: fle)
out(S)

( lt's obvious that thig ig equal to S fle)
In(t)

Some more notation: If e = (u,v) we write fle) = flu,v)

I XSV and YEU we get IX,Y)= i S fixy

Zo's



Cut: A cutig a partition of V into two digjoint parts X, Y such
that se X and t eY.

[t is not hard to prove that if (XY)ig a cut, then vallf) = f(X)Y)- (Y, X)

Two questions:
[. What is the maximal posgible value for a flow in G?

2. How do we find a maximum flow?
The capacity of a cut

Def: Given a cut (X.Y)we define C(XY)= Q. s elx,y)
xeX Ve[

We see that for any eut (XY) we have vallf) £ C(XY)

This is because vallf) = fIXY) - flY X) £ fIX)Y)
and, since fle) £ ele), we have f(XY)< e(X)Y)

Let MC be the minimal capacity for cuts in G. Then we get vall(f) < MC.

The famous Max flow- min cut theorem says that if f *is a maximum flow we
actually have val(f*)= MC.

We will soon prove this theorem.



Eord - Fulkerson's algorithm

We start with fle) = O for all edges and build up a flow in several steps.
We look for so called augmenting paths.

c
Unsaturated forward edge: O———0O
Pley<cre)

Unsaturated backward edge: 0O« c o
f ( C) >0

An augmented path i a path consisting of unsaturated paths (forward and/or
backward) going from ¢ to t.

If we can find an augmenting path we can increase the flow. How much?

For each edge e in an augmenting path P we define a number A(e). If e is a forward edgé
(in the path) we set Ale) = ele) - fle). If e is a backward edge we set A\(e) = fle). Then we
let & be the minimum value of Ale) for all edges in P.

We now increase the theflow by setting f'(e) = fle) + & for all forward edges and
f'(e) = fle) - & for all backward edges.



We will now try to show the following:
We have reached a maximum flow if and only if there are no augmenting paths
leftin G.

[t's obvious that if we have reached a maximum flow there can be no augmenting
pathg left. The other direction is the difficult one.

We assume that there are no augmenting paths left. We will construet a special
typeof cut: Starting at ¢ we try to build paths uging unsatureted edges. Let X'
be set of all nodes that can be reached from s by such paths. Let Y' be V - X..
Thenwe havese X'andteY,. So(X,Yis acut.

For thig cut, and this flow, we have val(f) = C(X,Y") !

Why? Let (x,y) be a directed edge going from X' to Y'. Since x but not y can be
reached by ungaturated edges we must have flx,y) = e(x,y). If (y,x) is a directed
edge going from Y' to X' we must have fly,x) = O. Thig means that val(f) = f(X,Y")
- flY' X =fIX,Y) = CIX,Y").

We know that if f*is a maximum flow and MC is the size of a minimum
cut then val(f) < val(f*) and MC < C(X,Y'). But gince val(f) = C(XY") we
get val(f) = val(f*) = MC = C(X,Y').

This gives us
. We see that f i amaximum flow and the Ford-Fulkergon algorithm works.

2. We have proved the Max flow - Min cut theorem.



Implementing the Ford - Fulkergon algorithm

When we implement the algorithm we use a so called Residual Graph. Let us assume that
we are given a directed graph G with capacities on the edges.

We want to find augmenting paths in G. [t can be shown that it's better not just
to look for any augmenting paths. [nstead we should use BFS and look for
shortest augmenting paths. This variant of Ford - Fulkerson's algorithm is
called Edmond - Karp's algorithm.

We want to uge BFSin standard form. The problem is that BFS looks for “forward"
paths. To get around this problem we use so called residual graphs.

Let G be a directed graph and a flow f (not necessarily maximal). Given G
and f we construet a new graph with some new edges and capacities:
u
‘ v
G —0
For each edge O< fle) we define a new capacity

e

¢'(e) = ele)-fle) and we define a new edge and capacity:

W el \V4
O< O
Cle') = f(e)

Thig gives ug the residual graph Gf.



We then use the following algorithm:

Ford Fulkerson's algorithm in pseudocode

c[u,v] is the capacity from u to v, flu,v] is the flow, effu,v] is the residual
capacity.

foreach edge (u,v) in the graph do
flu,v]:=0; flv,u):=0
efluv]:=clu,v]; ef{v,ul:=clv,u]
while there is a path p from g to t in the residual flow graph do
r:=minleflu,v]: (u,v) is in p)
foreach edge (u,v) in p do
flu,v]:=fluv]+r; flv,u):= -fluyv]
eflu,v]:=clu,v] - fluv]; ef{vul:=efv,u] - flv,u]



We can uge the flow algorithm to solve another problem: The matehing problem for
bipartite graphs.

BIPARTITE MATCHING

[nput: A bipartite graph (X Y, E).
Goal: A matching of maximal size.

A matching is a set of edges with no pair of edges having a node in

common.

Start with:

Then we add some nodes and

edges and directions: % ; 5 ; \‘(
. ' )

Give all edges capacity [ and run the flow algorithm. When the algorithm ends

the edges from the original graph that are saturated (i.e. fle) = 1) gives ug a
maximal matching.



_DJi‘Esfra's algorithm and shortest paths in graphs

SHORTEST PATH

[nput: A directed graph with edge weights. A start node ¢
Goal: The distances and shortest paths from ¢ to all other nodes.

(Digtance = minimal sum of weights on directed paths from s to the node.)

Two important cages:
[. All weights are > O.
2. We allow negative weights.

The first case is much simpler and we will start with it.
Two other cages:

. Directed graphs.

2. Undirected graphs.



Special case: If all weights are = [ we can use the BFS algorithm. But if we have
weights not equal to [ it's easy to find cagses when BF S¢ doesn't work.

Dijkstra’s algorithm

Def: if u € V then d(u) = lenght of shortest path s —uin 6. (By lenght we mean the
sum of the weights along the path.)

ldea: We compute the distances from s to all other nodes in acertain order. Let Sbe a
get such that at each step in the algorithm the distance from s to the nodes in S are
computed correctly. Then we expand this set with one node at each step.

We start with S = {¢} and d(g) = O. All neighbors to ¢ are given temporary digtance
d(v) = wle,v). We give all other nodeg a temporary distance d(v) = e.

At each step we consider the neighbors to S, i.e. nodes v ¢ S such that there is a
node u S and edge (uv) €E.

We chose the imediate neighbor with minimal temporary distance and put it into S.
The temporary distance will be now be a permanent (real) distance.

For each neighbor q # S to v we see if d(q) > d(v) + w(v,q). If thig is the case we
set dlq) = d(v) + wlv,q) ag new temporary dictance.

When S =V the algorithm ends and all distances are computed.



Pgeudo code:

Qet S={g},d(s)=0
For all neighbors u to s, set dlu) = w(s,u)
For all other nodes, set d(u) = o

While S # V
Chose v & S with d(v) minimal
Set8=Su{v}
For all neighbors q to v such that q &S
If d(q) > d(v) + wlv,q)
Set dlg) = d(v) + wlq,v)
Endif
End for
End while

Complexity: [t depends on what method you uge to find the v with d(v) minimal. Without
a clever method this will take O(1V |) steps. Since we have to do this O(1V ) times
we get a complexity O(1V[*). The step " For all neighbors q to v ..." will take O(IE 1)
stepsif we use adjacency lists. For dense graphs thigig O(IV I*). [n any cage,
O(1V1?)ie an upper bound on the complexity.



Correctness: We will sketeh an argument for the correctness.
At the center of the algorithm we have to loop “While S#V .."

We can define an invariant [ for this loop.

[: For all nodes uin S, the values d(u) tell the correct distances from s touin G. For
all nodes v not in S the values d(v) tell the length of the shortest path from ¢ to v only
uging nodes in S (except v). ( And d(v) = = tells that there are no such paths.)

lis obviously true when the loop starts and it can be shown that lis always true.
The loop ends after [ V[ - | steps. Then all distances are computed.

Outside S, v mugt b
clogsestto s

When vis added to S, we
update the distance to v'.

Comment: The algorithm is stated for directed graphs. lt actually works
equally well (without modificationg) for undirected graphs.



Negative weights

Dijkstra’s algorithm does not work for graphs with negative weights.

- loo

There are other algorithms that sometimes work for negative weights. The

erucial question is if a graph contain negative cycles or not.

/ 3 Negative cycle: 2 +3 -6=-1
\O

-—

If a graph does not contain any negative cycles there are algorithms for finding
shortest paths. Examples are Bellman - Ford's algorithm and Warghall's
. algorithm. They both work i time O( 1V [2).

Obs: When we talk about paths we means a sequence of nodes connected by edges
such that no node oceur more than one time.

There is no efficient algorithm for finding shortest paths in graphs with negative
cycles. In fact, it can be shown that the problem is NP-complete. (More about
thig later.)



All this goes for directed graphs. f you have an undirected graph with negative
weights but no negative cycles there are algorithms for finding shortest paths but
they are surprisingly complicated



