
 
Dynamic Programming cont. 

We repeat:  The Dynamic Programming Template has three parts. 

Subproblems 

Recursion 

Algorithm 
Must not compute 
subproblems more 
than once 

Sometimes this is enough if the algorithm and 
its complexity is obvious. 

Sometimes we just need the 
values of the solutions. 

Sometimes we also need the 
structure of the solution. 



 

If we have a directed graph with no cycles ( A DAG = Directed Acyclic Graph ) 
things are simpler. In a DAG we can find a so called Topological Ordering. 

Let us return to the shortest path problem. Is Dijkstra's algorithm a DP-
algorithm? We have subproblems  
d[u] = length of shortest path from s to u. 
We have a type of recursion 
d[v] = d[u] + w[u,v] 
The problem is that we don't have a simple way of ordering the 
subproblems. In that sense, Dijkstra's algorithm isn't a true DP-algorithm. 

Let's assume that the start node is v[1].  Set w[i,j] = ∞ if there is 
no edge (v[i], v[j]).  Then 

d[1] = 0 
 
d[k] = min  ( d[i] + w[i,k] )  1 ≤ i ≤ k 

The algorithm runs in O( n   ) 

Topological Ordering: An ordering of the nodes such that  
(v[i], v[j]) is an edge       i < j 
A topological ordering can be found in time O( | E | ) ( See textbook). 



 Matrix Chain Multiplication 

We want to compute the product of two matrices A and B. A isa p  q- matrix and  B 
is a q   r-matrix. The cost (number of products of elements) is pqr. 

Let us assume that we want to compute a chain of matrices. We want to find the best 
way to multiply them. If we have three matrices A, B, C then we know from the 
associative law of multiplication that (AB)C = A(BC). But the costs of computing the 
product will normally differ! 

If we have a chain of matrices M[1] M[2] ... M[n] what is the best way of 
computing the product? 

Recursion: 
 
Let us first assume that the matrices have dimensions d[0]   d[1], d[1]   d[2], ... ,d[n-1]   d[n]. 
 
c[i,i] = 0 for all  1≤ i ≤ n 
 
c[i,j] = min  ( c[i,k] + c[k+1,j] + d[i-1]d[k]d[j] ) where  i ≤ k < j 

Subproblems:  
Set c[i,j] = smallest possible cost of computing M[i] M[i+1] ... M[j]. 



 Why? 

(M[i] M[i+1] ... M[k] ) (M[k+1] ... M[j]) 

c[i,k] operations 
d[i-1]   d[k] - matrix 

c[k+1, j] operations 
d[k]   d[j] - matrix 

d[i-1] d[k] d[j] operations 

All together:  c[i,k] + c[k+1] + d[i-1] d[k] d[j]   operations 

Now we have to  find an algorithm using the recursion. Essentially we 
have to find suitable loops.  We can try to first compute all c[i,j] with |
j-i| = 1, then with |j-i| = 2 and so on. If we do this we are able to use the 
recursion formula. 



 

The value of c[1,n] gives the minimum number of operations. 

For i ←1 to n 
 c[i,i] ←0 
For diff ←1 to n-1 
 For i ←1 to n - diff 
  j ←i + diff 
  min ←c[i+1,j] + d[i-1] d[i+1] d[j] 
  best_k ←i 
  For k ←i+1 to j - 1 
   If min > c[i,k] + c[k+1,j] + d[i-1] d[k] d[j] 
    min ←c[i,k] + c[k+1,j] + d[i-1] d[k] d[j] 
    best_k ←k 
  c[i,j] ←min 

 The complexity is O(n   ) 



 
Editing distance and sequence alignment 

We have two strings x[1], x[2], ... , x[m]  and y[1], y[2], ... , y[n]. We want to align 
them so the number of positions where the alligned sequences are different is 
minimal. We are allowed to put gaps into the sequences. 

Ex: The sequences EXPONENTIAL and  POLYNOMIAL can be aligned as 

_ _ POLYNOM_IAL 
EXPO _ _ NENTIAL 

Let  
D[p,q] = distance of best alignment of a[1], ..., a[p] and b[1], ..., a[q] 
We measure distance by adding a number α for each match between a character and 
a blank and adding  ß for a match between two different characters. 
 
Then we get the recursion formula 
 
D[p,0] = αp   D[0,q] =  αq for all p,q 
 
 
D[p,q] = min ( D[p,q-1]  + α ,  D [p-1,q] + α, D[p-1,q-1] + ß diff[a[p],b[q]] )  
                                                        
                                                                                                                  if p>1 and q > 1 



 
Pretty Print 

We now want to find the best way to arrange the words. It's simplest 
to first ignore LLE. 

Recursion: 
 
w[0] = 0 
w[k] = min ( w[i-1] + f( M - s[i,k] )   
                            where the min  is 
taken over all 1 ≤ i ≤ k such that 
s[i,k] ≤ M 

We have a set of n words. They have lengths l[i]  ( number of characters).  We want to 
print them on a page. Each line on the page contains space for M characters. There 
must be a space 1 between each pair of words. 

Set s[i,j] = ∑  l[k]   + j - i . 
 
 This will be the number if characters left on the line if the words i to j are put 
on the line.  Let E = M - s[i,j] be the excess of space on the line. We want to 
put the words (in correct order) on lines so that the excesses are as small as 
possible. We can use a penalty function f (  ) and try to make a split of the 
words such that f( E1) + f(E2) + .... i.e. the sum of the penalties from the lines 
is as small as possible. 

To get the solution with LLE we 
compute  
min w[j] such that s[j+1, n]   ≤  M 

Let w[k] = least penalty when using the first k words and not using 
LLE. 

It's natural to use the Last Line Excluded rule (LLE), i.e. we give no penalty for 
excess on the last line. 



 

We will return to the Subset Sum problem once more. Remember that 
we defined 

v[i,m] = 1 if there is a subset of a[1], a[2], ... , a[i] with sum m and v[i,m] = 0 
otherwise. 

v[1, 0] = 1 
For all  i such that 2 ≤ i  ≤  n and all m   M  such that  a[i]  ≤  m  
v[i,m] = max ( v[i-1,m],  v[i-1,m-a[i]] ) 

We got the recursion formula 

In lecture 5 we gave an algorithm that solved the problem.  It's possible to 
give a recursive algorithm as well. A first try could look like: 

We make the call vrek[n,M] to get the answer. 

But this solution is no good. The problem is that the 
algorithm uses repeated calls to subproblems that 
already have been solved. 

vrek[i,m] = 
 If m  < 0 
  Return 0 
 If m = 0 
  Return 1 
       If i = 1 and m = a[1] 
                Return 1 
 If vrek[i-1, m] = 1 
  Return 1 
 If vrek[i-1, m-a[i]] = 1 
  Return 1 
        Return 0 



 To get a better algorithm will have to keep track of all computed 
values of subproblems. To do this, we use an array comp[i,m], 

Set all comp[i,j] to FALSE 
Set all v[i,j] to 0 
vrek[n,M] 

This technique of remembering already computed 
values is called Memoization.  Sometimes it can be 
useful, but in most cases the bottom-up method 
should be preferred. 

vrek[i,m] = 
 If comp[i,m] 
  Return v[i,m] 
 If m <  0 
  Return 0 
 If m = 0 
  Return 1 
 If vrek[i-1, m] = 1 
  comp[i,m] ← TRUE 
  v[i,m] ←1 
  Return 1 
 If vrek[i-1, m-a[i]] = 1 
  comp[i,m] ← TRUE 
  v[i,m] ←1 
  Return 1 
        comp[i,m] ←TRUE 



 
A simpler Subset Sum problem 

One thing that makes the original Subset Sum problem hard is that we are 
allowed to use each number just once. If we can use the numbers multiple 
times we get a simpler DP-problem. 

Set v[m] = 1 if we can get m as a subset sum and 0 otherwise. 

Then we can compute the values by 
 
v[m] = 0 for all m < 0 
v[0] = 1 
v[m] = max ( v[m-a[k] )  1 ≤ k ≤ n 


