

Dynamic Programming cont.

We repeat: The Dynamic Programming Template has three parts.

Subproblems

Recursion

Algorithm
Must not compute
subproblems more
than once

Sometimes this is enough if the algorithm and
its complexity is obvious.

Sometimes we just need the
values of the solutions.

Sometimes we also need the
structure of the solution.

If we have a directed graph with no cycles (A DAG = Directed Acyclic Graph)
things are simpler. In a DAG we can find a so called Topological Ordering.

Let us return to the shortest path problem. Is Dijkstra's algorithm a DP-
algorithm? We have subproblems
d[u] = length of shortest path from s to u.
We have a type of recursion
d[v] = d[u] + w[u,v]
The problem is that we don't have a simple way of ordering the
subproblems. In that sense, Dijkstra's algorithm isn't a true DP-algorithm.

Let's assume that the start node is v[1]. Set w[i,j] = ∞ if there is
no edge (v[i], v[j]). Then

d[1] = 0

d[k] = min (d[i] + w[i,k]) 1 ≤ i ≤ k

The algorithm runs in O(n)

Topological Ordering: An ordering of the nodes such that
(v[i], v[j]) is an edge i < j
A topological ordering can be found in time O(| E |) (See textbook).

 Matrix Chain Multiplication

We want to compute the product of two matrices A and B. A isa p q- matrix and B
is a q r-matrix. The cost (number of products of elements) is pqr.

Let us assume that we want to compute a chain of matrices. We want to find the best
way to multiply them. If we have three matrices A, B, C then we know from the
associative law of multiplication that (AB)C = A(BC). But the costs of computing the
product will normally differ!

If we have a chain of matrices M[1] M[2] ... M[n] what is the best way of
computing the product?

Recursion:

Let us first assume that the matrices have dimensions d[0] d[1], d[1] d[2], ... ,d[n-1] d[n].

c[i,i] = 0 for all 1≤ i ≤ n

c[i,j] = min (c[i,k] + c[k+1,j] + d[i-1]d[k]d[j]) where i ≤ k < j

Subproblems:
Set c[i,j] = smallest possible cost of computing M[i] M[i+1] ... M[j].

 Why?

(M[i] M[i+1] ... M[k]) (M[k+1] ... M[j])

c[i,k] operations
d[i-1] d[k] - matrix

c[k+1, j] operations
d[k] d[j] - matrix

d[i-1] d[k] d[j] operations

All together: c[i,k] + c[k+1] + d[i-1] d[k] d[j] operations

Now we have to find an algorithm using the recursion. Essentially we
have to find suitable loops. We can try to first compute all c[i,j] with |
j-i| = 1, then with |j-i| = 2 and so on. If we do this we are able to use the
recursion formula.

The value of c[1,n] gives the minimum number of operations.

For i ←1 to n
 c[i,i] ←0
For diff ←1 to n-1
 For i ←1 to n - diff
 j ←i + diff
 min ←c[i+1,j] + d[i-1] d[i+1] d[j]
 best_k ←i
 For k ←i+1 to j - 1
 If min > c[i,k] + c[k+1,j] + d[i-1] d[k] d[j]
 min ←c[i,k] + c[k+1,j] + d[i-1] d[k] d[j]
 best_k ←k
 c[i,j] ←min

 The complexity is O(n)

Editing distance and sequence alignment

We have two strings x[1], x[2], ... , x[m] and y[1], y[2], ... , y[n]. We want to align
them so the number of positions where the alligned sequences are different is
minimal. We are allowed to put gaps into the sequences.

Ex: The sequences EXPONENTIAL and POLYNOMIAL can be aligned as

_ _ POLYNOM_IAL
EXPO _ _ NENTIAL

Let
D[p,q] = distance of best alignment of a[1], ..., a[p] and b[1], ..., a[q]
We measure distance by adding a number α for each match between a character and
a blank and adding ß for a match between two different characters.

Then we get the recursion formula

D[p,0] = αp D[0,q] = αq for all p,q

D[p,q] = min (D[p,q-1] + α , D [p-1,q] + α, D[p-1,q-1] + ß diff[a[p],b[q]])

 if p>1 and q > 1

Pretty Print

We now want to find the best way to arrange the words. It's simplest
to first ignore LLE.

Recursion:

w[0] = 0
w[k] = min (w[i-1] + f(M - s[i,k])
 where the min is
taken over all 1 ≤ i ≤ k such that
s[i,k] ≤ M

We have a set of n words. They have lengths l[i] (number of characters). We want to
print them on a page. Each line on the page contains space for M characters. There
must be a space 1 between each pair of words.

Set s[i,j] = ∑ l[k] + j - i .

 This will be the number if characters left on the line if the words i to j are put
on the line. Let E = M - s[i,j] be the excess of space on the line. We want to
put the words (in correct order) on lines so that the excesses are as small as
possible. We can use a penalty function f () and try to make a split of the
words such that f(E1) + f(E2) + i.e. the sum of the penalties from the lines
is as small as possible.

To get the solution with LLE we
compute
min w[j] such that s[j+1, n] ≤ M

Let w[k] = least penalty when using the first k words and not using
LLE.

It's natural to use the Last Line Excluded rule (LLE), i.e. we give no penalty for
excess on the last line.

We will return to the Subset Sum problem once more. Remember that
we defined

v[i,m] = 1 if there is a subset of a[1], a[2], ... , a[i] with sum m and v[i,m] = 0
otherwise.

v[1, 0] = 1
For all i such that 2 ≤ i ≤ n and all m M such that a[i] ≤ m
v[i,m] = max (v[i-1,m], v[i-1,m-a[i]])

We got the recursion formula

In lecture 5 we gave an algorithm that solved the problem. It's possible to
give a recursive algorithm as well. A first try could look like:

We make the call vrek[n,M] to get the answer.

But this solution is no good. The problem is that the
algorithm uses repeated calls to subproblems that
already have been solved.

vrek[i,m] =
 If m < 0
 Return 0
 If m = 0
 Return 1
 If i = 1 and m = a[1]
 Return 1
 If vrek[i-1, m] = 1
 Return 1
 If vrek[i-1, m-a[i]] = 1
 Return 1
 Return 0

 To get a better algorithm will have to keep track of all computed
values of subproblems. To do this, we use an array comp[i,m],

Set all comp[i,j] to FALSE
Set all v[i,j] to 0
vrek[n,M]

This technique of remembering already computed
values is called Memoization. Sometimes it can be
useful, but in most cases the bottom-up method
should be preferred.

vrek[i,m] =
 If comp[i,m]
 Return v[i,m]
 If m < 0
 Return 0
 If m = 0
 Return 1
 If vrek[i-1, m] = 1
 comp[i,m] ← TRUE
 v[i,m] ←1
 Return 1
 If vrek[i-1, m-a[i]] = 1
 comp[i,m] ← TRUE
 v[i,m] ←1
 Return 1
 comp[i,m] ←TRUE

A simpler Subset Sum problem

One thing that makes the original Subset Sum problem hard is that we are
allowed to use each number just once. If we can use the numbers multiple
times we get a simpler DP-problem.

Set v[m] = 1 if we can get m as a subset sum and 0 otherwise.

Then we can compute the values by

v[m] = 0 for all m < 0
v[0] = 1
v[m] = max (v[m-a[k]) 1 ≤ k ≤ n

