
Algorithms and complexity
Hösten 2009

Mästarprov1: Algorithms

Mästarprov 1 should be solved individually in written form and presented orally.
No collaboration is allowed.

Written solutions should be handed in latest on Monday, November
16th 17.00, in my postbox or in the student reception in Osquars backe 2
plane 2. Be sure to save a copy of your solutions.

Mästarprov 1 is a mandatory and rated part of the course. The test consists
of four tasks. The test is roughly graded as follows: Two task correctly solved
give an E. Three tasks correctly solved give a C and all tasks correctly solved
give an A. You can read more about the grading criteria and the final grade in
course-PM, or on the course web page.

1. Currency exchange

The country Brutopia has currency brutos. In the country there are five types
of notes. They have denominations of 50, 40, 10, 5, 1 brutos. The notes are old
and the government of Brutopia therefore wants its citizens to use as few notes
as possible. Therefore, it wants the citizens to pay exactly the right amount and
do it with as few notes as possible. We have thus the following problem:

Given an integer A, we want to write

A = k5050 + k4040 + k1010 + k55 + k1

where k50 + ... + k1 should be as small as possible.

Help the brutopians by designing an algorithm that solves this problem. It must
be a greedy algorithm which has time complexity O(log A).

2. Shortest paths

We have seen examples of several algorithms which calculate the shortest distan-
ce between nodes in weighted graphs. We have also seen that a shortest path
not always is the path with the least number of edges. But now, let us deal with
two distance concepts simultaneously. We set

l(w) = length of the path v, measured as the sum of edge weights.

l#(v) = length of the path v as measured by the number of edges.

We assume that we have a graph where there might be paths of equal length in
l(v)-sense between two nodes. We then want to choose a path which is minimal

1



in the l#v-sense among them. More precisely:

We are looking for a path v∗, i → j such that

1. l(v∗) ≤ l(v) for all paths iv: → j.

2nd l#(v∗) ≤ l#(v) for all paths iv: → j such that l(v∗) = l(v).

Construct an algorithm that finds such a path. For full score it is required that
the algorithm works in graphs which might have negative edge weights but no
negative cycles.

3. A Packing Problem

The transport company Godbud transports goods in trucks. The goods are pac-
ked in boxes p1, p2, ..., pn. These boxes have weights w1, w2, ..., Wn kg. They will
be loaded in trucks that are able to take just M kg. The boxes must be loaded
into the trucks in the right order. This means that boxes p1, p2, ..., Ps1 packed
into truck 1 for some s1. Truck 2 is packed with the boxes ps+1, ps+2, ..., ps2 for
some s2 and so on. Then wsi+1 + ... + wsi+1 ≤ M for all i. The miljötrafiköver-
vakningsverket (a fictive organization) now puts an additional requirement on
the company. Godbud must load the trucks so that di = M −pwi+1 + ... + wsi+1

is as small as possible for all i. More precisely, it is required that D =
∑n

i=1 di

should be as small as possible.

Construct an efficient algorithm that solves this problem, i.e. decides what the
optimal D is and how the s1, s2, ... are to be chosen.

4. To search a matrix

We have seen that if we want to determine whether a given element a is in a list
x1, x2, ..., xn, it takes O(n) operations if the list is not sorted. If the list is sorted
it is possible to determine whether a is in the list with O(log n) operations.

Suppose now that we have an n×n matrix with n2 numbers xij sorted in incre-
asing order along the rows and columns. We can also assume that all numbers
are different. This means that j < k ⇒ xij < xik and xj < xk for all i.

We now want to determine if a number a is an element xij , that is, if a is in
the matrix. It is easy to see that we can do this with O(n log n) operations. But
we can do better? Use decomposition to construct an algorithm. Is it possible
to find a with O(n) operations?

2


