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1. Convert the nondeterministic automaton given below to an equivalent deterministic one using the
subset construction. Omit inaccessible states. Draw the graph of the resulting DFA.

a b
→ q1 {q2} ∅
→ q2 F ∅ {q1, q3}

q3 F {q2, q3} {q1}

Solution: (presented as a table)

a b
→ {q1, q2} F {q2} {q1, q3}

{q1, q3} F {q2, q3} {q1}
{q2, q3} F {q2, q3} {q1, q3}

{q1} {q2} ∅
{q2} F ∅ {q1, q3}

∅ ∅ ∅

2. Consider the following unary operation on languages:

min(L) = {x ∈ L | no proper prefix of x is in L}

Prove that regular languages are closed under this operation; that is, prove that if language A is
regular, then so is min(A).

Solution: Assume A is regular. (For simplicity, we shall also assume ε 6∈ A.) Then there is a DFA MA

accepting A. We construct another DFA M ′
A from MA by adding two new states qF and qG, making

qF the only accepting state of M ′
A, letting δ′(qF , a) = qG and δ′(qG, a) = qG for every a ∈ Σ, and by re-

directing all edges pointing to a final state in MA to point to qF . We can then show L(M ′
A) = min(A)

as follows:

x ∈ L(M ′
A) ⇔ δ̂′(s, x) = qF {Def. acceptance and M ′

A}
⇔ δ̂(s, x) ∈ F and for no proper prefix y of x, δ̂(s, y) ∈ F {Def. M ′

A}
⇔ x ∈ A and no proper prefix of x is in A {Def. acceptance}
⇔ x ∈ min(A) {Def. min(A)}

thus proving that min(A) is regular.

3. Use the constructions we defined on nondeterministic finite automata to inductively build an NFA for
the regular expression (a + ba)(b + ab)∗. Show all intermediate results.



4. For the deterministic automaton given below, apply the minimization algorithm of Lecture 14 to
compute the equvalence classes of the collapsing relation ≈ defined in Lecture 13. Show clearly the
computation steps. List the equivalence classes, and apply the quotient construction to derive a
minimized automaton. Draw its graph.

a b
→ q1 q3 q8

q2 F q3 q1

q3 q8 q2

q4 F q5 q6

q5 q6 q2

q6 q7 q8

q7 q6 q4

q8 q5 q8

Solution: With the minimization algorithm we establish that q1 ≈ q6 ≈ q8, q2 ≈ q4 and q3 ≈ q5 ≈ q7.
The resulting quotient automaton, presented as a table, is:

a b
→ {q1, q6, q8} {q3, q5, q7} {q1, q6, q8}

{q3, q5, q7} {q1, q6, q8} {q2, q4}
{q2, q4} F {q3, q5, q7} {q1, q6, q8}

5. Apply the Pumping Lemma – in contra–positive form, as a game with the Demon – to show that the
following language:

A = {an | n is a power of 2}

is not regular.

Solution: One possible solution is:

(D) Demon picks k.

(W) We pick x = ε, y = a2k
and z = a2k

. Then xyz = a2k+1
and |y| > k.

(D) Demon picks u, v and w so that uvw = y = a2k
and v 6= ε.

(W) We pick i = 2.

Then xuviwz = a2k+1+l for some 0 < l ≤ 2k. Since l < 2k+1 we have 2k+1 < 2k+1 + l < 2k+2, and
hence xuviwz 6∈ A. We have a winning strategy, and A is therefore not regular.



6. Consider the language:
A =

{
akblam | m = k + l

}
(a) Use the closure properties of regular languages to show that A is not regular.

Solution: The language L(b∗a∗) is regular, but A ∩ L(b∗a∗) = {bnan | n ≥ 0}, as we already
know, is not regular. Since regular languages are closed under intersection, A is not regular.

(b) Give a context–free grammar G generating A.
Solution: One possibility is:

S → aSa | B
B → ε | bBa

(c) Prove your grammar correct; that is, prove S
+→G x ⇔ x ∈ A.

Solution: The proof is standard, and is made easy by the fact that we already know that
B

+→G x ⇔ x ∈ {bnan | n ≥ 0}.
(d) Construct an NPDA accepting A− {ε} on empty stack. Explain your choice of productions.

Solution: One possibility is to build an NPDA with three states, having the following produc-
tions:

〈q0,⊥〉
a

↪→ 〈q0, C〉 〈q1, C〉
a

↪→ 〈q2, ε〉 〈q2, C〉
a

↪→ 〈q2, ε〉
〈q0,⊥〉

a
↪→ 〈q2, C〉 〈q1, C〉

b
↪→ 〈q1, CC〉

〈q0,⊥〉
b

↪→ 〈q1, C〉
〈q0, C〉

a
↪→ 〈q0, CC〉

〈q0, C〉
a

↪→ 〈q2, CC〉
〈q0, C〉

b
↪→ 〈q1, CC〉

The first state counts the initial a’s, the second state counts the b’s which follow, and the third
state checks for the sum. In addition, the first state can nondeterministically decide that no b’s
are going to come and that exactly half of the a’s have been read.

7. Give a detailed description of a Turing machine with input alphabet {a, ]} that on input am]an halts
with a(m mod n) written on its tape. Explain the underlying algorithm.

Solution: Here is one possible algorithm, consisting of three phases. It implements modulo division
by repeated subtraction.

Preparatory phase: scan right to first blank symbol and replace it with a.

Main phase: repeat in rounds, in each round performing:
repeatedly scan from right to left, matching the rightmost a on the right of ] with the rightmost a on
the left of ]. The matching is done by replacing the corresponding a’s with ȧ’s.
A round terminates in one of two possible ways:
(a) if there are no more a’s on the right of ], then delete (that is, replace with the blank symbol) all
ȧ’s on the left of ], and restore all ȧ’s on the right of ] to a’s. Start new round.
(b) if there is no matching a on the left of ], then go to the next phase.

Finalizing phase:
- replace all ȧ’s by a’s on the left of ], and
- delete all other symbols on the tape.



8. Show that the problem of whether a Turing machine, when started on a blank tape, ever writes a
given symbol (say a) of its input alphabet on its tape is not decidable.

Hint: You could reduce the undecidable problem of acceptance of the null string (problem (f), page 235)
to the problem above.

Solution: Assume the problem was decidable. Then there must be a total Turing machine Ma deciding
it. We shall use Ma to build a new total Turing machine Mε deciding the problem of acceptance of
ε. (Since the latter is known to be undecidable, we shall conclude that the present problem is also
undecidable.)

We construct Mε which, on input M̂ , converts M̂ to M̂ ′ such that M ′ is like M but:

• a is renamed to a new letter which is added to the alphabet of M̂ ′,

• a new state q is added, which becomes the accepting state of M̂ ′, and

• transitions δ(t, b) = (q, a, R) are added for every b ∈ Γ.

Then rewind and run as Ma on M̂ ′.

We can now deduce:

Mε accepts M̂ ⇔ Ma accepts M̂ ′
{
Def. Mε and M̂

}
⇔ M ′ reaches t starting from ε

{
Def. Ma and M̂ ′

}
⇔ M accepts ε

{
Def. M̂ ′

}
So, Mε decides the problem of acceptance of ε. Since the latter is known to be undecidable, we conclude
that the present problem is also undecidable.


