
2G1505 Automata Theory

Solutions to Exam of:

16 October 2002, 14.oo - 19.oo
Dilian Gurov

KTH/IMIT/LECS

1. Give a DFA for the language defined by the regular expression a∗a, and another one for a(ba)∗. The 5p
union of the two DFAs defines a non-deterministic FA for the language a∗a+ a(ba)∗.

(a) Apply the subset construction to this NFA to produce a DFA for this language. Omit the
inaccessible states. Draw the graph of the resulting DFA.

(b) Is this DFA minimal? If not, which states are equivalent?

Solution: The graphs to appear later. ..
^

2. Show that regular languages are closed under doubling: if language L is regular, then so is also 5p

the language L2
∆= {two x | x ∈ L}, where string doubling is defined inductively by two ε

∆= ε and
two ax

∆= aa · (two x).

Solution: Here is a standard solution using finite automata; alternative solutions exist using regular
expressions or homomorphisms.

Let L be regular. Then there is an NFA N = (QN ,Σ,∆N , SN , FN) such that L(N) = L. Define
another NFA, N2, as follows: start with N and replace every edge q a−→ q′ with two edges q a−→ q′′

and q′′
a−→ q′ by inserting (for each edge!) a new state q′′. We can formalize this idea by taking as

states of N2 the states of N plus the edges of N , the latter represented for example as the set of triples
{(qN , a, q′N) | qN ∈ QN , q′N ∈ ∆N (qN , a)}. So, we can define N2 as follows:

• QN2

∆= QN ∪ {(qN , a, q′N) | qN ∈ QN , q′N ∈ ∆N (qN , a)}
• ∆N2 is given by the two defining equations:

∆N2(qN , a) ∆= QN ∪ {(qN , a, q′N) | q′N ∈ ∆N (qN , a)} and
∆N2((qN , b, q′N), a) ∆= if a = b then {q′N} else ∅

• SN2

∆= SN

• FN2

∆= FN

It is straightforward to show that, for the so constructed NFA, L(N2) = L2, thus implying that L2 is
regular. Hence, regular languages are closed under doubling.

3. Consider the language L defined by the regular expression (a∗ + ba)∗. Describe the equivalence classes 5p
of {a, b}∗ w.r.t. the Myhill–Nerode relation ≡L defined by: (cf. equation (16.1) on page 97)

x1 ≡L x2
∆⇐⇒ ∀y ∈ Σ∗.(x1 · y ∈ L⇔ x2 · y ∈ L)

Present these equivalence classes through regular expressions. Use ≡L to construct a minimal automa-
ton M≡L (cf. page 91) for the language L, and draw the graph of the automaton.

Solution: The states of the quotient automaton are:

Σ∗/≡L = {L((a+ ba)∗), L((a+ ba)∗b), L((a+ ba)∗bb(a+ b)∗)}
The graph to appear later.

4. Consider the language: 15p

L
∆=
{
x · y ∈ {a, b}+ | y = rev x

}
where rev x denotes the reverse string of x (cf. HW 2.2, page 302).

(a) Use the Pumping Lemma to prove that L is not regular.
Solution: As a game with the Demon (cf. Lecture 11):

• Demon picks k > 0.
• We pick for example x = ε, y = ak, z = bbak, and we have xyz = akbbak ∈ L and |y| ≥ k.
• Demon picks uvw = y = ak, v 6= ε.
• We pick for example i = 0.

Then xuviwz = uwz = ajbbak for some j < k, and hence xuviwz 6∈ A. We have a winning
strategy, and L is therefore not regular.

(b) Give a context–free grammar G for L.
Solution: S → aa | bb | aSa | bSb

(c) Prove your grammar correct (cf. Lecture 20): that is, prove L = L(G).
Solution: We have to prove:

∀x ∈ {a, b}+. (S ∗→G x⇔ x ∈ L)
We show the two directions of the equivalence separately.

(⇒) By induction on the length of the derivation of x.
Basis Holds vacuously, since S 0→G x is false: x = S is impossible since S 6∈ {a, b}+.
Induction Step Assume x′ ∈ L for all x′ such that S n→G x

′ (induction hypothesis).

Let S n+1→ G x. Then, we must have S 1→G γ and γ
n→G x for some γ ∈ {a, b, S}+. But then

γ can only be aa or bb or aSa or bSb. The first two cases imply n = 0 and x = γ, and then
obviously x ∈ L. In the case γ = aSa, it must be that x = ax′a and S

n→G x′ for some x′.
From the induction hypothesis, we have x′ ∈ L. But x = ax′a, and therefore also x ∈ L.
The case γ = bSb is similar.

(⇐) By induction on |x|, which is even and positive.
Basis |x| = 2, then x ∈ L implies that x is either aa or bb. In both cases S 1→G x and
therefore S ∗→G x.
Induction Step Assume S ∗→G x

′ for all x′ ∈ L such that |x′| = n (induction hypothesis).
Let |x| = n + 2, and let x ∈ L. It must be that either x = ax′a or x = bx′b for some x′

such that x′ ∈ L and |x′| = n. From the induction hypothesis, S ∗→G x′. Then, in the case
x = ax′a we also have aSa ∗→G ax

′a = x, and since S 1→G aSa, then S
∗→G x.

The case x = bx′b is similar.

(d) Give an NPDA for L.
Solution: One possibility is to put G in GNF:

S → aA | bB | aSA | bSB
A→ a
B → b

and then construct the NPDA canonically (cf. Lecture 24):

Q
∆= {q}

Σ ∆= {a, b}
Γ ∆= {S,A,B}

δ
∆=

〈q, S〉 a
↪→ 〈q, SA〉

〈q, S〉 a
↪→ 〈q, A〉

〈q, S〉 b
↪→ 〈q, SB〉

〈q, S〉 b
↪→ 〈q,B〉

〈q, A〉 a
↪→ 〈q, ε〉

〈q,B〉 b
↪→ 〈q, ε〉

s
∆= q

⊥ ∆= S

5. Give a detailed description of a total Turing machine accepting the palindromes over {a, b}: that is, 5p
all strings x ∈ {a, b}∗ such that x = rev x.

Solution: We build a machine which repeatedly scans the tape from left to right, trying to match the
first input symbol (which is directly replaced by the blank symbol) with the last input symbol (also
directly replaced by the blank symbol).
Graph to appear later.

6. Argue that acceptance is not decidable: that is, that there is no total Turing machine MA accepting 5p

the language LA
∆=
{
M̂]x̂ |M accepts x

}
, by reducing from the Halting problem.

Solution: A TM halts on input x if it either accepts x or otherwise rejects x. We use this observation
to show that the Halting problem (cf. Lecture 31) can be reduced to the above acceptance problem.

Assume that there is a total Turing machine MA accepting LA. We can then build a machine MR

which, on any input M̂]x̂, first swaps the values of t and r in M̂ (that is, swaps the accepting and
the rejecting states of M), and then behaves exactly like MA. Hence MR is a total Turing machine
deciding rejection. We can now combine MA and MR to produce a total Turing machine MH deciding
the Halting problem: for example, on any input M̂]x̂, let MH first run as MA and accept if MA

accepts, but continue as MR if MA rejects. MH will thus accept M̂]x̂ if M halts on x, and will reject
M̂]x̂ otherwise.

But the Halting problem is undecidable, and therefore there is no total Turing machine MA accepting
LA. The acceptance problem is therefore undecidable.

