2G1505 Automata Theory

Solutions to Exam of: 17 December 2003

Dilian Gurov KTH/IMIT/LECS

1. Convert the nondeterministic automaton given below to an equivalent deterministic one using the subset construction. Omit inaccessible states. Draw the graph of the resulting DFA.

		a	b	
\rightarrow	q_1	q_1, q_2	q_3	F
	q_2	_	q_4	F
\rightarrow	q_3	q_4	_	
	q_4	—	q_1, q_4	

Solution: (given as a table)

	a	b	
$\rightarrow \{q_1, q_3\}$	$\{q_1, q_2, q_4\}$	$\{q_3\}$	F
$\{q_1, q_2, q_4\}$	$\{q_1, q_2\}$	$\{q_1, q_3, q_4\}$	F
$\{q_1, q_3, q_4\}$	$\{q_1, q_2, q_4\}$	$\{q_1, q_3, q_4\}$	F
$\{q_1, q_2\}$	$\{q_1, q_2\}$	$\{q_3,q_4\}$	F
$\{q_3,q_4\}$	$\{q_4\}$	$\{q_1,q_4\}$	
$\{q_1,q_4\}$	$\{q_1, q_2\}$	$\{q_1, q_3, q_4\}$	F
$\{q_4\}$	{}	$\{q_1,q_4\}$	
$\{q_3\}$	$\{q_4\}$	{}	
{}	{}	{}	

2. For the deterministic automaton given below, apply the minimization algorithm of Lecture 14 to compute the equvalence classes of the collapsing relation \approx defined in Lecture 13. Show clearly the computation steps. List the equivalence classes, and apply the quotient construction to derive a minimized automaton. Draw its graph.

	a	b	
$\rightarrow q_0$	q_0	q_1	
q_1	q_2	q_3	
q_2	q_2	q_3	
q_3	q_2	q_4	F
q_4	q_0	q_1	

Solution: (incomplete) After applying the minimization algorithm we obtain that $q_0 \approx q_4$ and $q_1 \approx q_2$. Thus we obtain the following minimized automaton (given as a table).

	a	b	
$\rightarrow \{q_0, q_4\}$	$\{q_0, q_4\}$	$\{q_1, q_2\}$	
$\{q_1, q_2\}$	$\{q_1, q_2\}$	$\{q_3\}$	
$\{q_3\}$	$\{q_1, q_2\}$	$\{q_0, q_4\}$	F

3. Let $A \subseteq \Sigma^*$ be a language. We define its prefix closure as:

pref
$$A = \{x \in \Sigma^* \mid \exists y \in \Sigma^*. x \cdot y \in A\}$$

Prove that regular languages are closed under prefixing: if language A is regular, then so is **pref** A. **Solution:** Let $A \subseteq \Sigma^*$ be regular. Then there must be a DFA $M_A = (Q, \Sigma, \delta, s, F)$ such that $L(M_A) = A$. Now, based on M_A , define another automaton $M = (Q, \Sigma, \delta, s, F')$ so that:

$$F' = \left\{ q \in Q \mid \exists y \in \Sigma^*. \ \hat{\delta}(q, y) \in F \right\}$$

We will show that this automaton accepts the language **pref** A, and hence that **pref** A is regular. Claim. $L(M) = \mathbf{pref} A$ **Proof.**

$$\begin{array}{lll} x \in L(M) & \Leftrightarrow & \hat{\delta}(s,x) \in F' & \{ \det. \ L(M) \} \\ & \Leftrightarrow & \exists y \in \Sigma^*. \ \hat{\delta}(\hat{\delta}(s,x),y) \in F & \{ \det. \ F' \} \\ & \Leftrightarrow & \exists y \in \Sigma^*. \ \hat{\delta}(s,x \cdot y) \in F & \{ \mathrm{HW} \ 1.3, \ \mathrm{page} \ 301 \} \\ & \Leftrightarrow & \exists y \in \Sigma^*. \ x \cdot y \in A & \{ L(M_A) = A \} \\ & \Leftrightarrow & x \in \mathbf{pref} \ A & \{ \det. \ \mathbf{pref} \ A \} \end{array}$$

4. Consider the language:

$$A = \{x \in \{a, b\}^* \mid \sharp a(x) < \sharp b(x)\}$$

(a) Give a context-free grammar G for A. Explain your choice of productions.

Solution: There are many possible solutions. One way of looking at the strings of the language is to devide these into the ones which have exactly one occurrence of b more than occurrences of a, and those that have more. A string is in the first group exactly when it can be represented as a string of the shape $e_1 \cdot b \cdot e_2$, where e_1 and e_2 are strings with an equal number of a's and b's. Thus, e_1 and e_2 can be produced by the grammar $E \rightarrow \epsilon \mid aEb \mid bEa \mid EE$. A string is in the second group exactly when it is the concatenation of two strings of A. So we arrive at the following grammar:

(b) Construct an NPDA accepting A on empty stack. Explain its workings.

Solution: Again, there is a number of good solutions. One elegant solution using ε -transitions (proposed by one of the students at the exam) is based on the observation that if we use the "standard" productions for comparing occurrences:

$$\begin{array}{ll} \langle q, \bot \rangle \stackrel{a}{\hookrightarrow} \langle q, A \bot \rangle & \langle q, \bot \rangle \stackrel{b}{\hookrightarrow} \langle q, B \bot \rangle \\ \langle q, A \rangle \stackrel{a}{\hookrightarrow} \langle q, A A \rangle & \langle q, B \rangle \stackrel{b}{\hookrightarrow} \langle q, B B \rangle \\ \langle q, B \rangle \stackrel{a}{\hookrightarrow} \langle q, \varepsilon \rangle & \langle q, A \rangle \stackrel{b}{\hookrightarrow} \langle q, \varepsilon \rangle \end{array}$$

then a string is in A exactly when after reading it the stack contains only B's (on top of \perp). Note that there must be at least one such B. So, we can obtain the desired behaviour by adding two more productions:

$$\begin{array}{c} \langle q, \bot \rangle \stackrel{b}{\hookrightarrow} \langle q, B \rangle \\ \langle q, B \rangle \stackrel{\varepsilon}{\hookrightarrow} \langle q, \varepsilon \rangle \end{array}$$

5. Apply the Pumping Lemma for context–free languages (as a game with the Demon) to show that the language:

$$A = \left\{ a^n b^n a^j \mid j \le n \right\}$$

is not context–free.

Solution:

- Demon picks an arbitrary $k \ge 0$.
- + We pick $z = a^k b^k a^k$ which is in A.
- Demon picks u, v, w, x, y such that z = uvwxy, |vx| > 0, $|vwx| \le k$.
- + If $vwx = a^{l}b^{m}$ for some $l, m \ge 0$, we pick i = 0. Otherwise we pick i = 2.

Since $|vwx| \leq k$, vwx has either the shape $a^{l}b^{m}$ or $b^{m}a^{l}$ for some l, m such that $l + m \leq k$. In the first case $xv^{0}wx^{0}y$ must be of the shape $a^{p}b^{q}a^{k}$ for some p, q such that p + q < 2k, and thus is not in A. In the second case, $xv^{2}wx^{2}y$ will either not be in $L(a^{*}b^{*}a^{*})$ at all, and thus not in A, or else $xv^{2}wx^{2}y$ must be of the shape $a^{k}b^{p}a^{q}$ for some p, q such that p + q > 2k, and thus not in A. Hence, we win the game in all cases, which shows that A is not context-free.

6. Give a detailed description (preferably as a graph) of a total Turing machine accepting the language:

$$A = \left\{ a^n b^{\frac{n(n+1)}{2}} \mid n \ge 0 \right\}$$

Explain the underlying algorithm.

Solution (just a very brief sketch for now) We use the well-known equation $\sum_{i=1}^{n} = \frac{n(n+1)}{2}$. We proceed in rounds, in each round marking an *a* and then marking as many *b*'s as there are marked *a*'s (which equals the number of the current round).