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1. Convert the nondeterministic automaton given below to an equivalent deterministic one using the
subset construction. Omit inaccessible states. Draw the graph of the resulting DFA.

a b
→ q1 q1, q2 q3 F

q2 − q4 F
→ q3 q4 −

q4 − q1, q4

Solution: (given as a table)

a b
→ {q1, q3} {q1, q2, q4} {q3} F

{q1, q2, q4} {q1, q2} {q1, q3, q4} F
{q1, q3, q4} {q1, q2, q4} {q1, q3, q4} F
{q1, q2} {q1, q2} {q3, q4} F
{q3, q4} {q4} {q1, q4}
{q1, q4} {q1, q2} {q1, q3, q4} F
{q4} {} {q1, q4}
{q3} {q4} {}
{} {} {}

2. For the deterministic automaton given below, apply the minimization algorithm of Lecture 14 to
compute the equvalence classes of the collapsing relation ≈ defined in Lecture 13. Show clearly the
computation steps. List the equivalence classes, and apply the quotient construction to derive a
minimized automaton. Draw its graph.

a b
→ q0 q0 q1

q1 q2 q3

q2 q2 q3

q3 q2 q4 F
q4 q0 q1

Solution: (incomplete) After applying the minimization algorithm we obtain that q0 ≈ q4 and q1 ≈ q2.
Thus we obtain the following minimized automaton (given as a table).

a b
→ {q0, q4} {q0, q4} {q1, q2}

{q1, q2} {q1, q2} {q3}
{q3} {q1, q2} {q0, q4} F



3. Let A ⊆ Σ∗ be a language. We define its prefix closure as:

pref A = {x ∈ Σ∗ | ∃y ∈ Σ∗. x · y ∈ A}

Prove that regular languages are closed under prefixing: if language A is regular, then so is pref A.

Solution: Let A ⊆ Σ∗ be regular. Then there must be a DFA MA = (Q,Σ, δ, s, F ) such that
L(MA) = A. Now, based on MA, define another automaton M = (Q,Σ, δ, s, F ′) so that:

F ′ =
{
q ∈ Q | ∃y ∈ Σ∗. δ̂(q, y) ∈ F

}
We will show that this automaton accepts the language pref A, and hence that pref A is regular.

Claim. L(M) = pref A

Proof.

x ∈ L(M) ⇔ δ̂(s, x) ∈ F ′ {def. L(M)}
⇔ ∃y ∈ Σ∗. δ̂(δ̂(s, x), y) ∈ F {def. F ′}
⇔ ∃y ∈ Σ∗. δ̂(s, x · y) ∈ F {HW 1.3, page 301}
⇔ ∃y ∈ Σ∗. x · y ∈ A {L(MA) = A}
⇔ x ∈ pref A {def. pref A}

4. Consider the language:
A = {x ∈ {a, b}∗ | ]a(x) < ]b(x)}

(a) Give a context–free grammar G for A. Explain your choice of productions.
Solution: There are many possible solutions. One way of looking at the strings of the language
is to devide these into the ones which have exactly one occurrence of b more than occurrences of
a, and those that have more. A string is in the first group exactly when it can be represented
as a string of the shape e1 · b · e2, where e1 and e2 are strings with an equal number of a’s and
b’s. Thus, e1 and e2 can be produced by the grammar E → ε | aEb | bEa | EE. A string is in
the second group exactly when it is the concatenation of two strings of A. So we arrive at the
following grammar:

S → EbE | SS
E → ε | aEb | bEa | EE

(b) Construct an NPDA accepting A on empty stack. Explain its workings.
Solution: Again, there is a number of good solutions. One elegant solution using ε-transitions
(proposed by one of the students at the exam) is based on the observation that if we use the
”standard” productions for comparing occurrences:

〈q,⊥〉 a
↪→ 〈q, A⊥〉 〈q,⊥〉 b

↪→ 〈q,B⊥〉
〈q, A〉 a

↪→ 〈q, AA〉 〈q,B〉 b
↪→ 〈q,BB〉

〈q,B〉 a
↪→ 〈q, ε〉 〈q, A〉 b

↪→ 〈q, ε〉

then a string is in A exactly when after reading it the stack contains only B’s (on top of ⊥). Note
that there must be at least one such B. So, we can obtain the desired behaviour by adding two
more productions:

〈q,⊥〉 b
↪→ 〈q,B〉

〈q,B〉 ε
↪→ 〈q, ε〉



5. Apply the Pumping Lemma for context–free languages (as a game with the Demon) to show that the
language:

A =
{
anbnaj | j ≤ n

}
is not context–free.

Solution:

– Demon picks an arbitrary k ≥ 0.

+ We pick z = akbkak which is in A.

– Demon picks u, v, w, x, y such that z = uvwxy, |vx| > 0, |vwx| ≤ k.

+ If vwx = albm for some l,m ≥ 0, we pick i = 0. Otherwise we pick i = 2.

Since |vwx| ≤ k, vwx has either the shape albm or bmal for some l,m such that l+m ≤ k. In the first
case xv0wx0y must be of the shape apbqak for some p, q such that p + q < 2k, and thus is not in A.
In the second case, xv2wx2y will either not be in L(a∗b∗a∗) at all, and thus not in A, or else xv2wx2y
must be of the shape akbpaq for some p, q such that p+ q > 2k, and thus not in A. Hence, we win the
game in all cases, which shows that A is not context–free.

6. Give a detailed description (preferably as a graph) of a total Turing machine accepting the language:

A =
{
anb

n(n+1)
2 | n ≥ 0

}
Explain the underlying algorithm.

Solution (just a very brief sketch for now) We use the well–known equation
∑n
i=1 = n(n+1)

2 . We
proceed in rounds, in each round marking an a and then marking as many b’s as there are marked a’s
(which equals the number of the current round).


