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1. Convert the nondeterministic automaton given below to an equivalent deterministic one using the
subset construction. Omit inaccessible states. Draw the graph of the resulting DFA.

| a | b |
- Q|99 ¢ F
q2 — q4 F
— 43 q4 —
q4 - q1,94
Solution: (given as a table)
| a | b |
—  {a,q3} {q1,q2, 94} {g3} F
{q1, 42, q4} {o, 2} [ {a,9,04) | F
{a1, 03,04} || {ar, 2o u} | {qn, 3,4} || F
{q1, 42} {q1, 42} {g3,qu} || F
{3, 94} {aa} {q1, 94}
{q1,q4} o, e} |[{a,6,q) | F
{aa} { {q1, qa}
{3} {aqa} {}
{} {} {}

2. For the deterministic automaton given below, apply the minimization algorithm of Lecture 14 to
compute the equvalence classes of the collapsing relation =~ defined in Lecture 13. Show clearly the
computation steps. List the equivalence classes, and apply the quotient construction to derive a
minimized automaton. Draw its graph.

[ a[b]
— 4o || 90 | 91
q1 || 92 | 43
q2 || 92 | 43
| g |q|F
q4 || 90 | 91

Solution: (incomplete) After applying the minimization algorithm we obtain that gy ~ g4 and ¢; = ¢o.
Thus we obtain the following minimized automaton (given as a table).

| a | b |
— {qo, @} || {0, u} | {a1, @2}
{QhQQ} {Q1,Q2} {CI3}
{as} || {a1, @2} | {qo,au} || F




3. Let A C ¥* be a language. We define its prefix closure as:

pref A={ze¥ |FyeX =z -yec A}

Prove that regular languages are closed under prefixing: if language A is regular, then so is pref A.

Solution: Let A C ¥* be regular. Then there must be a DFA My = (Q,%,6,s, F) such that
L(M,4) = A. Now, based on My, define another automaton M = (Q, X, 6, s, F') so that:

F’:{q€Q|E|yEE*. 5(q,y)€F}

We will show that this automaton accepts the language pref A, and hence that pref A is regular.
Claim. L(M) = pref A
Proof.

A

xeL(M) & 4(s,x)eF’ {def. L(M)}
& Fyext 5(0(s,z),y) € F {def. F'}
& Jyest d(s,x-y)e F {HW 1.3, page 301}
& dyeXtz-yecA {L(My) = A}
& xecpref A {def. pref A}

4. Consider the language:

(a)

A= {z €{a,b}" | fa(x) < fib(z)}

Give a context—free grammar G for A. Explain your choice of productions.

Solution: There are many possible solutions. One way of looking at the strings of the language
is to devide these into the ones which have exactly one occurrence of b more than occurrences of
a, and those that have more. A string is in the first group exactly when it can be represented
as a string of the shape ej - b - eg, where e; and eq are strings with an equal number of a’s and
b’s. Thus, e; and ez can be produced by the grammar E — € | aEb | bEa | EE. A string is in
the second group exactly when it is the concatenation of two strings of A. So we arrive at the
following grammar:

S — EbE|SS

E — ¢€|aEb|bEa|EE

Construct an NPDA accepting A on empty stack. Explain its workings.

Solution: Again, there is a number of good solutions. One elegant solution using e-transitions
(proposed by one of the students at the exam) is based on the observation that if we use the
”standard” productions for comparing occurrences:

(g, L) < (g, AL) (g, L) <= (g, BL)
(g, A) < (g, AA) (g, B) % (g, BB)
(q.B) <> (g, ¢) (¢, A) = (g,¢€)

then a string is in A exactly when after reading it the stack contains only B’s (on top of ). Note
that there must be at least one such B. So, we can obtain the desired behaviour by adding two
more productions:

(g, L) < (g, B)
(¢,B) < (q.¢)




5. Apply the Pumping Lemma for context—{ree languages (as a game with the Demon) to show that the
language:
A= {wvad | <n)
is not context—free.

Solution:

— Demon picks an arbitrary k& > 0.

+ We pick z = a*b*a* which is in A.

— Demon picks u, v, w, z,y such that z = uwvwazy, |ve| > 0, jvwz| < k.

+ If vwz = a!b™ for some I,m > 0, we pick i = 0. Otherwise we pick i = 2.
Since |vwz| < k, vwz has either the shape alb™ or b™a! for some I, m such that | +m < k. In the first
case zv%wz%y must be of the shape aPb%a” for some p,q such that p + ¢ < 2k, and thus is not in A.
In the second case, zv?wz?y will either not be in L(a*b*a*) at all, and thus not in A, or else zv2wz?y

must be of the shape a*bPa? for some p, ¢ such that p+ ¢ > 2k, and thus not in A. Hence, we win the
game in all cases, which shows that A is not context—free.

6. Give a detailed description (preferably as a graph) of a total Turing machine accepting the language:

n(n+1)

A—{a"b 2 ]nZO}

Explain the underlying algorithm.

Solution (just a very brief sketch for now) We use the well-known equation ) ;' ; = % We

proceed in rounds, in each round marking an a and then marking as many b’s as there are marked a’s
(which equals the number of the current round).




