
DD2372 Automata and Languages

Examination Problems
with Solution Sketches
27 May 2014, 8oo - 13oo

Dilian Gurov
KTH CSC

08-790 81 98

1 Level E

For passing level E you need 8 (out of 10) points from this section.

1. Consider the following DTD, which was a test case for your second laboratory assignment: 3p

<!DOCTYPE AddressBook [

<!ELEMENT ADDRESSBOOK (CONTACT*)>

<!ELEMENT CONTACT (NAME, PHONE+)>

<!ELEMENT NAME (\#PCDATA)>

<!ELEMENT PHONE (\#PCDATA)>

]>

(a) Construct a DFA for checking adherence of XML documents to this DTD.

Solution: Straightforward, following a similar discipline as the inductive transformation
of regular expressions into ε-NFAs (DFA omitted).

(b) In the laboratory assignment you used NPDAs for the general case. Explain why a DFA
suffices for the task above.

Solution: Each element type has as arguments only element types that are defined strictly
below its own definition. This results naturally in a regular language.

2. Consider a black-box system with two buttons, a and b, an indicator lamp, and a test-and-reset 3p
button. Consider the following observation set:

{(ε,−), (a,−), (b,+), (aa,−), (ab,+), (ba,−), (bb,+)}

Use regular inference to construct a minimal DFA consistent with this observation set, consid-
ering observation prefixes as histories, observation postfixes as experiments, and states as sets
of histories not distinguished by any existing experiment.

Solution: Considering all observation prefixes against all observation postfixes (table omitted
here), one can group the prefixes into two sets of indistinguishable histories:

{ε, a, aa, ba} and {b, ab, bb}

which form the two states of our hypothesis automaton, with short representatives ε and b,
respectively. Using the short representatives to find the transitions of the automaton, we arrive
at the following DFA, given as a table:

a b

→ [ε] [ε] [b]

? [b] [ε] [b]

3. Consider the following context-free grammar: 4p

S → ε | aSb | bSa | SS

(a) Which language does this grammar generate?

Solution: The grammar generates the set of strings over {a, b} that have an equal number
of occurrences of a’s and b’s (recall homework assignment 4).

(b) Show a parse tree for the string abab. How many derivations correspond to this parse tree?
Show the leftmost one.

Solution: There is a parse tree giving rise to 6 derivations (tree omitted), the leftmost one
being:

S ⇒ SS ⇒ aSbS ⇒ abS ⇒ abaSb ⇒ abab

(c) Is the parse tree for abab unique? If not, show all other parse trees.

Solution: There are ininitely many parse trees: one can apply the last production any
number of times, producing any number of S-nonterminals, and then the effect of all but
two of them can be “cancelled” by applying the first production (trees omitted).

2 Level C

For grade D you need to have passed level E and obtained 5 (out of 10) points from this section. For
passing level C you need 8 points from this section.

1. What is the most straightforward way of converting a DFA into an equivalent NPDA that you 4p
can think of? Formalize your construction and show that it is language-preserving.

Solution: One very simple and direct idea is to convert the DFA into an NPDA with a dummy
stack symbol (the start symbol) that is just rewritten to itself, and a control automaton that is
isomorphic to the DFA, accepting on final states. Formalizing this idea, let D = (Q,Σ, δD, q0, F)

be a DFA. Define P
def
= (Q,Σ, {S} , δP , q0, S, F), where δP (q, a, S)

def
= {(δD(q, a), S)}. Language

preservation is easily established by proving and using the following Lemma: For any q, q′ ∈ Q
we have:

(q, x · y, S)
∗
` (q′, y, S) ⇔ δ̂D(q, x) = q′

2. Recall the Chomsky-Schützenberger Theorem (see lecture notes). Show how this theorem applies 4p
to the language A defined as:

A
def
=

{
albkam | k = 2l +m

}
That is, identify:

• a suitable natural number n,

• a regular language R over the alphabet Σn of the n–th balanced parentheses language
PAREN n , and

• a homomorphism h : Σn → Σ∗,

for which you argue that A = h(PAREN n ∩ R) holds.

Solution: Observing that the strings of A can be presented in the shape alb2lbmam, we can
suggest the use of two types of parentheses, namely n

def
= 2, R defined by the regular expression

[∗1]∗1 [∗2]∗2, and h defined as h([1)
def
= a, h(]1)

def
= bb, h([2)

def
= b and h(]2)

def
= a.

3. Is it decidable whether the languages of two Turing machines are disjoint? Justify your answer. 2p

Solution: The problem is not decidable. If it were, we could fix the second Turing machine
to one that accepts exactly one string, say abba, which is straightforward to construct, and we
could then use this to decide the problem of whether a Turing machine accepts abba. But the
latter problem is not decidable, so the former one cannot be decidable either.

3 Level A

For grade B you need to have passed level C and obtained 5 (out of 10) points from this section. For
grade A you need 8 points from this section.

1. When modelling system behaviour as a DFA, we argued that it is natural to consider all system 5p
states as accepting, except for one so-called “trap” state, which captures that one has violated
the behaviour of the system. The language of a DFA modelling a system would then by necessity
be prefix-closed (i.e., every prefix of every string in the language is itself in the language). Now,
justify this intuition by proving that: The minimal DFA for any regular prefix-closed language
A ⊆ Σ∗ has a unique non-accepting state.

Hint: one can refer to the Myhill-Nerode Theorem and automaton to show this, based on the
relation ≡A defined by:

x ≡A y
def⇐⇒ ∀z ∈ Σ∗. (x · z ∈ A⇔ y · z ∈ A)

Solution: Let A ⊆ Σ∗ be regular and prefix-closed. Let x, y ∈ Σ∗ be two arbitrary strings
such that x, y 6∈ A. Since A is prefix-closed, for any z ∈ Σ∗ we must have that x · z 6∈ A and
y · z 6∈ A. Therefore x ≡A y whenever x, y 6∈ A. Thus, the Myhill-Nerode automaton for the
language A, which is the minimal DFA accepting A, will have a unique non-accepting state,
namely the equivalence class A.

2. Why cannot one determinize NPDAs by defining a construction similar to the subset construction 5p
for NFAs, but applied to the control automaton of the NPDA? Explain your reasoning on an
example, but try to be general.

Solution: In a nutshell, the subset construction can only take into account the next letter of the
input alphabet and the top of the stack symbol, but cannot handle properly the stack symbols
that are pushed on the stack.

Would things be different if we had a bound k on the length of the strings to be recognized?

Solution: Yes, but only if we assume that there are no ε-transitions. We could then just
construct the graph of the configurations of the NPDA that can be reached on all inputs of
length up to k. This graph must be finite, and viewing it as an NFA, we can apply the subset
construction on it to obtain an equivalent DFA.

