
Datorarkitektur, VT 2012
Lab 1: Manipulating Bits

Inge Frick
Stefan Nilsson

2012-01-17

Introduction

The purpose of this assignment is to become more familiar with bit-level representations and manipulations.
You’ll do this by solving a series of programming puzzles. Many of these puzzles are quite artificial, but
you’ll find yourself thinking much more about bits in working your way through them.

Logistics

You may work in a group of up to two people in solving the problems for this assignment. The hand-in will
be electronic.

Hand Out Instructions

Start by copying /info/maskin12/labbar/lab1/lab1.tar to a (protected) directory in which
you plan to do your work. Then give the command:

tar xvf datalab-handout.tar.

This will cause a number of files to be unpacked in the directory. The only file you will be modifying and
turning in is bits.c.

The file btest.c allows you to evaluate the functional correctness of your code. The file README contains
additional documentation about btest. Use the command

make btest

to generate the test code and run it with the command

./btest.

The remaining files are used to build btest.

Looking at the file bits.c you’ll notice a C structure team into which you should insert the requested
identifying information about the one or two individuals comprising your programming team. Do this right
away so you don’t forget.

The bits.c file also contains a skeleton for each of the 15 programming puzzles. Your assignment is to
complete each function skeleton using only straightline code (i.e., no loops or conditionals) and a limited
number of C arithmetic and logical operators. Specifically, you are only allowed to use the following eight
operators:

1



! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8
bits. See the comments in bits.c for detailed rules and a discussion of the desired coding style.

Evaluation

Your code will be compiled with GCC and tested on one of CSCs Unix machines. Your score will be
computed out of a maximum of 75 points based on the following distribution:

40 Correctness of code running on one of CSCs Unix machines.

30 Performance of code, based on number of operators used in each function.

5 Style points, based on a subjective evaluation of the quality of your solutions and your comments.

The 15 puzzles you must solve have been given a difficulty rating between 1 and 4, such that their weighted
sum totals to 40. We will evaluate your functions using the test arguments in btest.c. You will get full
credit for a puzzle if it passes all of the tests performed by btest.c and no credit otherwise.

Regarding performance, our main concern at this point in the course is that you can get the right answer.
However, we want to instill in you a sense of keeping things as short and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function
we’ve established a maximum number of operators that you are allowed to use for each function. This limit
is very generous and is designed only to catch egregiously inefficient solutions. You will receive two points
for each function that satisfies the operator limit.

Finally, we’ve reserved 5 points for a subjective evaluation of the style of your solutions and your com-
menting. Your solutions should be as clean and straightforward as possible. Your comments should be
informative, but they need not be extensive.

Based on these points you will get a grade on this work. 40 points will give grade E, 49 points will give
grade D, 57 points will give grade C, 65 points will give grade B and 73 points will give grade A.

Advice

You are welcome to do your code development using any system or compiler you choose. Just make sure
that the version you turn in compiles and runs correctly on our Ubuntu computers. If it doesn’t compile, it
can’t be graded.

Check the file README for documentation on running the btest program. You’ll find it helpful to work
through the functions one at a time, testing each one as you go. You can use the -f flag to instruct btest
to test only a single function, e.g., ./btest -f isPositive.

Hand In Instructions

• Make sure you have included your identifying information in your file bits.c.

• Remove any extraneous print statements.

• Create a team name of the form:

– “ID” where ID is your CSC user ID, if you are working alone, or

2



– “ID1+ID2” where ID1 is the CSC user ID of the first team member and ID2 is the CSC user
ID of the second team member.

This should be the same as the team name you entered in the structure in bits.c.

• To handin your bits.c file, type:

make handin TEAM=teamname

where teamname is the team name described above.

• After the handin, if you discover a mistake and want to submit a revised copy, type

make handin TEAM=teamname VERSION=2

Keep incrementing the version number with each submission.

• You can verify your handin by looking in

/info/maskin12/labbar/lab1/handin

You have list and insert permissions in this directory, but no read or write permissions.

3


