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1 Homogeneous coordinates

A line can be written as:
ax + by + c = 0 (1)

With l = (a b c)T and x = (x y 1)T , the equation can be written as lT x. Here
l is a vector representing the line in the equation, and x is the homogeneous
description of the 2-D point (x, y).
Note:

• lT x = xT l = x · l.

• All vectors x = (kx ky k)T , k 6= 0 represents the same point (x, y).

• The vectors not representing a point in <2 are on the form (x y 0)T .

• The vectors not representing a line in <2 are on the form (0 0 c)T .

1.1 Intersection of two lines

We want to show that the homogeneous vector we get from the cross product
l × l0 = x represents the intersection between the two lines in the plane.
We have:

x lies on l ⇔ lT x = 0 (2)

Then
lT x = l · x = l · (l × l0) = 0 (3)

since the resulting vector from the cross product of two vectors is perpendicular
to both vectors, and the inner product of two perpendicular vectors is zero.
Equivalently:

lT0 x = l0 · x = l0 · (l × l0) = 0 (4)

Therefore x must lie on both l and l0, and thus must be the intersection between
the lines.

Note:

• If the lines are parallel, i.e. l = (a b c) and l0 = (a b c0), c 6= c0, we have
no solutions, since the resulting vector is on the form (x y 0)T
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1.2 Line from two points

Similar to the previous example, we want to show that the vector we get from
the cross product x×x0 = l represents the line that is defined by the two points.
We have:

l passes through x ⇔ lT x = 0. (5)

Then
lT x = l · x = (x× x0) · x = 0 (6)

(See the reasoning in the previous exercise.)
Equivalently:

lT x = l · x0 = (x× x0) · x0 = 0 (7)

Therefore l must pass through both x and x0, and thus the both points define
the line.

Note:

• Unlike part 1.1, the cross product between two vectors with only the third
element differing, represents a line. In this case the two points lie in the
same direction from the origin, but at different distances.

2 Projective transformations

We have
y = Ax (8)

and since A is non-singular
x = A−1y (9)

2.1 Line

The line in the first plane is
lTa x = 0 (10)

Equation 9 gives
lTa A−1y = 0 (11)

Rearranging, and using the notation A−T for the transpose of the inverse of A,
gives (

A−T la
)T

y = 0 (12)

Which gives the line in the second plane

lTb y = 0 (13)

where
lb = A−T la (14)
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2.2 Ellipse

The same method can be applied to an ellipse. The ellipse in the first plane is

xT Cax = 0 (15)

Equation 9 gives
yT A−T CaA−1y = 0 (16)

Which gives the ellipse in the second plane

yT Cby = 0 (17)

where
Cb = A−T CaA−1 (18)

3 Histogram normalisation

We have

p(z) =
π

2zmax
sin

(
π

2
z

zmax

)
(19)

The transfer function will be of the form

s = T (z) = c0 + c1

∫ z

0

p(z) dz (20)

where
T (0) = −zmax

2
and T (zmax) =

zmax

2
(21)

That gives

T (0) = c0 + c1

∫ 0

0

p(z) dz = c0 ⇔ c0 = −zmax

2
(22)

and

T (zmax) = −zmax

2
+ c1

∫ zmax

0

p(z) dz (23)

⇔

T (zmax) = −zmax

2
+ c1

π

2zmax

∫ zmax

0

sin
(

π

2
z

zmax

)
dz (24)

⇔

T (zmax) = −zmax

2
+ c1

π

2zmax

−2zmax

π

[
cos

(
π

2
z

zmax

)]zmax

0

(25)

⇔
T (zmax) = −zmax

2
+ c1(−1)(0− 1) (26)

⇔
c1 = T (zmax) +

zmax

2
= zmax (27)
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The transfer function is therefore

T (z′) = −zmax

2
+ zmax

∫ z′

0

p(z) dz (28)

⇔

T (z′) = −zmax

2
+ zmax

π

2zmax

∫ z′

0

sin
(

π

2
z

zmax

)
dz (29)

⇔

T (z′) = −zmax

2
+

π

2

∫ z′

0

sin
(

π

2
z

zmax

)
dz (30)

Stretching of grey level values is defined by

∂T

∂z
> 1 (31)

in the case where the span of the original intensities is equal to the span of the
transformed intensities. In this case the span is the same and equal to zmax.
What would it look like in the general case?

∂T

∂z
> 1 (32)
⇔

zmax p(z) > 1 (33)
⇔

π

2
sin

(
π

2
z

zmax

)
> 1 (34)

⇔

sin
(

π

2
z

zmax

)
>

2
π

(35)

⇔
π

2
z

zmax
> arcsin

(
2
π

)
when 0 ≤ z ≤ zmax (36)

⇔

z > zmax
2
π

arcsin
(

2
π

)
(37)

That is, stretching of the grey level values occur when z > zmax
2
π arcsin

(
2
π

)
.

4 Convolution

F = {0, 1, 2, 3, 11, 4, 0} (38)
G1 = {1, 2, 4} (39)
G2 = {1, 0,−1} (40)
G3 = {1,−2, 1} (41)

f ∗ g(x) =
∫ ∞

−∞
f(x− y)g(y) dy (42)
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f(x) =
{

F (x) if 1 ≤ x ≤ 7
undefined otherwise (43)

g(x) =
{

G(2 + x) if − 1 ≤ x ≤ 1
0 otherwise (44)

f ∗ g(x) =
{

F ∗G(x− 1) if 2 ≤ x ≤ 6
undefined otherwise (45)

F ∗G(x− 1) =
{ ∑1

y=−1 F (x− y)G(2 + y) if 2 ≤ x ≤ 6
undefined otherwise

(46)

F ∗G1 = {4, 11, 25, 38, 52} (47)
F ∗G2 = {2, 2, 9, 1,−11} (48)
F ∗G3 = {0, 0, 7,−15, 3} (49)

5 Discrete Fourier transform

Whe have
v(0 . . . 3) = 1, 2, 3, 5 (50)

The discrete Fourier transform is

v̂(m) =
1
N

N−1∑
n=0

v(n)e−i n
N m 2π (51)

This gives

v̂(0) =
1
4
(1 + 2 + 3 + 5) (52)

v̂(1) =
1
4
(1(1) + 2(−i) + 3(−1) + 5(i)) (53)

v̂(2) =
1
4
(1(1) + 2(−1) + 3(1) + 5(−1)) (54)

v̂(3) =
1
4
(1(1) + 2(+1) + 3(−1) + 5(−i)) (55)

⇔

v̂ =
1
4
(11, −2 + 3i, −3, −2− 3i) (56)

6 Mirroring

f ∗ g(x) =
∫ ∞

−∞
f(x− y)g(y)dy (57)

f− ∗ g−(x) =
∫ ∞

−∞
f−(x− y)g−(y)dy (58)

f− ∗ g−(x) =
∫ ∞

−∞
f(−x− (−y))g(−y)dy (59)
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f− ∗ g−(x) =
∫ −∞

∞
f(−x− y∗)g(y∗)(−dy∗) where y∗ = −y (60)

f− ∗ g−(x) =
∫ ∞

−∞
f(−x− y∗)g(y∗)dy∗ = f ∗ g(−x) (61)

f− ∗ g− = (f ∗ g)− (62)

7 Continuous Fourier transform

We have in spatial space

f(x) =

 1 + x if − 1 < x < 0
1− x if 0 ≤ x < 1

0 otherwise
(63)

This function is the convolution of two box functions

f(x) = g ∗ g(x) (64)

where
g(x) = θ(x +

1
2
)− θ(x− 1

2
) (65)

Here θ(x) is the Heaviside step function, and is defined as

θ(x) =
{

1 if x > 0
0 if x < 0 (66)

For x = 0 it is defined differently depending on the application. In this case, it
can be defined as θ(0) = 1.
The Fourier transform of g is (see Beta p. 319, F50)

ĝ(w) =
2
w

sin
(

1
2
w

)
(67)

That together with equation 64 and the Fourier transform of a convolution (Beta
p. 317, F13) gives

f̂(w) = F(f)(w) = F(g ∗ g)(w) = F(g)F(g) = ĝ2(w) =
4

w2
sin2

(w

2

)
(68)

This is what the function looks like:
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