DDD426 — Robotics and Autonomous Systems
Lecture 3: Kinematics and control
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Course admin

Can everyone come in to the lab?

>
» Please direct questions about the lab to Mattias
» Next lab session next Thursday 15-17

>

Look at the reports from previous years online




Motion control

» Motion control requires:

v

Kinematic/dynamic model of the robot

Model of the ground /wheel interaction (very complicated)
Definition of required motion

Design of control law

Verification and tuning

vV v.v Yy

Mobile robot kinematic

v

Model of mechanical behavior of robot for design and control

v

Models for manipulators similar to mobile robots

» Some important differences
» Cannot measure robot position directly (encoders give
manipulator end effector position)
» Position must be integrated over time
» “Next generation” manipulators also quite challenging

» Light weight and flexible materials, cannot get position as
easily




Kinematics model

» We want to:
» Get the robot speed

E=[xy o
as a function of wheel speeds ¢;, steering angles 3;, steering

speeds 3; and the geometric parameters of the robot
» Forward kinematics:

é: [X y G]T: f(@laa@mﬁla7ﬁmaﬁlaa/gm)

» Inverse kinematics:

[90177@”75177ﬁm7617;6m]T:f(X y 0)

Why use velocities?

» Why not give [x v 0]" = f(¢1,...,0n 01,...,58m)?
» Consider simple differential drive robot and the difference
between first turning the left wheel an angle ¢ and then the

right wheel o compared to turning both wheels at the same
time this much




Coordinate systems

» An good choice of coordinate system can save a lot of time

v

Common choices are inertial frame (I) and the robot frame
(R).

» A point can be described by

I
I
N < X

» For structures you need the orientation as well («, ¢, 0)

» Need to be able to transform between coordinate systems

Transformations

» Translation is simple, just add the vectors
Xo = Xog + X1
» Rotation can be modeled with a rotation matrix
%1 = Rx%g

» The rotation matrix for a rotation « around the X axis is

given by
1 0 0

Rx(a) = |0 cosa —sina
0 sina cosa

» Applying several rotations results in matrix multiplications

Rxy = RyRx




Transformation matrix

» Can combine translation and rotation into one matrix

R3xz | X3x1 rotation | translation
T — —_— _— _— _— -
01,3 | 1 0 | 1

» Can be made even more general by incorporating scale and
perspective transformation.

» Extend the position vector with a “1"

X
x= |
z
1
Transformation matrix cont’'d
» Pure rotation around X
1 0 0 0
0 cosa —sina 0
Tx(a) =R(a) = 0 sinaa cosa O
0 0 0 1
» Pure translation
1 0 0 dx
B 10 1 0 dy
Ttrans - Tl’ — 0 O 1 dZ
0 0 0 1

» Multiple matrices to build compound transformations

v

Heavily used in computer graphics




Reference frames

» Many reference frames for articulated systems

» Estimation and control depends critically on choice of
reference frame.

» What is simple in one can be very difficult in another.

Manipulator kinematics

z?’
wrist centre
i
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» Description of motion across

I} different coordinate systems

» What is the overall motion?




Forward and inverse manipulator kinematics

vV v.v. v VY

Forward kinematic typically straight forward to get for stiff
manipulator

Inverse kinematics can sometimes only be solved numerically
Important to think about multiple solutions

How to get smooth motion from one point to another?
Have to take care of “shoulder flips” for example

A small motion in 3D might sometimes require huge motions
for the joints

Example: moving human arm

Move you fist to the shoulder with your elbow pointing back.
Try to move the fist back 2dm more.
Can you do this without a large change of the other joints?

Need to deal with this for robot manipulators as well. Must
plan ahead




Example: opening door

» Base + arm has 9 DOFs. Can use the redundant DOFs to
stay away from singularities.

» Videos of door opening (grabbing and opening)

Robot pose in 2D

» We assume here that we deal
with a rigid body robot moving
on a horizontal plane.

-

» Gives 3 degrees of freedom Y,
(DOF)

(r 2y L)

positions ~ ©orientation

» Robot pose (position +
orientation) . I

> gl - (Xa.y79)




Motion between frames

> Can relate the speed in inertial frame to that in the robot
frame with g = R(0)¢

> or & =R(0) g

» Example:

cosf sinf O
Rz(0) = |—sinf cosf O
0 0 1

Forward kinematics - differential drive

» Differential drive robot .

» Wheel radius r (assumed to be
the same for both wheels)

» Distance between the wheels
B =2/
Wheels rotate with ©r and ¢,

v

» Seeking motion in inertial frame

X
éI: y :f(/7r797¢R79bL)
0




Forward kinematics - differential drive

> & = R(0)¢R
» Translation speed of each wheel given by r¢

» Translation speed of the robot

PR+ QL
R=1—F5

» Rotation speed at P for right wheel w = %

» and for left wheel w = ri,L
» Rotation speed is then
9' . r ( . ) )
» Full model
. o r . . s
& =R 15 (pr+ ¢ 0 £EZEL]
Odometry

» By attaching encoders on the wheels their rotation can be
measured

» The so called odometry is given by integrating encoder
measurements over time

» Can integrate the kinematic model
» The better the kinematic model, the better the odometry




Encoder resolution

» Say you have a wheel with radius 100mm

» What encoder resolution would you need if you place the
encoder on the wheel axis and want to be able to detect a
motion as small as 1mm?

» What if you put the encoder on the motor axis on the other
end of a gear box?

Control with (v,w) vs (¢, Pr)

» Often have abstraction layer that allows you to control the
motion of the robot with translation and rotation speed
instead of individual wheel speeds

> Translation speed v (same as XR)

» Rotation speed w = 0

r, . .
v = §(g0R+g0L)

ro. .
w = E(SDR—SOL)

» Express ¢; and pgr in v,w




Driving on arcs

» Control with (v,w) results in motion on arcs

» What is the radius of the motion as a function of (v,w)?

Motion constraints

» Mobile robots typically cannot move freely, there are
constraints

» Deriving a motion model for the robot is a bottom-up process

» Start with constrains on the wheels

» Assumptions:

Plane of wheel is always vertical

Single point contact with surface

Motion is purely by rolling (no slippage)
Rotation of wheel is around the vertical axis

v

vV vy




Fixed wheel constraint

» Speed of wheel v = rp

» Rolling constraint (speed along the
wheel direction should be r¢):

) |
v a1 et s s R(B)E) = rp

» Remember:

/\B/ - cos(a + B — w/2) = sin(a + B)

| Robot chassis @l ,
; ¥ ) sin(ac + 8 — 7/2) = —cos(a + B)
[ - . .
. | ,.> Sliding constraint (no motion
P Rorthogonal to wheel direction):
[cos(a +B) sinfla+pB) Isin 5] R(@)fl =0
Example

» Saythata=3=0
» What sliding constraint would you expect on X, y, 9)?

» Calculate the sliding constraint. Is it the same?




Steered wheel constraint

» Same as for fixed standard wheel

» Only difference is that (3 is a function of time

Yp
/
B@)

/ -

. -~

Robot chassis _| -~
! A "
|
P . > Xr

Castor wheel constraint

Speed of wheel v = r¢ (as before)

Rolling constraint same as for fixed

o

@
5
2

vV Vv

d wheel
» Constraint around wheel attachment
oint:
- B() B P
1 Robot chassis _\ < _|/ [cos(a +B) sinfla+B) (d+1)sin ﬁ] R(e)fl—'—dﬁ = O
i | y
o : » Can set (3 to satisfy arbitrary motion




Swedish wheel constraint

» No kinematic constraints!

Y
A

Spherical wheel constraint

Yp
A

Robot chassis

» No kinematic constraints!




Robot kinematic constraints

» Combining the wheel constraints gives the overall constraints
for the vehicle

» Only fixed (f) and steerable (s) standard wheels impose
constraints

» Assume N = N¢ + N wheels
» (¢ orientation of the fixed wheels
> (s(t) is the steering angle of the steerable wheels

» Total motion of wheels

Collecting constraints

» Collecting the rolling constraints:

Jls(ﬁs)
——
Jl(ﬂS)

[ it ] R(0)¢) = ¢

where J> is a diagonal matrix with wheel radii r;

» Collecting the sliding constraints:

Cir -
lcls(ﬁs)] R(Q)EI =0
~—_————

Cl(/BS)




Example: Differential drive constraints

» Combine rolling and sliding constraints

lfl(ﬁs)] R(0)E, = [J%sb]

Cl(ﬁS)
» Assume robot is facing along X
> OCRZ—% andBR:W

> aL:%andﬁl_:O

» Insert & and § in J; and (; and remember

. rr 0
Jz_[O I’L]

Example cont'd

» Wheel axes are parallel which means that the two sliding
constraints are identical (can skip one)

1 0 |/ . i
10 —/ R(e)xi,:[%@]
0 1 0]
» Inverting results in:
10 /77" .
E=RO|1 0 —I [%90]
01 O
rRYR o
_]- 11 1 0 . . _1 | 3UréR + 1)
= 5RO (3 3, e | =R [T
¢R

» Same as with “manual” derivation from before




Degree of mobility

» Sliding constraints

C1(Bs)R(6) =0

» Motion of the robot must belong to the null space of (, i.e.

Cl(ﬁ)m =0, me nu//(Cl)

» Degree of mobility, d,,, is defined as

Om = dim(null(C1)) = 3 — rank(Cy)

Instantaneous Center of Rotation (ICR)

|CCor
\ ICR

» Instantaneous Center of
Rotation (ICR)

» also known as Instantaneous
Center of Curvature

» Defines the point around which
the platform is rotating

» Radius is given by (fir diff.
drive)
p—Y _ PR + QL

w PR —PL

» Straight line motion pr = ¢
gives R = oo.




Instantaneous Center of Rotation

» Sliding constraints can be illustrated graphically with ICR

Degree of steerability and maneuverability

» Degree of steerability, ds, is defined as

ds = rank[Cis(5s)]

» Changing orientation of steerable wheels can lead to
additional degrees of maneuverability

» Finally, degree of maneuverability

o = Om + s
» oy = 2 = ICR constrained to a line
» Iy = 3 = ICR anywhere in the plane




Example: Maneuverability

Omnidirectional Differential Omni-Steer Tricycle Two-Steer
6M =3 5M =2 5M =3 6M =2 5M =3
Oy =3 O =2 m =2 8, =1 S =1
6 =0 6, =0 s =1 6 =1 6 =2
Holonomy

» Degrees of freedom (DOF)
The robot's ability to achieve various poses

» Differential degrees of freedom (DDOF)
The robot’s ability to achieve various paths

» DDOF <6, < DOF
» Holonomic robot

» A holonomic kinematic constraint can be written as a function
of position variables only

» A non-holonomic constraint requires a differential relationship
(derivative of position variables).

» Fixed and steered wheels impose non-holonomic constraints
» Holonomic iff DDOF = DOF




Beyond basic kinematics

Strong assumptions in analysis, no sliding
Some platforms use skid steering, i.e. steer by sliding
Need to have friction model

For higher speeds the dynamics must be taken into account

Path /trajectory considerations

» The constraints only define what can be achieved

» but not how?

» Trajectory planning covered partly in last lecture

» Trajectory control/tracking: given a trajectory specification,
how can the robot move to follow it?

» A trajectory is a path with time specified




Open loop trajectory control

» Trajectory often divided into
segments of clearly defined
shape, such as lines and arcs

» Problems with getting smooth
trajectories

» No adaptation to dynamic
changes of the environment

» Better to use closed loop
control and sensor feedback

yI

X7




