
DDD426 – Robotics and Autonomous Systems
Lecture 3: Kinematics and control

Patric Jensfelt

Kungliga Tekniska Högskolan
patric@kth.se

April 3,2008

Course admin

I Can everyone come in to the lab?

I Please direct questions about the lab to Mattias

I Next lab session next Thursday 15-17

I Look at the reports from previous years online

Motion control

I Motion control requires:
I Kinematic/dynamic model of the robot
I Model of the ground/wheel interaction (very complicated)
I Definition of required motion
I Design of control law
I Verification and tuning

Mobile robot kinematic

I Model of mechanical behavior of robot for design and control

I Models for manipulators similar to mobile robots
I Some important differences

I Cannot measure robot position directly (encoders give
manipulator end effector position)

I Position must be integrated over time

I “Next generation” manipulators also quite challenging
I Light weight and flexible materials, cannot get position as

easily

Kinematics model

I We want to:
I Get the robot speed

ξ̇ = [ẋ ẏ θ̇]T

as a function of wheel speeds ϕ̇i , steering angles βi , steering
speeds β̇i and the geometric parameters of the robot

I Forward kinematics:

ξ̇ = [ẋ ẏ θ̇]T = f (ϕ̇1, . . . , ϕ̇n, β1, . . . , βm, β̇1, . . . , β̇m)

I Inverse kinematics:

[ϕ̇1, . . . , ϕ̇n, β1, . . . , βm, β̇1, . . . , β̇m]T = f (ẋ ẏ θ̇)

Why use velocities?

I Why not give [x y θ]T = f (ϕ1, . . . , ϕn, β1, . . . , βm)?

I Consider simple differential drive robot and the difference
between first turning the left wheel an angle ϕ and then the
right wheel ϕ compared to turning both wheels at the same
time this much

Coordinate systems

I An good choice of coordinate system can save a lot of time

I Common choices are inertial frame (I) and the robot frame
(R).

I A point can be described by

x̄ =

x
y
z

I For structures you need the orientation as well (α, φ, θ)

I Need to be able to transform between coordinate systems

Transformations

I Translation is simple, just add the vectors

x̄2 = x̄0 + x̄1

I Rotation can be modeled with a rotation matrix

x̄1 = Rx̄0

I The rotation matrix for a rotation α around the X axis is
given by

RX (α) =

1 0 0
0 cos α − sin α
0 sinα cosα

I Applying several rotations results in matrix multiplications

RXY = RY RX

Transformation matrix

I Can combine translation and rotation into one matrix

T =

R3x3 | x̄3x1

−− −−
01x3 | 1

 =

rotation | translation
−− −−
0 | 1

I Can be made even more general by incorporating scale and

perspective transformation.

I Extend the position vector with a “1”

x̄ =

x
y
z
1

Transformation matrix cont’d

I Pure rotation around X

TX (α) = R(α) =

1 0 0 0
0 cos α − sin α 0
0 sinα cosα 0
0 0 0 1

I Pure translation

Ttrans = Tr =

1 0 0 dx
0 1 0 dy
0 0 1 dz
0 0 0 1

I Multiple matrices to build compound transformations

I Heavily used in computer graphics

Reference frames

I Many reference frames for articulated systems

I Estimation and control depends critically on choice of
reference frame.

I What is simple in one can be very difficult in another.

Manipulator kinematics

I Description of motion across
different coordinate systems

I What is the overall motion?

Forward and inverse manipulator kinematics

I Forward kinematic typically straight forward to get for stiff
manipulator

I Inverse kinematics can sometimes only be solved numerically

I Important to think about multiple solutions

I How to get smooth motion from one point to another?

I Have to take care of “shoulder flips” for example

I A small motion in 3D might sometimes require huge motions
for the joints

Example: moving human arm

I Move you fist to the shoulder with your elbow pointing back.

I Try to move the fist back 2dm more.

I Can you do this without a large change of the other joints?

I Need to deal with this for robot manipulators as well. Must
plan ahead

Example: opening door

I Base + arm has 9 DOFs. Can use the redundant DOFs to
stay away from singularities.

I Videos of door opening (grabbing and opening)

Robot pose in 2D

I We assume here that we deal
with a rigid body robot moving
on a horizontal plane.

I Gives 3 degrees of freedom
(DOF)

(x y︸ ︷︷ ︸
positions

θ︸︷︷︸
orientation

)

I Robot pose (position +
orientation)

I ξ̄I = (x , y , θ)

Motion between frames

I Can relate the speed in inertial frame to that in the robot
frame with ξ̇R = R(θ)ξ̇I

I or ξ̇I = R(θ)−1ξ̇R

I Example:

RZ (θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

R(
π

2
) =

 0 1 0
−1 0 0
0 0 1

ξ̇I = R(

π

2
)ξ̇I =

 ẏ
−ẋ

θ̇

R

Forward kinematics - differential drive

I Differential drive robot

I Wheel radius r (assumed to be
the same for both wheels)

I Distance between the wheels
B = 2l

I Wheels rotate with ϕ̇R and ϕ̇L

I Seeking motion in inertial frame

ξ̇I =

ẋ
ẏ

θ̇

 = f (l , r , θ, ϕ̇R , ϕ̇L)

r

P

l l

Forward kinematics - differential drive

I ξ̇I = R(θ)ξ̇R

I Translation speed of each wheel given by r ϕ̇

I Translation speed of the robot

ẋR = r
ϕ̇R + ϕ̇L

2

I Rotation speed at P for right wheel ω = r ϕ̇R
2l

I and for left wheel ω = r ϕ̇L
2l

I Rotation speed is then

θ̇ =
r

2l
(ϕ̇R − ϕ̇L)

I Full model

ξ̇I = R−1 r

2

[
ϕ̇R + ϕ̇L 0 ϕ̇R−ϕ̇L

l

]

Odometry

I By attaching encoders on the wheels their rotation can be
measured

I The so called odometry is given by integrating encoder
measurements over time

I Can integrate the kinematic model

I The better the kinematic model, the better the odometry

Encoder resolution

I Say you have a wheel with radius 100mm

I What encoder resolution would you need if you place the
encoder on the wheel axis and want to be able to detect a
motion as small as 1mm?

I What if you put the encoder on the motor axis on the other
end of a gear box?

Control with (v , ω) vs (ϕ̇L, ϕ̇R)

I Often have abstraction layer that allows you to control the
motion of the robot with translation and rotation speed
instead of individual wheel speeds

I Translation speed v (same as ẊR)

I Rotation speed ω = θ̇

v =
r

2
(ϕ̇R + ϕ̇L)

ω =
r

2l
(ϕ̇R − ϕ̇L)

I Express ϕ̇L and ϕ̇R in v , ω

Driving on arcs

I Control with (v , ω) results in motion on arcs

I What is the radius of the motion as a function of (v , ω)?

Motion constraints

I Mobile robots typically cannot move freely, there are
constraints

I Deriving a motion model for the robot is a bottom-up process

I Start with constrains on the wheels
I Assumptions:

I Plane of wheel is always vertical
I Single point contact with surface
I Motion is purely by rolling (no slippage)
I Rotation of wheel is around the vertical axis

Fixed wheel constraint

I Speed of wheel v = r ϕ̇

I Rolling constraint (speed along the
wheel direction should be r ϕ̇):

[sin(α + β) − cos(α + β) (−l) cos β]R(θ)ξ̇I = r ϕ̇

I Remember:

cos(α + β − π/2) = sin(α + β)

sin(α + β − π/2) = −cos(α + β)

I Sliding constraint (no motion
orthogonal to wheel direction):

[cos(α + β) sin(α + β) l sin β]R(θ)ξ̇I = 0

Example

I Say that α = β = 0

I What sliding constraint would you expect on ẋ , ẏ , θ̇)?

I Calculate the sliding constraint. Is it the same?

Steered wheel constraint

I Same as for fixed standard wheel

I Only difference is that β is a function of time

Castor wheel constraint

I Speed of wheel v = r ϕ̇ (as before)

I Rolling constraint same as for fixed
wheel

I Constraint around wheel attachment
point:

[cos(α + β) sin(α + β) (d + l) sin β]R(θ)ξ̇I+d β̇ = 0

I Can set β̇ to satisfy arbitrary motion

Swedish wheel constraint

I No kinematic constraints!

Spherical wheel constraint

I No kinematic constraints!

Robot kinematic constraints

I Combining the wheel constraints gives the overall constraints
for the vehicle

I Only fixed (f) and steerable (s) standard wheels impose
constraints

I Assume N = Nf + Ns wheels

I βf orientation of the fixed wheels

I βs(t) is the steering angle of the steerable wheels

I Total motion of wheels

ϕ(t) =

[
ϕf (t)
ϕs(t)

]

Collecting constraints

I Collecting the rolling constraints:[
J1f

J1s(βs)

]
︸ ︷︷ ︸

J1(βs)

R(θ)ξ̇I = J2ϕ̇

where J2 is a diagonal matrix with wheel radii ri
I Collecting the sliding constraints:[

C1f

C1s(βs)

]
︸ ︷︷ ︸

C1(βs)

R(θ)ξ̇I = 0

Example: Differential drive constraints

I Combine rolling and sliding constraints[
J1(βs)
C1(βs)

]
R(θ)ξ̇I =

[
J2ϕ̇
0

]
I Assume robot is facing along X

I αR = −π
2 and βR = π

I αL = π
2 and βL = 0

I Insert α and β in J1 and C1 and remember

J2 =

[
rR 0
0 rL

]

Example cont’d

I Wheel axes are parallel which means that the two sliding
constraints are identical (can skip one)[

1 0 l
1 0 −l

]
[
0 1 0

]
R(θ)ẋi I =

[
J2ϕ̇
0

]

I Inverting results in:

ξ̇I = R(θ)−1

1 0 l
1 0 −l
0 1 0

−1 [
J2ϕ̇
0

]

=
1

2
R(θ)−1

[
1 1 0
0 0 2

1/l −1/l 0

] rR ϕ̇R

rLϕ̇L

0

 = R(θ)−1

[
1
2
(rR ϕ̇R + rLϕ̇L)

0
1
2l

(rR ϕ̇R − rLϕ̇L)

]
︸ ︷︷ ︸

ξ̇R

I Same as with “manual” derivation from before

Degree of mobility

I Sliding constraints

C1(βs)R(θ)ξ̇I = 0

I Motion of the robot must belong to the null space of C1, i.e.

C1(β)m = 0, m ∈ null(C1)

I Degree of mobility, δm, is defined as

δm = dim(null(C1)) = 3− rank(C1)

Instantaneous Center of Rotation (ICR)

ICC or

ICR
I Instantaneous Center of

Rotation (ICR)

I also known as Instantaneous
Center of Curvature

I Defines the point around which
the platform is rotating

I Radius is given by (fir diff.
drive)

R =
v

ω
= l

ϕ̇R + ϕ̇L

ϕ̇R − ϕ̇L

I Straight line motion ϕ̇R = ϕ̇L

gives R = ∞.

Instantaneous Center of Rotation

I Sliding constraints can be illustrated graphically with ICR

Degree of steerability and maneuverability

I Degree of steerability, δs , is defined as

δs = rank[C1s(βs)]

I Changing orientation of steerable wheels can lead to
additional degrees of maneuverability

I Finally, degree of maneuverability

δM = δm + δs

I δM = 2 ⇒ ICR constrained to a line

I δM = 3 ⇒ ICR anywhere in the plane

Example: Maneuverability

Holonomy

I Degrees of freedom (DOF)
The robot’s ability to achieve various poses

I Differential degrees of freedom (DDOF)
The robot’s ability to achieve various paths

I DDOF ≤ δm ≤ DOF
I Holonomic robot

I A holonomic kinematic constraint can be written as a function
of position variables only

I A non-holonomic constraint requires a differential relationship
(derivative of position variables).

I Fixed and steered wheels impose non-holonomic constraints
I Holonomic iff DDOF = DOF

Beyond basic kinematics

I Strong assumptions in analysis, no sliding

I Some platforms use skid steering, i.e. steer by sliding

I Need to have friction model

I For higher speeds the dynamics must be taken into account

Path/trajectory considerations

I The constraints only define what can be achieved

I but not how?

I Trajectory planning covered partly in last lecture

I Trajectory control/tracking: given a trajectory specification,
how can the robot move to follow it?

I A trajectory is a path with time specified

Start

Goal

Open loop trajectory control

I Trajectory often divided into
segments of clearly defined
shape, such as lines and arcs

I Problems with getting smooth
trajectories

I No adaptation to dynamic
changes of the environment

I Better to use closed loop
control and sensor feedback

