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Course admin

I Everyone completed milestone0 on time. Good work!

I but do not get overconfident, it gets more difficult



Localization and Mapping

I Fundamental competences in a mobile robot system

I Many task require knowledge of the position

I A map is often needed to plan tasks and stay localized

The Localization Problem

I Given: Map of the environment

I Want: Pose of the robot

I Problem: Estimate p(x |M, {z0, z1, . . .})

Picture from Durrant-Whyte[1]



Two sides of Localization

I Can identify two parts in the localization problem
I Depends on the prior knowledge

I Global localization
I Pose tracking

Global localization
I Find the pose of the robot without any prior knowledge

I Data can typically be explained in several ways
⇒ ambiguities

I Can typically not be done without integrating information
over time
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Pose Tracking

I Robot knows where it was and just has to keep localized

I Simpler problem

xk

xk+1?
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Kidnapping Problem

I Robot is abducted in tracking phase and put down somewhere
else

I Hard problem

I Must first realize that it is lost

I Then perform global localization

I Example: Cleaning robot that is carried away to another room



The Mapping Problem

I Given: Pose of the robot

I Want: Map of the environment

I Problem: Estimate p(M|{x0, x1, . . .}, {z0, z1, . . .})

Mapping is not a new problem!



Building a Map of an Unknown Enviroment

I Want: Pose of the robot

I Want: Map of the environment

I Problem: Estimate p(M, {x0, x1, . . .}|{z0, z1, . . .})

What is SLAM?

I Chicken and Egg problem
I Need map to find pose!
I Need pose to build map!

I Need to do them simultaneusly
⇒ SLAM = Simultaneus Localization and Mapping



Design decisions

I How do we represent the environment?

I What sensors to use?

I How do we represent our knowledge about robot pose?

I What algorithms to use for updating the information?

Localization process cycle

Construct a map
Perform

data association
meas <-> map

Predict motion
using

kinematic model

Update
pose estimate

Collect sensor
measurements

Extract features
(if applicable)



Map representation

Construct a map
Perform

data association
meas <-> map

Predict motion
using

kinematic model

Update
pose estimate

Collect sensor
measurements

Extract features
(if applicable)

Map Representations

I Two Main Directions

Metric Maps Topological Maps
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Topological Map Representation

I Often defined by the structure of the environment

I Represented by a graph

I Each node corresponds to a place

I Connections between places corresponds to edges in the
graph, could be doors, stairways, etc

I Requires that the robot can detect places
Very hard problem in general

I Sometimes augmented with rough metric information

Topological Maps cont’d

I Pros:
I Scales very well with the size of the environment
I Can be constructed without knowing the exact geometry

I Cons:
I Coarse position information
I Relies on place recognition which is HARD!



Different Metric Representations
Features Occupancy Grids

Appearance Based (raw data)

Feature Maps

I Map represented by a set of features

M = {mj | j = 1, . . . ,M}

I Natural way to describe the world

I Has been used for a long time
I Examples of features:

I Point, lines, plane
I Edges, corners
I Visual features



Example: Feature map

I Line map

Sonar Point Landmark Map



Summary Features Maps

I Pros:
I Compact
I High accuracy
I Easy to edit/make by human
I Can be generated from drawings without using the sensor
I Can be shared across sensors

I Cons:
I Sparse representation, only features seen, i.e. does not model

for example free space
I No to know what features to used a priori

Grid maps

I Divide the world into cells

I Map defines state of each cell (occupied or not)

I Called occupancy grids

I Was made popular in robotics by Moravec and Elfes[21]

I Several approaches to update the map (Bayes, Fuzzy, . . . )



Example grid map

Summary Grid Maps

I Pros:
I Model free[13]
I Good for integration of data such as sonar[22]
I Dense representation
I Visually more complete

I Cons:
I Not so easy to edit by human
I Often computationally more intense to work with



Appearance Based Maps

I Uses raw or little processed data

I Motivation: Loosing information when extracting features or
putting data in grid

I Stores reference data associated with a certain pose

I Localization achieved by match against reference data

I Often used with vision, sometimes laser scans[18, 19]
I PCA techniques also used

I Laser data Wallner & Crowley[26, 7]
I Images Sim & Dudek [25]

Scan Match Map

I 148 laser scans in groups of four

I Processed using Steffen Gutmann’s ScanStudio



Hybrid Methods

I No single represenation works in all situations

I Want to combine detail and scalability

I Hybrid maps getting more and more common

I Example: Combine one topological map with one feature map
per room

I Get scalability from topological map and accuracy from metric
maps

Prediction

Construct a map
Perform

data association
meas <-> map

Predict motion
using

kinematic model

Update
pose estimate

Collect sensor
measurements

Extract features
(if applicable)



Wheel encoders

I Most robots have wheel encoders ⇒ odometry

I Provides information about relative motion

I Typically very accurate at short range

I Will drift over longer ranges

I Error in dead-reckoning unbounded

I Angular error ⇒ large position errors

Path Dependent Uncertainty

I The uncertainty that is accumulated depends on the path

I Typically quite accurate for translations

I Turning often increases uncertainty (slipping, . . . )
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Sources of errors

I Systematic errors (some of them)
I Wrong size of wheels in model
I Misalignment of the wheels
I Limited encoder resolution and sampling rate
I . . .

I Non-systematic errors
I Uneven surface ⇒ wheels travel further
I Objects on the floor ⇒ large disturbance
I Wheel slippage (slippery floors, over-acceleration, fast-turning,

external forces, non-point wheel contact with floor . . . )

Compensating for systematic errors

I Systemic errors give bias which many estimation methods do
not handle well

I Systematic errors can be reduced significantly by
calibration[4, 5]

I Example: Adjust direction of the platform with 0.4◦/m
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Kinematic model

I Pose given by

x̄ =
(
x y θ

)T

I Motion of right and left wheel ∆dr and ∆dl

I Distance between the wheel B

∆d =
∆dr + ∆dl

2

∆θ =
∆dr −∆dl

B

∆x = ∆d cos(θ +
∆θ

2
)

∆y = ∆d sin(θ +
∆θ

2
)

Kinematic model

I In condensed formx
y
θ


k+1

=

x
y
θ


k

+

∆d cos(θ + ∆θ
2 )

∆d sin(θ + ∆θ
2 )

∆θ


I In general

xk+1 = f (xk , uk)



Uncertainty propogation

I Let Pk be the covariance matrix describing the uncertainty of
xk

I Uncertainty for xk+1 can be calculated based on

xk+1 = f (xk , uk)

I where u = (∆dr ,∆dl)
T is the system input

I The covariance of xk+1 if then given by

Pk+1 := (∇x f )Pk(∇x f )T + (∇uf )Q(∇uf )T

I ∇x f is the Jacobian of f (xk , u) w.r.t. x

I ∇uf is the Jacobian of f (xk , u) w.r.t. u

I Compare end of last lecture

Uncertainty propogation cont’d

I Common model for Q

Q =

(
kr |∆dr | 0

0 kl |∆dl |

)
I Model assumes uncertainty is propotional to distance travelled

I ki chosen to given reasonable uncertainty



Example: Prediction error

I Test program under /usr/local/pkg/localizationdemo

I Start ./ekfLocalization -P

I Investigate different noise levels and parameters for odometry
(press ’s’ to change values)

Comments to prediction step

I Often need to make the prediction quite pessimistic (ki large
in the model for Q)

I Need to account for large unforeseen errors
I slippage, driving over cables, etc

I Important to be able to detect such events to avoid getting
lost



Pose update

Construct a map
Perform

data association
meas <-> map

Predict motion
using

kinematic model

Update
pose estimate

Collect sensor
measurements

Extract features
(if applicable)

Kalman Filter

I Much of the work in mapping and localization is built on the
Kalman filter[17]

I Described in many books[12, 20, 2]

I An introduction can be found at
http://www.cs.unc.edu/˜ welch/kalman

I It is an optimal recursive data processing algorithm[20]

I Recursive ⇒ can be used online

Kalman Filtermeasurements estimate



System model

I Most systems have some non-linearity either in motion model
or in the model that descirbes the measurements

xk = f (xk−1, uk ,wk) (process model)

zk = h(xk , vk) (measurement model)

I Cannot apply Kalman filter as is because it assumes the
model is linear.

I Need to make approximation

I Use Extended Kalman Filter (EKF)

Extended Kalman Filter

I Prediction step:

x̂k|k−1 = f (x̂k−1|k−1, uk , 0)

Pk|k−1 = FkPk|k−1F
T
k + GkQkGT

k .

I Update step:

x̂k|k = x̂k|k−1 + Kk(zk − h(x̂k , 0))

Pk|k = Pk|k−1 − KkHkPk|k−1

where

Sk = HkPk|k−1H
T
k + Rk

Kk = Pk|k−1H
T
k S−1

k



Notation

I x̂k|k−1: estimate of xk using measurements up to time k − 1

I x̂k|k : estimate of xk using measurements up to time k

I P: covariance matrix of state estimate

I Q: process noise covariance matrix

I R: measurement noise covariance matrix

Notation cont’d

I S : measurement innovation covariance matrix

I K : Kalman gain

I Fk : Jacobian of f w.r.t. x , i.e. Fk = ∇fx(x̂k|k−1, uk , 0)

I Gk : Jacobian of f w.r.t. w , i.e. Gk = ∇fw (x̂k|k−1, uk , 0)

I Hk : Jacobian of h w.r.t. x , i.e. Hk = ∇hx(x̂k|k−1, 0)



Closer Look at Prediction Step

xk|k−1 = f (xk−1|k−1, uk , 0)

Pk|k−1 = FkPk|k−1F
T
k + GkQkGT

k .

I Use zero mean assumption on noise and set w = 0
I Increases the uncertainty in the state estimate
⇒ P increases

I Good process model f important (motion model of robot)
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Closer Look at Update Step

Sk = HkPk|k−1H
T
k + Rk

Kk = Pk|k−1H
T
k S−1

k

xk|k = xk|k−1 + Kk(zk − h(xk , 0))

Pk|k = Pk|k−1 − KkHkPk|k−1

I Use zero mean assumption on noise and set v = 0 in h

I Reduces uncertainty in state estimate
⇒ P decreases



Behaviour

I Small mesaurement noise level
⇒ Not much filtering. Estimate follows measurement closely
(not smooth)

I Small process noise level ⇒ Estimate not effected as much,
estimate smoothed based on process model (motion model for
robot)

I It is the relative size of the process and measurement noise
that matters for the estimate of the state, so increasing
process noise has the same effect as decreasing the
measurement noise and vice versa.

Localization with EKF

I State vector: x = [x , y , θ]T

I Use measurements to update the estimate x̂ of the robot pose

I Formal: Estimate p(x̂ |Z k ,M)

I Measurement history:
Z k = {z0, z1, . . . , zk}

I Map:
M = {m0,m1, . . . ,mM}



Example: EKF Localization

I Run ekfLocalizer under /usr/local/pkr/localizationdemo

I Play with parameter settings

I Investigate bearing-only measurements vs range+bearing

Data association

Construct a map
Perform

data association
meas <-> map

Predict motion
using

kinematic model

Update
pose estimate

Collect sensor
measurements

Extract features
(if applicable)



Data Association

I Correspondence problem

I One of the hardest problems in robotics

I What in our model does the measurement correspond to?

Example: Data Association

I What points in the laser scan belong to the walls?



Data Association

I The innovation is defined as νk = zk − h(x̂ , 0)

I Gives the difference between what we measure and what we
predict to measure (ẑk = h(x̂ , 0)).

I Natural to look at the innovation to tell if we have a correct
measurement

I Idea: “If innovation too large skip the measurement”

I The problem with this is that that “too large” is hard to
define with a fixed threshold

I It depends on the uncertainty!

I When we are unsure of the state we have to accept larger
innvations and vice verse

Mahalanobis Distance

I Close often measured by mahalanobis distance

ρi ,j = νi ,jS
−1
i ,j νT

i ,j

where νi ,j is the innovation given when associating
measurement i with map entity j and Si ,j is the corresponding
measurement covariance matrix

I Weights the innovation with the uncertainty in the model and
the measurement

I Small innovation required if uncertainties are small (S small)

I and vice versa



Mahalanobis Distance cont’d

I The Mahalanobis distributed according to a χ2-distribution[3]

I Can use hypothesis testing when looking for matches

I Null-hypothesis: The measurement matches

I Reject null-hypothesis on significance level α if

ρ > χ2
α,n

where n is the dimension of ν.

Hypothesis Test cont’d

I χ2
α,n given by tables

n/Q 0.10 0.05 0.025 0.01 0.001
1 2.706 3.841 5.024 6.635 10.828
2 4.605 5.991 7.378 9.210 13.816
3 6.251 7.815 9.348 11.345 16.266

I In this case α = 1− Q

I Example: A measurement with two variables (d = 2) is reject
as a match if ρ > 5.991 on significance level 0.95.

I This means that we will falsely reject 5% of the true matches

I Trade-off between false negative and false positives

I Errors in data association can be “fatal”



Nearest Neighbor Matching

I Ideally a measurement matches only one model feature

I Nearest Neighbor (NN) is common approach in cases of
multiple matches

I Pick the one with the smallest mahalanobis distance[3]

I Some choose to reject the measurement when there is an
ambiguity

Consistency

I The state covariance matrix P gives information about the
uncertainty

I Consisteny: The uncertainty captures the real difference
between the estimate and the true state

I Errors in data association can give inconsistency

I Uncertainty is reduced due to update but estimate no longer
inside uncertainty ellipse

true

estimate

Consistent estimate

true

estimate

Inconsistent estimate

unc.ellipse unc.ellipse



What if the robot cannot make up its mind?

I Too large uncertainty for reliable data association

I Initialization

⇒ Multi-modal distribution is needed

Picture from [11]

Different representations

Single Gaussian Multiple Gaussians

Probability Grid Sample Set
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Multiple Gaussians

I Jensfelt 99[16], Roumeliotis 00[24], Reuter 00[23], . . .

I Natural extension

I Each Hypothesis a Gaussian

Now we can track multiple hypotheses!

I Data association problem resolved by creating new hypothesis

I Non-trivial to determine if we have a match

I Explosion of hypotheses

I Must remove unlikely hypotheses



Global Localization

Robot view Pose candidates

Pose Candidate

Feature

Pose Hypothesis

But what about single point landmarks?

Gaussian assumption too strong!



Position Probability Grids

I Burgard 96[6], Fox 98[10], . . .

I Discretize the PDF by dividing the
world into a grid

I Each cell represents on possible
pose (one state)

I Handles multi-modal PDFs

I No assumption like the Gauss

I But ...

CPU will overheat!

0 20m

I 900 m2

I 0.1x0.1 m2 and 5◦ cells

I ⇒ ≈ 106 cells

I In theory each cells has to be
updated for each
measurement

I Approximations needed to run
in almost real-time

I Many cells with p(x |F) ≈ 0

I Variable cell size one idea



Particle Filter

I Dellaert 99[8], Fox 99[9], Jensfelt 00[15] . . .

I Sample the PDF

I Each sample/particle has a pose, sk , and a weight, πk

Particle Filter cont’d

I Maintain and update the set of samples based on:
I Predictions ⇒ Diffusion, i.e. particles spread
I Observations ⇒ Clustering of particles



Illustration

Picture from [11]

Example: Particle filter

I Go to /usr/local/pkg/localizationdemo

I Run ./particleLocalizer -P



The Algorithm

Picture from [14]

Observations

I Particles with high weight ⇒ attract more particles
survival of the fittest!

I Weak particles ⇒ likely to disappear
use particles where they are needed

I Need initial particles were PDF is significant

I Cannot create new particles, stuck with initial set



Predict and Diffuse

Measurement update

π1 π2

π3

πΝ



Re-sampling

YES!!!!!!!!!!!!!!!!



Example: Particle filter

I Go to /usr/local/pkg/localizationdemo

I Run ./particleLocalizer

SLAM

I Most of the research has shifted away from localization

I SLAM attracts much more attention

I Especially visual SLAM



Brief on SLAM

I Can use simular metods to those used in localization

I With EKF extend the state to include the position of the
features in the map as well.

I Write measurement function as function of the feature
parameters as well

I EKF SLAM does not scale very good O(N2)

I Has been the motivation for much of the current research

SLAM summer school 2002, http://www.cas.kth.se/slam/,
August 2002.
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