
DD2426 Assignment 1
Trajectory control for a robot manipulator

Assignment designed by Christian Smith - ccs@kth.se

General Instructions

This assignment contains two parts. Part one is theoretic with some applied
calculations. In order to do this part, you may need access to material on
manipulator mechanics, which is available for download from BILDA. For this
part, there are explicit questions with space to write in the answer. All questions
and tasks are signified with a bullet.

The second part of the assignment is an applied problem to be solved in
matlab. All necessary files can be downloaded from

http://www.csc.kth.se/~ccs/Courses/DD2426/index.html

The files are contained in a zip archive. This can be extracted from command
line in Unix/Linux/BSD by typing

> unzip manipulator.zip

This assignment will be orally presented. The time for the presentation will
be decided in class, and be posted on the course website. You will not use a
computer during the presentation, so make sure that you have all papers that
you need ready beforehand. For part 1, you can write all answers in the space
provided after each question. For part 2, you should prepare plot printouts and
whatever else you need to explain your solution.

1



1 Robot specifications and parameters

In this exercise we will be working with a SCARA type robot. SCARAs are
used to solve some simpler industrial tasks, like picking objects off a conveyor
belt and placing in a box (pick-and-place). Thanks to their simplicity, they are
fast and robust. The robot is shown in Figures 1(a) and 1(b). This robot has 3
degrees of freedom (DoF), the two angles θ1 and θ2, and the variable length of
the last link, L3. The value of d1 is 0.2 m. The limits on motion are given in
Table 1.

Table 1: Motion limits for the SCARA robot.

min max
θ1 0o 360o

θ2 -45o 180o

L3 0.035m 0.2m

θ̇1 -50o/s 50o/s

θ̇2 -50o/s 50o/s

L̇3 -0.1m/s 0.1m/s

−0.2 0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

d1L3

L2

X

L1

Z

(a) Side view

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

θ2

X

θ1

Y

(b) Top view

Figure 1: Schematic drawing of the SCARA robot.

2



1.1 Workspace

Assume the following robots, with structure as in Figures 1(a) and 1(b):

Robot A: L1 = 0.4m, L2 = 0.4m
Robot B: L1 = 0.5m, L2 = 0.3m
Robot C: L1 = 0.3m, L2 = 0.5m

For each robot A-C, answer the following questions:

• What is the workspace for the robot?

• Are there any kinematic singularities? If so, where?

3



1.2 Kinematics

The position of the robot can be given in two different coordinate spaces, carte-

sian space or joint space. In cartesian space we will here call the position Xcart,
which is the vector [x y z]T . In joint space we will call the position Θ, which is
the vector [θ1 θ2 L3]

T . The forward kinematics, Kf , is the function that relates
cartesian and joint space:

Xcart = Kf (Θ) (1)

• Write down the function Kf explicitly.

1.3 Inverese Kinematics

The inverese kinematics Ki is the inverse function of Kf , that is,

Θ = Ki(Xcart), (2)

• How many different joint space solutions can be found for each set of
cartesian coordinates?

• Write down the function Ki, making sure you get all possible solutions.

• What happens when the cartesian coordinates are a singularity point?

4



1.4 Velocity Jacobian

The velocity Jacobian J is the function that relates the velocities in cartesian
and joint space:

Jij =
δKf,i

δΘj

(3)

Note that since Kf is non-linear, J will be a function of Θ, that can be
written J(Θ), and we will have that

Ẋcart = J(Θ)Θ̇ (4)

• Calculate the Jacobian J .

• What happens to J when the arm is in a singularity?

J also has an inverse function, Jinv , such that

Θ̇ = Jinv(Xcart)Ẋcart (5)

• How can we calculate Jinv?

• What happens to Jinv when the arm is in a singularity?

• Which DoFs are coupled, and how does this affect complexity and the
structure of J?

5



2 Robot simulation

The robot simulator rob_sim.m is a function that simulates the robot A de-
scribed in part 1. As input, it takes a matrix, where each row corresponds to
time t, and the first column is θ1, the second column is θ2, and the third column
is L3. Angles are given in degrees. The time increment from one row to the
next is 0.1s. i.e, in order to move the last joint from 0.1 m to 0.2 m elongation
in 1 second at constant velocity, while the two revolute joints are kept at their
initial angles, we would write:

> trajectory = [60 -40 0.1;...

60 -40 0.11;...

60 -40 0.12;...

60 -40 0.13;...

60 -40 0.14;...

60 -40 0.15;...

60 -40 0.16;...

60 -40 0.17;...

60 -40 0.18;...

60 -40 0.19;...

60 -40 0.2];

> X_cart = rob_sim(trajectory)

X_cart =

0.5759 0.4832 0.1000

0.5759 0.4832 0.0900

0.5759 0.4832 0.0800

0.5759 0.4832 0.0700

0.5759 0.4832 0.0600

0.5759 0.4832 0.0500

0.5759 0.4832 0.0400

0.5759 0.4832 0.0300

0.5759 0.4832 0.0200

0.5759 0.4832 0.0100

0.5759 0.4832 0.0000

If we call the simulator with an additional parameter, we can get it to draw
the output:

> draw_robot = 1; % setting to 0 means no drawing

> X_cart = rob_sim(trajectory,draw_robot)

NOTE:

- The robot cannot exceed its maximum velocities, but will do its best to
reach a desired setpoint as fast as it can.

- This robot is simplified, and does not have any limits on acceleration.

6



- If a setpoint is given that is outside the robot’s range, the robot will clip
the setpoint to fit the range. For example, if you try to set θ2 to -180 deg,
the robot will treat this as a setpoint to -45.

- The robot always starts in the same position. If may be a good idea to
start your trajectories in this position:

θ1 = 60, θ2=-40, L3 = 0.1.

2.1 Line welding

We’ll assume that the end effector of the robot is equipped with a welding tool,
and we want to weld a straight line from cartesian coordinates [0.1 0.3 0] to [-0.5
0.1 0]. Using the simulator above, set the second parameter (draw_robot in the
example) to 2, and the simulator program will draw a line when the end effector
is all the way down. This line represents the weld. A dotted line will show the
desired path to weld.

The function check_weld(X_cart) will tell you if your weld is good or not.
These are the definitions of a good weld:

i We should only weld where we are supposed to (allowance: ok to weld
0.01 m outside path).

ii We should weld the entire path we are supposed to, once (allowance: miss
1% of desired weld).

iii We should have a constant cartesian velocity throughout the weld (al-
lowance: velocity std of 1% of average velocity).

The direction of the weld is arbitrary, and as you can see, it doesn’t have to
be perfect, but only small deviations are allowed.

• Your task is to generate a joint space trajectory that can be used in
robot_sim that fullfills these requirements. Run the functions without
parameters to get definitions of inputs and outputs. Plot your trajectory
as a function of time, both for cartesian space and joint space. Show these
plots when you present your work.

2.2 Performance

In the task above, you are required to weld at constant velocity, but what is the
shortest time in which the task can be accomplished? Time is measured as the
time from the start of the simulation to the end of the weld. Do not find this
by trial and error, but give a reasoning answer, supported by calculations. Feel
free to verify this experimentally.

7


