
Course DD2427 - Final Exam

Please answer 5 questions from Part I of the exam. You must get a score of at
least 70% (with a minimum performance of 50% on each question) to pass this
part of the question and get an E grade. If you get 85% or over on this part of
the exam you will get at least a D grade. Each question in Part I and Part II
carrys equal weight. To get a higher grade you must answer questions in Part
II. To get an A grade you must answer 2 questions well in Part II.

Note if you attempt more than 5 or 2 questions in Part I and Part II respec-
tively, I will use your best answers to compute your grade. Also you are allowed
use a calculator,

The bold face number in brackets indicates the proportion of a question’s total
score accounted for by this sub-question.

Part I

Question 1: Probability theory and Bayes’ Rule

a) (.3) Let x and y be random variables which follow a joint probability dis-
tribution p(x, y). Say that y ∈ {0, 1} is a binary variable, then answer the
following questions:

i) Define the conditional probability, p(x|y), in terms of p(y) and p(x, y).

ii) Write p(x) in terms of p(x|y) and p(y).

iii) State and derive Bayes’ Rule.

b) (.7) Consider a binary 3×4 image of a scene with a black horizontal line. In
the noise free image all pixels are white except for one horizontal row with
black pixels. Unfortunately, the camera used is far from perfect. Errors in
different pixels are independent with

P (observe white pixel | line) = P (observe black pixel | not line) = ε

Assume the prior probabilities for the location of the line are as follows:

P (line on row 1) = .3, P (line on row 2) = .4, P (line on row 3) = .3

Given that you observe this image I

and ε = .3, calculate P (line on row i |I) for i = 1, 2, 3. Then what would be
your decision as to which row the black line is on?
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Question 2: Bayes’ Decision Theory

a) (.7) Assume you have a two class classification problem. Each class generates
a one dimensional feature vector according to p(x|ωi) = N (µi, σ

2
i ) for i =

1, 2. The prior probabilities for each class are p(ω1) = p(ω2) = .5. In the
graphs below p(x|ωi) p(ωi) for i = 1, 2 are shown for different values of the
µ’s and σ’s. For each example µ1 = 0, σ1 = 1 and then 1) µ2 = 1.5, σ2 = 1,
2) µ2 = 1.5, σ2 = .5 and 3) µ2 = 0, σ2 = .5
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(1) µ1 6= µ2, σ1 = σ2 (2) µ1 6= µ2, σ1 > σ2 (3) µ1 = µ2, σ1 > σ2

i) For the two-class problem how is the Bayes’ Classifier defined?

ii) In the figure draw the decision boundaries/boundary defined by a Bayes’
classifier.

iii) For case (2) explicitly calculate the decision boundaries.

iv) For case (2) write down the P (error) for the Bayes’ Classifier and show
in a diagram where the errors are being made.

v) What is optimal about the Bayes’ Classifier?

b) (.3) Now consider d dimensional feature vectors. Let p(x|ωi) = N(µi,Σ) for
i = 1, 2 in a two-class d-dimensional problem. The covariances are the same
but the means and prior probabilities are arbitrary. Show that the decision
boundary between the two classes is a hyper-plane.

Question 3: Linear discriminants

A discriminant is a function that takes an input vector x and assigns it to one
of K classes. In this question we will consider the case when K = 2 and we
have a linear discriminant function that is

Class (x) =

{
ω1 wT x + w0 ≥ 0
ω2 otherwise

Please answer the following questions

a) (.4) Given training data {(xi, ti)}N
i=1 where each xi ∈ Rd and each ti is a

scalar indicating the label of the training example, there are lots of different
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ways to learn wT and w0. One method is to choose the w̃ = (w, w0) that
maximises

JMSE(w̃) =
1
2

N∑
i=1

(w̃T x̃i − ti)2

where x̃ = (x, 1). Calculate the derivative of JMSE(w̃) with respect to w̃
and set to zero. Convert the expression you have just computed to matrix
notation where

X =

 ↑ ↑ ↑
x̃1 x̃2 · · · x̃N

↓ ↓ ↓

 and t =


t1
t2
...
tN


and then show that the optimal w̃ is given by

w̃ = (XXT )−1Xt

b) (.4) While another approach, perceptron learning, is to choose the w̃ =
(w, w0) that maximises

Jp(w) = −
∑
i∈M

w̃T x̃i ti

where each ti ∈ {−1,+1}. Explain what the set M denotes? Show how
the gradient descent algorithm can be then used to derive the perceptron
learning rule.

c) (.2) What are the advantages and disadvantages of these methods for finding
w̃?

Question 4: SVM

Assume you have been given training data {(xi, yi)}N
i=1 where each xi ∈ Rd is

a feature vector and yi ∈ {−1, 1} is its corresponding label.

a) (.1) Assume these training examples are linearly separable. Explain what
this means?

b) (.3) What is the criterion used by the SVM for choosing the optimal sep-
arating hyperplane. Please draw a diagram, with a 2 dimensional example
to accompany your answer. Show in this diagram the optimal separating
hyperplane and the support vectors.

c) (.2) Derive the optimization problem the SVM solves, refer back to your
diagram to aid your explanation.

d) (.2) Write down the Lagrangian associated with the optimization problem
you have just derived. Also write down the expression for the optimal sep-
arating hyperplane in terms of the Lagrange multipliers and the training
features and their labels.
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e) (.1) Given a novel feature vector v, which computations does the SVM
perform to estimate v’s class.

f) (.1) You can transform your data to a higher dimensional space with a func-
tion ψ : Rd → Rn where n > d and find the optimal separating hyperplane
in this new space. Why would you do this ? For your novel feature vector
v, do you need to explicitly transform it to the higher dimensional space to
estimate its class with this new SVM? Explain.

Question 5: Boosting

a) (.1) What does the AdaBoost algorithm produce from a set of weak classifiers
and labelled training data?

b) (.4) Describe the steps of the AdaBoost algorithm.

c) (.1) In your opinion what is the critical step in the AdaBoost algorithm?

d) (.2) What quality must the weak classifiers possess in order for AdaBoost to
run successfully?

e) (.2) What are the strengths/weakness of using boosting to solve classification
problems?

Question 6: Unsupervised Learning

a) (.2) Describe an image recognition task where you would have to perform
unsupervised learning.

b) (.3) Describe the steps of the k-means clustering algorithm.

c) (.3) Describe the steps of agglomerative clustering.

Then apply agglomerative clustering with dmin used
as the measure of distance between clusters to the
data-points in the figure to the right. Terminate the
algorithm when the distance between the nearest clus-
ters exceeds the threshold shown. Sketch the clusters
at the time of termination. Note

dmin(Di,Dj) = min
x∈Di
x′∈Dj

‖x− x′‖

Distance threshold

d) (.2) In k-means clustering you find a local minimum of the cost function

Je =
k∑

i=1

∑
x∈Di

‖x−mi‖2 where mi =
1
|Di|

∑
x∈Di

x

For the points examined in part c), if k = 2, sketch the clusters which would
minimize Je. Which weakness in k-means clustering does this highlight?
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Question 7: PCA/LDA

a) (.1) PCA is a technique for performing dimensionality reduction. What is
the criterion used by PCA to derive its basis.

b) (.1) Linear discriminant analysis (LDA) also represents a signal in a lower
dimensional space. However, its criterion for choosing the lower dimensional
space differs. What is this criterion ?

c) (.3) For the two class problem LDA projects the high dimensional data onto
a line. This optimal line is found by maximizing the Fisher criterion. This
criterion depends on two distinct measurements made from each class. What
are they ?

d) (.5) Assume we have a two class problem. The feature vectors extracted
from each class are two dimensional and the class conditional densities are:

p(x|ω1) ∼ N(µ1,Σ) and p(x|ω2) ∼ N(µ2,Σ)

where

µ1 = (1, 1)T , µ2 = (3, 2)T and Σ =
(
σ2 0
0 0.22

)
In LDA you project each feature vector generated by these class conditionals
onto a line via wT x to obtain a scalar value.

For σ = 1 sketch the class conditional densities and indicate why in this case
it is better to project feature vectors from these two classes onto the y-axis as
opposed to the x-axis for performing discrimination on the resulting scalar
values.

For what values of σ will it be better to project onto the x-axis ?

For what values of σ will the y-axis tend towards the optimal projection line
with respect to the Fisher criterion?

Question 8: Non-parametric classification

a) (.2) Describe the steps of the k-nearest neighbour classifier?

b) (.2) What are the advantages and disadvantages of a k-nearest neighbour
classifier?

c) (.2) What are the trade-offs between choosing a large or small value of k?
Draw a figure to illustrate your argument.

d) (.2) In two dimension draw the points at a distance 1.0 from the origin using
the L1, L2 and L∞ norms.

e) (.2) Draw the decision boundary formed by a 1-nearest neighbour classifier
in the two different figures below. Not that the sparse set of points is a subset
of the dense ones. What lesson should be learned from these examples?
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(a) (b)

6



Part II

Question 9: VC-dimension

Remember that in order to prove that a class of functions H has VC-dimension
d you need to show that

• There exists a set of d points which can be shattered by H.

• There exists no set of d+ 1 points that can be shattered by H

a) When does a class of functionsH shatter a set of points X = {x1,x2, . . . ,xn}?

b) Show with appropriate diagrams that there exist 3 points in R2 that can be
shattered by a line.

c) What is the VC-dimension of intervals in R? In this case H is defined such
that each h ∈ H is associated with an interval [a, b] and x ∈ R has h(x) = 1
if and only if x ∈ [a, b].

d) What is the VC-dimension of the union of k intervals on the real line? In
other words each h ∈ H is associated with k closed intervals [ai, bi], i =
1, 2, . . . , k and h(x) = 1 if and only if x ∈ ∪n

i=1[ai, bi].

e) What is the VC-dimension of axis parallel rectangles in R2? In other words
h ∈ H is associated with 2 closed intervals [ai, bi] for i = 1, 2 and then for
any x = (x1, x2) ∈ R2, h(x) = 1 if and only if xi ∈ [ai, bi] for i = 1, 2.

f) Show that the VC-dimension of the class H of hyperplanes in R2 is 3?

g) Show that the VC-dimension of the class H of hyperplanes in Rd is ≥ d+ 1?

Question 10: Skin Detection

You have been hired by a small start-up company that is developing an internet
search tool for kids based on analysing text and images. Unfortunately, much of
the content on the web contains adult material which is unsuitbale for children.
Thus the company would like to remove this content automatically from their
searches. They would like you to build a robust skin classifier which will be one
component of their removal process. Your first assignment is to write a report
suggesting

• plausible approaches to classifying skin pixels and representing skin colour
that you will investigate commenting on their strengths and weakness and

• experiments that should be performed to compare and assess the perfor-
mance for each classifier you investigate and how this comparison should
be performed

To answer this question please write down what you would put in this report.

(You will score points for more detailed but succinct answers and also for moti-
vating your suggested approaches with respect to efficiency and effectiveness. I
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don’t expect you to know the best approach, just ones that would seem plausible
considering what you have learnt during the course.)

Question 11: Face Detection & Recognition

You have a friend who is living in shared accommodation and has the following
problem. The yoghurt he stores in the shared fridge keeps on disappearing. All
of his flatmates deny being the thief. But he has his suspicions. Then he hears
that you have just completed a course in Image recognition and classification and
has an idea. He wants to install a secret web-cam within the kitchen focused on
the fridge and then have you help him write software to automatically analyse
the images it grabs. He wants the software to be able to:

• detect when there is a face in the image,

• recognize the face given reference face images of the flatmates deviously
obtained from Facebook and also

• spot if the very distinctive red yoghurt carton of his favourite brand is
also present in the image

Describe the algorithms and methods you would propose to implement to achieve
each of these goals. And also in which temporal order would you implement
them for maximum efficiency. Explain what training you have to perform.

(You will score points for more detailed description and for motivating your
suggested solution with respect to efficiency and effectiveness.)

Question 12: Clustering

a) Explain how using EM to find the parameters of a Gaussian mixture model
can be viewed as a form of clustering.

b) Explain intuitively how EM proceeds for learning the parameters of a Gaus-
sian mixture model. Explain how this procedure is more sophisticated than
k-means clustering.

c) Explain how clustering can be used to perform image segmentation. Image
segmentation refers to assigning pixels with similar properties to the same
cluster. Which feature vectors could be extracted from the image to perform
this segmentation?

Question 13: Kernel magic

Assume you are given m one dimensional training examples and their associated
labels, that is {(xi, yi)}m

i=1 where each xi ∈ R1 and yi ∈ {−1,+1}.

a) Draw a case where you have m = 3 training examples which are not linearly
separable.

8



b) You know if you transform your one-dimensional data to a higher dimensional
space then there is a higher likelihood that they will be linearly separable.
Thus you define a feature transformation φn : R1 → Rn where

φn(x) =
{
e−

x2
2 , x e−

x2
2 , x2
√

2
e−

x2
2 , . . . , xn

√
n!
e−

x2
2

}
Explain why any set of 3 points (with no duplicates) can be linearly separated
when transformed via φ2. Similarly explain why any set of n+1 points (with
no duplicates) can be linearly separated when transformed by φn.

c) Consider the case when n→∞ and φn becomes

φ∞(x) =
{
e−

x2
2 , x e−

x2
2 , x2
√

2
e−

x2
2 , . . . , xj

√
j!
e−

x2
2 , . . .

}
Can you explicitly construct φ∞(x) ? (Not a trick question)

d) Is there a finite set of points, containing no duplicates, that cannot be linearly
separated after applying φ∞?

e) A linear classifier can be expressed using only the inner products of support
vectors in the transformed feature space. The Kernel trick, exploited by the
SVM, is to define a function K(·, ·) such that

K(x, y) = φ∞(x) · φ∞(y)

where the inner product between two infinte vectors a = (a1, a2, . . .) and
c = (c1, c2, . . .) is defined as

a · c =
∞∑

i=1

ai bi

Given the definition of φ∞ compute the form of K(x, y). Hint you may want
to use the Taylor series expansion of ex:

ex = lim
n→∞

n∑
j=0

xj

j!

f) With such a high dimensional feature space should we be concerned about
overfitting?
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List of Formulae

• If a one dimensional variable x follows a Gaussian distribution this is
denoted by N (µ, σ) and

p(x) =
1

σ
√

2π
exp

(
−.5 (x− µ)2

σ2

)

• If x is a vector of dimension d and follows a multivariate normal/Gaussian
distribution denoted by N (µ,Σ), then

p(x) =
1

(2π)
d
2 |Σ| 12

exp
(
−.5 (x− µ)T Σ−1 (x− µ)

)
where |Σ| is the determinant of the matrix Σ.

• The L2 norm (Euclidean distance)

L2(x,y) =

(
d∑

i=1

|xi − yi|2
) 1

2

• The L1 norm (Manhattan distance)

L1(x,y) =
d∑

i=1

|xi − yi|

• The L∞ norm

L∞(x,y) = max
i

|xi − yi|
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