
Course DD2427 - Final Exam

You may use a calculator but its use is not really necessary. A list of useful
formulae is on the last page.

Please answer 10 questions from Part I of the exam. Each question carries
equal weight. You must get a score of at least 70% to pass this part of the exam
and get an E grade and also be eligible for a higher grade.

For a higher grade you must answer questions from Part II and/or Part III.
Your top 4 scoring from these parts will be used to compute your grade. Each
question in Part II(III) if answered completely correctly gives 17(30) marks.

The table below shows the points you have to score to obtain each grade.

Grade Score

D ≥ 20
C ≥ 40
B ≥ 60
A ≥ 80

Up to 15 bonus points are available by participating in the poster session.

The bold face numbers in brackets in Part II and Part III indicate the per-
centage of the total score associated with each part of a question.

Part I

Question 1:

Let X and Y be discrete random variables which follow a joint probability
distribution P (X,Y )

a) Define the conditional probability, P (X |Y ), in terms of P (Y ) and P (X,Y ).

b) Express P (X) in terms of P (X |Y ) and P (Y ).

c) Using these results, state and derive Bayes’ Rule.

Question 2:

a) For the binary classification problem, how is the Bayes’ Classifier defined
given each class’ prior probability and class conditional distribution?

b) Draw the decision boundaries defined by a Bayes’ classifier in this figure:
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c) Define the Probability of Error in words and write down its mathematical
expression in terms of the p(x |ωi)’s and p(ωi)’s for the above figure.

d) What is optimal about the Bayes’ Classifier?

Question 3:

Let x follow a bi-variate Gaussian distribution, that is x ∼ N
(“

0, 0
”T

, Σ
)

.

a) Sketch this probability distribution when Σ =
0@102 0

0 32

1A.

b) Which of these two figures shows the distribution when Σ =
0@ 102 −24
−24 32

1A?

(a) (b)

c) In the above figures draw the direction of the eigenvectors of Σ. Which
quantities describe the spread in each of these directions?

Question 4:

a) State the steps of a k-nearest neighbour classifier.

b) What pre-processing should be applied to the feature data before applying
the nearest neighbour classifier.

c) Draw the decision boundary defined by the 1-nearest neighbour classifier in
the following figure.
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(a) Draw the decision boundaries for the 1-nearest neighbor algorithm assuming that we are
using standard Euclidean distance to compute nearest neighbors. A plus indicates a positive
example and a star indicates a negative example.

(b) How will the point (8, 1) be classified by the 1-nearest neighbor classifier?

(c) How will the point (8, 8) be classified?

2. (Modified from Mitchell and Guestrin) One of the problems with k-nearest neighbor learning is
selecting a value for k. For this exercise, you will use Weka to empirically determine a reasonable
value for k, given a specific training set.

Say you are given the data set shown below. This is a binary classification task in which the
instances are described by two real-valued attributes.
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Question 5:

You are given training data (x1, y1), (x2, y2), . . . , (xn, yn) where each feature
vector xi ∈ R2 and its associated label yi ∈ {−1, 1}. You want to build a Bayes’
Classifier discriminating between these two classes and approximate each class
conditional distribution p(x |ωi) with a two dimensional histogram.

a) What is the danger of achieving a training error of zero without any consid-
eration of the complexity of your classifier?

b) Describe how cross-validation can be used to decide on the histogram’s bin
width, from a set of possible widths, given the classification task at hand.

Question 6:

A Bayesian Classifier requires an estimate of each class conditional probability
p(x |ωi). During the course we have explored various ways to do this estimation.

a) What is the difference between a parametric and a non-parametric estimate?

b) Give one example of each approach.

c) State one advantage and one disadvantage of each approach.

d) Maximum Likelihood Estimation is a standard approach for what? Given
training examples x1,x2, . . . ,xn write down the quantity MLE maximizes
and how it performs this.

Question 7:

a) Write down the mathematical definition of a linear classifier.

b) Perceptron Learning is a method to learn such a classifier. Given training
data {(xi, ti)}ni=1 where each xi ∈ Rd and each ti ∈ {−1,+1} is a scalar
indicating the label of the training example it chooses the w = (w1, w0) that
minimizes

Jp(w) = −
∑
i∈M

(wT
1 xi + w0) ti

Explain what the set M denotes? Use the gradient descent algorithm to
derive the perceptron learning rule.

c) Name one advantage and one disadvantage of this method for finding w?

Question 8:

a) What is the curse of dimensionality? Name one method affected by this.

b) PCA is a technique for performing dimensionality reduction. What is the
criterion used by PCA to derive its basis?

c) Linear discriminant analysis (LDA) also represents a signal in a lower di-
mensional space. However, its criterion for choosing the lower dimensional
space differs. What is this criterion ?

d) Boosting can be seen as a way to perform dimensionality reduction. Explain
this statement.
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Question 9:

You want to discriminate between images taken in indoor environments and
those taken in outdoors. Describe 3 different types of image features you could
extract from these images which could be used by a suitable classifier.

Question 10:

a) State the steps in words of the boosting algorithm, you can omit the exact
mathematical details.

b) What do you think is the most important step of the algorithm?

Question 11:

You have training data {(xi, yi)}ni=1 from two classes which is linearly separable

a) What does linearly separable mean?

b) What is the criterion used by the SVM for choosing the optimal separating
hyperplane. Please draw a diagram, with a 2 dimensional example to accom-
pany your answer. Show in this diagram the optimal separating hyperplane
and the support vectors.

c) Why is maximizing this criterion a good idea?

d) Write down the mathematical expression for the quantity maximized by the
SVM.

Question 12:

Continuing the previous question

a) The hyperplane found by the SVM has the form

w∗ =
n∑

i=1

αi xi yi

What values have the αi’s for the support vectors and non-support vectors?

b) Given a novel feature vector x, what computations does the SVM perform
to estimate x’s class?

c) You can transform your data to a higher dimensional space with a function
ψ : Rd → Rm where m > d and find the optimal separating hyperplane in
this new space. Why would you do this ? For your novel feature vector x,
do you need to explicitly transform it to the higher dimensional space to
estimate its class with this new SVM? Explain.

Question 13:

a) State the difference between supervised and unsupervised learning.

b) Describe an image recognition task where you would have to perform unsu-
pervised learning.

c) State the steps of the k-means clustering algorithm.
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Question 14:

a) Sketch this one dimensional probability distribution

p(x) = π1N (0, .5) + (1− π1)N (5, 1)

when π1 = 1
2 ; π1 = .1; and π1 = .9.

b) If you have n points generated from p(x) when π1 = 1
2 and you fit a Gaussian

distribution to this data. Sketch what this distribution will look like. What’s
the problem here?

c) This issue highlights a problem with parametric methods. What is it?

d) What method is used to find the parameters of a Gaussian mixture model
from training examples generated from the distribution?

Question 15:

a) What are the true positive and false positive rates of a classifier?

b) If you use a sliding window approach to finding faces in an image of size
300 × 300 and your classifier has a false positive rate of .05 roughly how
many faces will you find even if the image does not contain a face?

c) What is the name of the curve which plots the false positive rate Vs true
positive rate as the parameter controlling classification is varied?

d) Draw this curve for a classifier which has

• random performance

• ideal performance

• performance similar to that of your final classifier in the face detector
project.

5



Part II

Question 1:

a) (.4) Describe in mathematical terms and with the help of diagrams the initial
constrained optimization problem which defines the SVM for non-separable
data.

b) (.05) What’s great about this constrained optimization problem?

c) (.2) Qualitatively, how does varying the value of the penalty term C in the
objective function affect the optimal hyper-plane found.

d) (.15) What is the Lagrangian of this constrained optimization problem?

e) (.2) Use this Lagrangian to show that the optimal hyperplane has the form

w∗ =
n∑

i=1

αi yi xi

Question 2:

This question exams the Adaboost algorithm. We have n training examples
(x1, y1), . . . (xn, yn) where each xi ∈ Rd and yi ∈ {−1, 1}. Let ht(·) be the weak
classifier obtained at step t. The final classifier has form

H(x) = sgn (f(x) + Θ) where f(x) =
∑

t

αtht(x)

where Θ is a threshold. Let Dt(i) represent the weight associated with the i-th
example at the t-th iteration. The training error on the weighted dataset is

εt =
n∑

i=1

Dt(i) Ind(H(xi) 6= yi),

where Ind(a = b) is the indicator function and in the strong classifier

αt =
1
2

log
(

1− εt
εt

)
Answer the following

a) (.15) Is it true that in each round of boosting there always exists a weak
classifier ht(·) such that its training error on the weighted dataset is εt ≤ .5?
Explain your answer.

b) (.15) What happens in the cases when εt = .5; and εt = 1? In each case
what is the training error of the final strong classifier.

c) (.7) Consider the following toy problem. You will apply Adaboost to this
dataset:

Class ω1 points: (0,−1), (0, 1)
Class ω2 points: (1, 0), (−1, 0)
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with the set of vertical and horizontal lines as weak classifiers.

• Plot the points. Are they linearly separable?

• Sketch how 3 rounds Adaboost would qualitatively run on this dataset.
For each timestep draw the weak classifier chosen and how the weights
associated with each example changes. (Make the size of the data-point
proportional its weight.) What is the training error of the final strong
classifier?

Question 3:

Describe how you would build a person recognition system using a PCA repre-
sentation of face images. In your description include, with appropriate mathe-
matical detail,

• (.4) How to learn the PCA basis.

• (.3) How to represent an image with this basis and how to decide how
many basis vectors one should include.

• (.3) How recognition could be performed using this learnt basis.

Question 4:

Imagine you have a face detector such that

P (f̂ = 1 | f = 1) = 1− ε and P (f̂ = 0 | f = 0) = 1− α

where f ∈ {0, 1} indicates the ground truth of whether a patch is present or not
while f̂ ∈ {0, 1} is the prediction of the face detector.

Imagine you have K independent face detectors each having the same true and
false positive rate of the detector just described. If these detectors are applied
to an image patch we get

f̂ = (f̂1, f̂2, . . . , f̂K)

where f̂i ∈ {0, 1} is the prediction of the ith detector. kf̂ =
∑

i f̂i is equal to
the number of detectors which predict a face while K − kf̂ is the number which
predict a non-face. Let γ be the prior probability that the patch contains a face.
Given this information answer the following:

a) (.2) Write down the expression, remembering to exploit the independence,
for

p(f̂ | f = 1)

b) (.2) What is the posterior probability the patch contains a face given f̂?

c) (.3) Let γ = ε = α = .01 what is the constraint kf̂ must fulfill such that

p(f = 1 | f̂) ≥ .99

For K = 4, what is the minimal value of kf̂ such that the above performance
level is met? For K = 10? And as K → ∞ what ratio of detections should
correctly predict a face to ensure this level of performance.
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d) (.3) Define a final classifier such that

F (f̂) =

{
1 if

∑
i f̂i ≥ K0

0 otherwise

Continuing with the parameter settings just given, write down an expression
for the P (error) of this classifier.

Question 5:

a) (.5) Show that d+ 1 points in Rd can be shattered by a hyper-plane.

b) (.2) Explain why the VC dimension of a 1 nearest neighbour classifier is
infinity.

c) (.3) The type of weak binary classifier for data x ∈ Rd you have been using
in the face lab has a name. It is called a decision stump. As you know the
classification rule has parameters q ∈ {−1, 1}, j ∈ {1, 2, . . . , d} and θ and
takes the form:

h(x; j, q, θ) =

{
1 if q xj ≥ q θ
0 otherwise

where x = (x1, x2, . . . , xd). For two dimensional x consider convex combina-
tions of two vertical decision stumps

f(x) = α1 h(x; 1, q1, θ1) + (1− α1)h(x; 1, q2, θ2)

with 0 ≤ α1 ≤ 1. Classify a point according to some threshold T such that

Class (x) =

{
ω1 if f(x) ≥ T
ω2 if f(x) < T

Sketch the three qualitative ways R2 can be partitioned into regions classified
as class ω1 and class ω2. What is largest number of points which can be
shattered by a classifier of this type?

Part III

Question 1:

a) (.1) State one reason why you would use a discriminative model as opposed
to a generative one and vice versa.

b) The class conditional distributions for a binary classification problem are

p(x |ω = i) = N (µi,Σi)

• (.25) Given these condition distributions and assuming equal priors
for the two classes, what is the form of the decision boundary for the
Bayesian classifier?
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• (.1) How many parameters have to be estimated if

– Σi = σ2
i I for i = 1, 2,

– Σi is a full covariance for i = 1, 2.

c) (.1) Logistic Regression assumes for the binary classification problem the
decision boundary is a hyperplane, that is

log
P (ω = 1 |x)
P (ω = 0 |x)

= w0 + wT
1 x

From this derive the g(·) such that

P (ω = 1 |x) = g(w0 + wT
1 x)

d) If the feature vector x is projected to a higher dimensional space via a func-
tion φ : Rd → Rm before finding the best hyperplane, it is possible to model
decision boundaries more compliated than a hyperplane in the original space.

• (.3) How should φ(·) be defined if we want to replicate the decision
boundary in part b) when

– Σi = σ2
i I for i = 1, 2,

– Σi is a full covariance for i = 1, 2.

• (.15) In each case, how many parameters does logistic regression have
to estimate? Comment on this with respect to part b) of the question.

Question 2:

a) (.1) For a binary classification problem LDA finds an optimal projection w.
In words which criterion does it use to find this optimal projection.

b) (.2) If we have x ∼ N (µ,Σ) and then x is projected into 1 dimension via:

y = wT x

Then y follows a 1 dimensional distribution, y ∼ N (µ, σ2). What are the
expressions for µ and σ2 in terms of w,µ and Σ?

c) Given two classes where each is Normally distributed, N (µi,Σi) for i = 1, 2,
then the optimal projection found by LDA is defined as

w∗ ∝ (Σ1 + Σ2)−1(µ2 − µ1)

(.6) Consider the following example:

p(x |ω1) = N
((

0
0

)
,

(
102 0
0 22

))
and p(x |ω2) = N

(
µ,

(
22 0
0 102

))
For values of µ = (0, 0)T ; ( 1

10 , 0)T ; (0, 1
10 )T ; and ( 1

10 ,
1
10 )T answer the follow-

ing questions:

• What is the optimal projection according to LDA?
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• Sketch the distribution of class 1 and class 2 points when they have
been projected into 1d via the optimal projection.

• Sketch a classifier which discriminates between the projected points
from the two classes. How is this classifier’s performance relative to a
Bayes classifier calculated on the original 2 dimensional data?

(.1) Which limitation of LDA does this example highlight?

Question 3:

a) (.3) Explain how using Expectation Maximization (EM) to find the param-
eters of a Gaussian mixture model can be viewed as a form of clustering.

b) (.4) Explain intuitively how EM proceeds for learning the parameters of a
Gaussian mixture model. Explain how this procedure is more sophisticated
than k-means clustering.

c) (.3) Explain how clustering can be used to perform image segmentation.
Image segmentation refers to assigning pixels with similar properties to the
same cluster. Which feature vectors could be extracted from the image to
perform this segmentation?
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List of Formulae

• If a one dimensional variable x follows a Gaussian distribution this is
denoted by N (µ, σ) and

p(x) =
1

σ
√

2π
exp

(
−.5 (x− µ)2

σ2

)

• If x is a vector of dimension d and follows a multivariate normal/Gaussian
distribution denoted by N (µ,Σ), then

p(x) =
1

(2π)
d
2 |Σ| 12

exp
(
−.5 (x− µ)T Σ−1 (x− µ)

)
where |Σ| is the determinant of the matrix Σ.

• The L2 norm (Euclidean distance)

L2(x,y) =

(
d∑

i=1

|xi − yi|2
) 1

2

• The L1 norm (Manhattan distance)

L1(x,y) =
d∑

i=1

|xi − yi|

• The L∞ norm

L∞(x,y) = max
i
|xi − yi|
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