
Course DD2427 2011 - Final Exam

You may use a calculator but you shouldn’t need one.

In Part I of the exam your top 7 scoring answers will be used to compute your score SI. Here each question
is worth 10 points. To pass the exam you must get SI ≥ 45. From Part II of the exam I will use you top
4 scoring answers to compute SII (assuming you have passed the exam). Here each question is worth 20
points. Your final score will then be calculated as

SF = (SI − 50) + SII + SP

where SP are your bonus points from the Poster Session. The thresholds on SF for achieving the higher
grades:

Grade
D C B A

≥ 8 ≥ 18 ≥ 40 ≥ 65

The bold face numbers in brackets in Part II indicate the percentage of the total score associated with each
part of a question.

Part I

Question 1: Bayes’ rule

Let X and Y be discrete binary random variables with joint pdf P (X,Y ).

a) Define P (X = x |Y = y), in terms of P (Y = y) and P (X = x, Y = y).

b) Express P (X = x) in terms of P (X = x |Y ) and P (Y ).

c) Use these results to state and derive Bayes’ rule.

Question 2: Bayes’ classifier

a) For the binary classification problem, how is the Bayes’ Classifier defined given each class’ prior proba-
bility and class conditional distribution?

b) Draw the decision boundaries defined by a Bayes’ classifier in this figure:
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c) Write down the mathematical expression for the Probability of Error in terms of the p(x |ω = i)’s and
P (ω = i)’s for the above figure.

d) What is optimal about the Bayes’ Classifier?
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Question 3: Covariance matrices

a) Let x ∼ N (µ,Σ) follow a bivariate Gaussian distribution. Match the covariance matrices to the appro-
priate figure showing the iso-probability contours of the pdf.

Σ1 =

 102 −12
−12 32

, Σ2 =

102 0
0 32

, Σ3 =

 102 −24
−24 32

, Σ4 =

102 18
18 32



(i) (ii) (iii) (iv)

b) Let x be a multi-variate Gaussian random variable with x ∼ N (µx,Σx). Any linear transformation of x,
y = Ax, also follows a Gaussian distribution that is y ∼ N (µy,Σy). It is the case that µy = Aµx. Show
that Σy = AΣxA

t.

c) Use the previous result to compute the distribution of z = x+ y if x = (x, y)t and

p(x) = N
(
0,

(
1, .5
.5 1

))

Question 4: Nearest neighbour classifier

a) State the steps of a k-nearest neighbour classifier.

b) State two advantages and disadvantages of a k-nearest neighbour classifier?

c) What are the two trade-offs between choosing a large or small value of k?

d) Draw the 1-nearest neighbour decision boundary in the following figure:
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(a) Draw the decision boundaries for the 1-nearest neighbor algorithm assuming that we are
using standard Euclidean distance to compute nearest neighbors. A plus indicates a positive
example and a star indicates a negative example.

(b) How will the point (8, 1) be classified by the 1-nearest neighbor classifier?

(c) How will the point (8, 8) be classified?

2. (Modified from Mitchell and Guestrin) One of the problems with k-nearest neighbor learning is
selecting a value for k. For this exercise, you will use Weka to empirically determine a reasonable
value for k, given a specific training set.

Say you are given the data set shown below. This is a binary classification task in which the
instances are described by two real-valued attributes.
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Question 5: Cross Validation

You are given training data {(xi, ti)}ni=1 where each xi ∈ R2 is a feature vector and each ti ∈ {−1,+1} is
its corresponding label. You decide to construct a Bayes’ classifier using this data to help you classify a new
feature vector x∗. Answer the following:

a) You use a histogram to estimate each class conditional probability distributions. What is a histogram?
Describe how you construct one and would use it to estimate the desired probability?

b) The histogram has one parameter, bin width bw which has to be set. What happens if too large a value
for bw is chosen and if too small a value is chosen?

c) k-fold cross-validation can be used to estimate bw. State the steps of this procedure and the criterion
used to select a value for bw.
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Question 6: Linear discriminants

A linear classifier classifies a points x with sgn (wt
1x + w0). Assume you have training data {(xi, ti)}ni=1

where each xi ∈ Rd and label ti ∈ {−1,+1}.
a) The parameters w = (w1, w0) can be found by minimizing a cost function:

w∗ = arg min
w

n∑
i=1

L(ti,w
t
1xi + w0)

where L(., .) is a loss function penalizing differences between the prediction of the classifier for a training
example and its true label. For Perceptron Learning write down this loss function?

b) Use the gradient descent algorithm to derive the perceptron learning rule.

c) Plot ti(w
txi + w0) Vs L(ti,w

t
1xi + w0) for the loss function used in Perceptron Learning. How is this

one better than the loss function used by the MSE criterion

LMSE(ti,w
t
1xi − w0) = (ti −wt

1xi − w0)
2

and shown here?
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Question 7: Dimensionality reduction

a) What is the curse of dimensionality? Name one method affected by this.

b) PCA performs dimensionality reduction on d dimensional vectors by finding a set of k ≤ d basis vectors
to represent the training vectors. Answer the following:

i) How is this new basis found from examples x1, . . . ,xn?

ii) How is the number of basis vectors k usually set?

iii) Given a novel feature x∗, how is it represented in this new basis?

c) What trick should I exploit when I compute the PCA basis if I have very high dimensional x’s and a
relatively small number of training examples? Why is it important to exploit this trick?

Question 8: Integral image

Let I(x, y) denote the intensity of pixel (x, y) of an image of height H and width W .

a) What is the integral image, ii(x, y) and how is it calculated?

b) Look at this formula which is defined for each pixel (x, y)

ti(x, y) =

x∑
x′=1

y−x+x′∑
y′=y

I(x′, y′)

The value ti(x, y) corresponds to the sum of pixels in which type of region? Just consider the case where
y ≥ x. Draw a picture to help your explanation. (Note: I(x, y) is assumed to be zero if x ≤ 0, y ≤ 0, x >
W or y > H.)

c)
How can the images ii and ti be used to quickly compute the sum of the pixels in
the right-angled equilateral triangle in this figure?
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Question 9: Boosting algorithm

a) The boosting algorithm assumes one is given a set of weak classifiers and labelled training data. What
does the boosting algorithm then output?

b) State the steps of the boosting algorithm - omit the exact mathematical details.

c) The boosting algorithm can be used to perform feature selection. Explain this statement and describe
how it can be done.

d) State two weaknesses and two strengths of the boosting algorithm.

Question 10: SVM I

You have training data {(xi, yi)}ni=1 from two classes which is linearly separable where each xi ∈ Rd and
yi ∈ {−1, 1}.
a) What does linearly separable mean?

b) What is the criterion used by the SVM for choosing the optimal separating hyperplane. Why is maxi-
mizing this criterion a good idea?

c) Draw a two dimensional example to accompany your previous answer. Show in this diagram the optimal
separating hyperplane and the support vectors.

d) Write down the constrained optimization problem the SVM actually solves.

Question 11: Gaussian mixture models

a) Two GMM distributions are shown, match each one to one of the defined distributions
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(a) (b)

p1(x) = .5N (0, .52) + .5N (5, 22)

p2(x) = .5N (0, 1) + .5N (5, 1)

p3(x) = .4N (0, 22) + .6N (5, .52)

b) You are given n independent samples, x1, . . . , xn from a distribution p(x) and told that p(x) is, in fact,
either p1, p2 or p3. Write down the score(s) you could use to indicate which of these distributions p is
equal to.

c) Say instead you are told : p(x) = π1N (µ1, σ
2
1) + (1− π1)N (µ2, σ

2
2).

Describe how soft clustering of the samples x1, . . . , xn could be used to find the parameters π, µ1, µ2, σ1, σ2.

Question 12: ROC curves

a) How are the true positive and false positive rates of a classifier defined?

b) The accuracy (acc) of a classifier is the proportion of examples it classifies correctly. How is it defined in
terms of number of true positives etc.. ?

c) Show that - acc = tpr × rp + (1− fpr)× rn - where rp(rn) is the proportion of the test examples which
are really positive(negative).

d) The ROC curve plots the fpr Vs tpr of a classifier as its classification threshold is varied. Sketch the ROC
curve of your classifier from the face lab.

e) On your ROC plot draw the line joining the points (0, 1) to (1, 0). Write down the equation of this line
and show that the ROC curve intersects this line at (1− acc, acc).
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Part II

Question 1: SVM II

a) Describe in mathematical terms and with the help of diagrams the initial constrained optimization prob-
lem which defines the SVM when the training data is non-separable. (.4)

b) What’s great about this constrained optimization problem? (.05)

c) Qualitatively, how does varying the value of the penalty term C in the objective function affect the
optimal hyper-plane found. (.2)

d) What is the Lagrangian of this constrained optimization problem? (.15)

e) Use the dual formulation of the optimization problem to show that the optimal hyperplane has the form

w∗ =

n∑
i=1

αi yi xi (.2)

Question 2: VC-dimension

a) Show that d+ 1 points in Rd can be shattered by a hyper-plane. (.5)

b) Why is the VC-dimension of the 1 nearest neighbour classifier infinity. (.2)

c) What is the VC-dimension of the union of k intervals on the real line? (.3)

Question 3: Integral histograms

The concept of integral image can be transferred to histograms of an image.

a) Let H ′(x, y) denote the histogram of the pixel intensities in the rectangular region defined by [(1, 1), (x, y)]
(coordinates of the top left and bottom right corners). Explain how H ′(x, y) can be computed efficiently
and stored for all possible values of x and y in the image. (.3)

b) Let H(A) denote the histogram of the pixel intensities in the image patch A. For image patches A and
B if A ∩B = ∅, show that H(A ∪B) = H(A) +H(B). (.1)

c) How can one compute the histogram of the pixel intensities in the rectangular region [(x1, y1), (x2, y2)]
using the previous result and the H ′(x, y)’s? (.3)

d) One could equivalently implement integral histograms by calculating B integral images, where B is the
number of bins in the histogram. Explain. (.3)

Question 4: Discriminative Vs Generative modelling

a) The class conditional distributions for a binary classification problem are

p(x |ω = i) = N (µi,Σi)

i) Given these conditional distributions and equal priors, what is the form of the decision boundary for
the Bayesian classifier? (.25)

ii) If x ∈ Rd, how many parameters have to be estimated to build the Bayesian classifier when each
covariance matrix is of the form

1) Σi = σ2
i I (.05) 2) Σi is a full covariance (.05)
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b) Logistic Regression assumes the decision boundary - the x such that P (ω = 0 |x) = P (ω = 1 |x) - for the
binary classification problem is a hyperplane

log

(
P (ω = 1 |x)

P (ω = 0 |x)

)
= w0 + wt

1x = 0

This assumption implies: P (ω = 1 |x) = g(w0 + wt
1x). What is the expression for g(·)? (.15)

c) Projecting x to a higher dimensional space via φ : Rd → Rm and then finding the best hyperplane allows
more complicated decision boundaries in the original space to be modelled. How should φ(·) be defined
if we want to replicate the decision boundary in part a) when the covariance matrices are

1) Σi = σ2
i I (.15) 2) Σi is a full covariance (.15)

In each case, how many parameters does logistic regression have to estimate? Comment on this with
respect to part a) of the question. (.2)

Question 5: LDA

a) Given two classes LDA finds an optimal projection w, where y = wt x. In words which criterion does it
use to find this optimal projection. (.2)

b) Given two classes which are Normally distributed, N (µi,Σi) for i = 1, 2, the optimal projection found
by LDA is defined as

w∗ ∝ (Σ1 + Σ2)−1(µ2 − µ1)

Consider the following example:

p(x |ω = 1) = N
((

0
0

)
,

(
102 0
0 22

))
and p(x |ω = 2) = N

(
µ,

(
22 0
0 102

))
Answer the following questions:

i) What is the optimal projection according to LDA? (.05 × 4)

ii) Sketch the distribution of class 1 and class 2 points when they have been projected into 1d via the
optimal projection. (.05 × 4)

iii) Sketch a classifier which discriminates between the projected points from the two classes. How is this
classifier’s performance relative to a Bayes classifier calculated on the original 2 dimensional data?
(.05 × 4)

for µ = (0, 0)t, (.1, 0)t, (0, .1)t and (.1, .1)t.

c) The above example highlights which limitations of LDA? (.2)
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List of Formulae

• If a one dimensional variable x follows a Gaussian distribution this is denoted by N (µ, σ) and

p(x) =
1

σ
√

2π
exp

(
−.5 (x− µ)2

σ2

)

• If x is a vector of dimension d and follows a multivariate normal/Gaussian distribution denoted by
N (µ,Σ), then

p(x) =
1

(2π)
d
2 |Σ| 12

exp
(
−.5 (x− µ)T Σ−1 (x− µ)

)
where |Σ| is the determinant of the matrix Σ.

• The L2 norm (Euclidean distance)

L2(x,y) =

(
d∑

i=1

|xi − yi|2
) 1

2

• The L1 norm (Manhattan distance)

L1(x,y) =

d∑
i=1

|xi − yi|

• The L∞ norm

L∞(x,y) = max
i
|xi − yi|
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