
Course: DD2427 - Exercise Class 1

Questions with an asterix(*) are a bit more involved and are more to aid
understanding as opposed to representing potentional exam questions.

Exercises 1: Bayes I

You have written a face detection algorithm. Let a denote the variable that
there is a face in the image and b the output of your algorithm.

a =

{
1 if there is a face in the image

0 there is not a face in the image
b =

{
1 your algorithm reports there’s a face in the image

0 your algorithm reports there’s not a face in the image

Your face detection algorithm has a false positive rate of .05 and a true
positive rate of .85. Your algorithm is examining images that are taken
from your front door.

You run your algorithm on an image taken at 10am (the time when the
postman usually passes your house) and the result is positive. What is the
probability the image contains a face ?

You run your algorithm on an image taken at 2am and the result is positive.
What is the probability the image contains a face ?

Solution:

Know:

We are told the false positive rate is .05 therefore

p(b = 1 | a = 0) = .05 p(b = 0 | a = 0) = .95

and the true positive rate is .85 therefore

p(b = 1 | a = 1) = .85 p(b = 0 | a = 1) = .15

Want to calculate:

p(a = 1 | b = 1)

From Bayes’ Rule:

p(a = 1 | b = 1) =
p(b = 1 | a = 1) p(a = 1)

p(b = 1)

=
p(b = 1 | a = 1) p(a = 1)

p(b = 1 | a = 0) p(a = 0) + p(b = 1 | a = 1) p(a = 1)

=
.85× p(a = 1)

.05× p(a = 0) + .85× p(a = 1)
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When you run your algorithm at 10am it is reasonable to assume

p(a = 1) > p(a = 0)

as this is the time the postman visits your house. Thus let’s set p(a = 1) = .8
and this implies p(a = 0) = .2.

Therefore, at 10am

p(a = 1 | b = 1) =
.85× .8

.05× .2 + .85× .8 = .9855

While if you run your algorithm at 2am it is reasonable to assume

p(a = 0) > p(a = 1)

as this is the time the postman visits your house. Thus let’s set p(a = 1) = .2
and this implies p(a = 0) = .8.

Therefore, at 2am

p(a = 1 | b = 1) =
.85× .2

.05× .8 + .85× .2 = .8095
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Exercises 2: Bayes Decision Theory

A binary 2×2 image is generated by some random mechanism. By studying
a large number of noise free realizations of the images generated it has been
found that [

0 1
1 0

]
has probability 1

4 ,[
1 0
0 1

]
has probability 1

4 ,[
1 1
1 0

]
has probability 1

2

(a priori probabilities). One of these images has been distorted by noise in
the sense that the value of a pixel has been changed with probability ε, that
is

P (observing 0 | the correct value is 1) = P (observing 1 | the correct value is 0) = ε

Assume that the noise in different pixels is independent. Now consider the
image [

0 1
1 1

]
Using Bayes theorem calculate the MAP (maximum a posterior) estimation
of the scene if

1. ε = 10%

2. ε = 50%

Solution:

Know:

There are 3 possible images

I1 =

[
0 1
1 0

]
, I2 =

[
1 0
0 1

]
and I3 =

[
1 1
1 0

]
.

and we observe the image I =

[
0 1
1 1

]
Want to calculate:

P (true image Ii | observed I) for i = 1, 2, 3.
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Step 1 - Likelihood Calculations

Calculate the likelihood of generating the observation I given that the true
image is Ii for i = 1, 2, 3. In these calculations we exploit the fact that the
noise in different pixels are independent.

P (observe I | image I1) = P (observe

[
0 1
1 1

]
| true image

[
0 1
1 0

]
)

= P (observe 0 | true value 0)× P (observe 1 | true value 1)× P (observe 1 | true value 1)

× P (observe 1 | true value 0)

= (1− ε)3 ε

P (observe I | image I2) = P (observe

[
0 1
1 1

]
| true image

[
1 0
0 1

]
)

= P (observe 0 | true value 1)× P (observe 1 | true value 0)× P (observe 1 | true value 0)

× P (observe 1 | true value 1)

= (1− ε) ε3

P (observe I | image I3) = P (observe

[
0 1
1 1

]
| true image

[
1 1
1 0

]
)

= P (observe 0 | true value 1)× P (observe 1 | true value 1)× P (observe 1 | true value 1)

× P (observe 1 | true value 0)

= (1− ε)2 ε2

Step 2 - calculate the posterior probabilities

From Bayes’ Rule we get for i = 1, 2, 3

P (image Ii | observe I) =
P (observe I | image Ii)P (image Ii)

P (observe I)
(1)

Now

P (observe I) =

3∑
i=1

P (observe I | image Ii)P (image Ii)

=
1

4
(1− ε)3 ε+

1

4
(1− ε) ε3 +

1

2
(1− ε)2 ε2

=
1

4
(1− ε) ε

Substitute the appropriate values into equation (??) and obtain

P (image I1 | observe I) =
1
4 (1− ε)3 ε
1
4 (1− ε) ε = (1− ε)2

P (image I2 | observe I) =
1
4 (1− ε) ε3
1
4 (1− ε) ε = ε2

P (image I3 | observe I) =
1
2 (1− ε)2 ε2
1
4 (1− ε) ε = 2(1− ε) ε
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Step 3 - Plug in the value of ε

When ε = .1 the MAP estimate of the scene is I1 as

P (image I1 | observe I) = (1− ε)2 = .81

P (image I2 | observe I) = ε2 = .01

P (image I3 | observe I) = 2(1− ε) ε = .18

While if ε = 1
2 the MAP estimate of the scene is I3 as

P (image I1 | observe I) = (1− ε)2 =
1

4

P (image I2 | observe I) = ε2 =
1

4

P (image I3 | observe I) = 2(1− ε) ε =
1

2

Note in this case the posterior distribution is the same as the prior. This
is logical as if ε = 1

2 then the sensor gives a random response.
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Exercises 3:

Consider a binary 4× 4 image of a scene with a vertical line. In the correct
image all pixels would be white except one vertical row with black pixels.
Unfortunately, the camera used is far from perfect. Errors in different pixels
are independent with

p(white | line) = p(black | not line) = ε

and consequently

p(black | line) = p(white |not line) = 1− ε

Assume the a priori probability for the line to be located in column 1 or 4
is 0.3 (each) and the a priori probability that the line is in column 2 or 3 is
0.2 (each). Calculate the maximum a posteriori estimation of the following
image when ε = 0.2

Z Z = HS + ε Z, S ε
H n × n ε

0 σ2

Y = Z − 1

4
NZ

N n × n Nij 1 i j
0 HS

Yi i Y

Yi

4×4

ε
1 − ε

ε = 0.2

5 × 3 ω1

ω2 ω3

x
x x

Solution:

Know:

The 4 possible scenes are

I1 =


x o o o
x o o o
x o o o
x o o o

 , I2 =


o x o o
o x o o
o x o o
o x o o

 , I3 =


o o x o
o o x o
o o x o
o o x o

 , I4 =


o o o x
o o o x
o o o x
o o o x


From the camera observe

I =


x o o o
o x o o
o o x o
o x o o


Want to calculate:

p(observe I | true scene Ii) for i = 1, 2, 3, 4.
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Step 1 - Likelihood calculations

P (observe I | scene I1) = P (observe


x o o o
o x o o
o o x o
o x o o

 | scene


x o o o
x o o o
x o o o
x o o o

)

= P (observe x | on line)P (observe o | on line)3 P (observe x | not on line)3 P (observe o | not on line)9

= (1− ε) ε3 ε3 (1− ε)9 = (1− ε)10 ε6

P (observe I | scene I2) = P (observe


x o o o
o x o o
o o x o
o x o o

 | scene


o x o o
o x o o
o x o o
o x o o

)

= P (observe x | on line)2 P (observe o | on line)2 P (observe x | not on line)2 P (observe o | not on line)10

= (1− ε)2 ε2 ε2 (1− ε)10 = (1− ε)12 ε4

P (observe I | scene I3) = P (observe


x o o o
o x o o
o o x o
o x o o

 | scene


o o x o
o o x o
o o x o
o o x o

)

= P (observe x | on line)P (observe o | on line)3 P (observe x | not on line)3 P (observe o | not on line)9

= (1− ε) ε3 ε3 (1− ε)9 = (1− ε)10 ε6

P (observe I | scene I4) = P (observe


x o o o
o x o o
o o x o
o x o o

 | scene


o o o x
o o o x
o o o x
o o o x

)

= P (observe x | on line)0 P (observe o | on line)4 P (observe x | not on line)4 P (observe o | not on line)8

= (1− ε)0 ε4 ε4 (1− ε)8 = (1− ε)8 ε8

Step 2 - Calculate the posterior probabilities

From Bayes’ Rule we get for i = 1, 2, 3, 4

P (scene Ii | observe I) =
P (observe I | scene Ii)P (image Ii)

P (observe I)
(2)

Now

P (observe I) =

4∑
i=1

P (observe I | scene Ii)P (scene Ii)

=
3

10
(1− ε)10 ε6 +

2

10
(1− ε)12 ε4 +

2

10
(1− ε)10 ε6 +

3

10
(1− ε)8 ε8

=
1

10
(1− ε)8 ε4 (1− 2ε+ 2ε2) (5ε2 − 4ε+ 2)
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Substitute the appropriate values into equation (??) to obtain

P (scene I1 | observe I) =
3
10 (1− ε)10 ε6

1
10 (1− ε)8 ε4 (1− 2ε+ 2ε2) (5ε2 − 4ε+ 2)

=
3(1− ε)2 ε2

(1− 2ε+ 2ε2)(5ε2 − 4ε+ 2)

P (scene I2 | observe I) =
2
10 (1− ε)12 ε4

1
10 (1− ε)8 ε4 (1− 2ε+ 2ε2)(5ε2 − 4ε+ 2)

=
2(1− ε)4

(1− 2ε+ 2ε2)(5ε2 − 4ε+ 2)

P (scene I3 | observe I) =
2
10 (1− ε)10 ε6

1
10 (1− ε)8 ε4 (1− 2ε+ 2ε2)(5ε2 − 4ε+ 2)

=
2(1− ε)2 ε2

(1− 2ε+ 2ε2)(5ε2 − 4ε+ 2)

P (scene I4 | observe I) =
3
10 (1− ε)8 ε8

1
10 (1− ε)8 ε4 (1− 2ε+ 2ε2)(5ε2 − 4ε+ 2)

=
3ε4

(1− 2ε+ 2ε2)(5ε2 − 4ε+ 2)

Step 3 - Plug in the value of ε = .2

When ε = .2 the MAP estimate of the scene is I2 as

P (scene I1 | observe I) =
3(1− ε)2 ε2

(1− 2ε+ 2ε2)(5ε2 − 4ε+ 2)
= .0807

P (scene I2 | observe I) =
2(1− ε)4

(1− 2ε+ 2ε2)(5ε2 − 4ε+ 2)
= .8605

P (scene I3 | observe I) =
2(1− ε)2 ε2

(1− 2ε+ 2ε2)(5ε2 − 4ε+ 2)
= .0538

P (scene I4 | observe I) =
3ε4

(1− 2ε+ 2ε2)(5ε2 − 4ε+ 2)
= .005
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Exercises 4: Bayes’ Decision Theory

Assume you have a two class classification problem. Each class generates a
one dimensional feature vector according to p(x|ωi) = N (µi, σ

2
i ) for i = 1, 2.

The prior probabilities for each class are p(ω1) = p(ω2) = .5. In the graphs
below p(x|ωi) p(ωi) for i = 1, 2 are shown for different values of the µ’s and
σ’s. For each example µ1 = 0, σ1 = 1 and then 1) µ2 = 1.5, σ2 = 1, 2)
µ2 = 1.5, σ2 = .5 and 3) µ2 = 0, σ2 = .5

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p(x|ω1) p(ω1) p(x|ω2) p(ω2)

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p(x|ω1) p(ω1)

p(x|ω2) p(ω2)

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p(x|ω1) p(ω1)

p(x|ω2) p(ω2)

(1) µ1 6= µ2, σ1 = σ2 (2) µ1 6= µ2, σ1 > σ2 (3) µ1 = µ2, σ1 > σ2

i) For the two-class problem how is the Bayes’ Classifier defined?

ii) In the figure draw the decision boundaries/boundary defined by a Bayes’
classifier.

iii) For case (2) explicitly calculate the decision boundaries.

iv) For case (2) write down the P (error) for the Bayes’ Classifier and show
in a diagram where the errors are being made.

v) What is optimal about the Bayes’ Classifier?

Solution:

i) The Bayes’ Classifier for the two class problem

Class {x} =

{
ω1 if p(ω1 |x) ≥ p(ω2 |x)

ω2 if p(ω1 |x) < p(ω2 |x)

ii) The decision boundaries/boundary defined by the Bayes’ classifier:
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−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p(x|ω1) p(ω1) p(x|ω2) p(ω2)

 Class ω1   Class ω2  
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0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p(x|ω1) p(ω1)

p(x|ω2) p(ω2)

 Class ω1   Class ω1  

 Class ω2  

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

p(x|ω1) p(ω1)

p(x|ω2) p(ω2)

 Class ω1   Class ω1  

 Class ω2  

(1) µ1 6= µ2, σ1 = σ2 (2) µ1 6= µ2, σ1 > σ2 (3) µ1 = µ2, σ1 > σ2

iii) The decision boundary is defined by

p(ω1 |x) = p(ω2 |x)

As p(ω1) = p(ω2) = .5 the above decision boundary is equivalently
defined by

p(x |ω1) = p(x |ω2)

Thus

1

σ1

√
2π

exp

{
− 1

2σ2
1

(x− µ1)2
}

=
1

σ2

√
2π

exp

{
− 1

2σ2
2

(x− µ2)2
}

=⇒ exp

{
−1

2
x2
}

= 2 exp

{
−2(x− 3

2
)2
}

=⇒ −1

2
x2 = log 2− 2(x− 3

2
)2 = log 2− 2x2 + 6x− 9

2

=⇒ 3

2
x2 − 6x+

9

2
− log 2 = 0

=⇒ 3x2 − 12x+ 9− 2 log 2 = 0

This quadratic expression is easily solved and

x =
12±

√
144− 12(−2 log 2)

6
= .79, 3.2092

Therefore the Bayes’ classifier for this problem is

Class {x} =

{
ω1 if x ≤ .79 or x ≥ 3.2092

ω2 if .79 < x < 3.2092

iv)

P (error) =
1

2

(∫ .79

x=−∞
p(x |ω2) dx+

∫ 3.2092

x=.79

p(x |ω1) dx+

∫ ∞
x=3.2092

p(x |ω2) dx

)

v) It is the classifier which has minimal P (error).
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Exercises 5: Bayes’ Risk I

Consider the following 2 class classification problem. The likelihood func-
tions for each class is a Gaussian:

P (x|ωi) =
1

σi
√

2π
exp

(
−(x− µi)2

2σ2i

)
with µ1 = 0, σ21 = 5 and µ2 = 3, σ22 = 1. The priors for each class are
P (ω1) = P (ω2) = .5. Define the (mis)classification costs as C11 = C22 = 0,
C12 = 1, C21 =

√
5.

Determine a decision rule minimizing the probability of error.

Solution:

Remember: Cij denotes the cost of choosing class ωi when ωj is the true
class.

The likelihood ratio is calculated as

Λ(x) =
p(x|ω1)

p(x|ω2)
=

1√
5
√
2π

exp
(
−x2

10

)
1√
2π

exp
(
− (x−3)2

2

) =
exp

(
−x2

10

)
√

5 exp
(
− (x−3)2

2

)
To minimize the Bayes’ Risk choose class ω1 if

Λ(x) >
(C12 − C22)P (ω2)

(C21 − C11)P (ω1)
=

1√
5

=⇒
exp

(
−x2

10

)
exp

(
− (x−3)2

2

) > 1

=⇒ exp

(
−x

2

10

)
> exp

(
−(x− 3)2

2

)
=⇒ x2

10
<

(x− 3)2

2
=⇒ x2 < 5(x− 3)2

=⇒ x2 < 5x2 − 30x+ 45

=⇒ 0 < 4x2 − 30x+ 45

=⇒ x >
1

4
(15 + 3

√
5) and x <

1

4
(15− 3

√
5)
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Exercises 6: k Nearest Neighbour classifier

Remember the distance metric used in a nearest neighbour classifier affects
the performance of the classifier. A commonly used distance metric family
is the Lp norm where

‖x‖p =

(
d∑
i=1

|xi|p
) 1

p

Consider the case of using a kNN classifier, but with the L1 norm to measure
distances rather than the L2 (Euclidean) norm. Draw (in two dimensions)
a simple case of a binary classification problem for which the L1 classifier
would return a different class for a test point than an L2 classifier. In
particular, draw ≥ 1 training points (one for each class) and a test point
that would be classified differently according to the two distance metrics.

What properties of a data set do you imagine would influence whether the
L1 distance would work better or worse than the L2 distance?

Solution:

In this example there is one point from each class. Below is shown the
decision boundary created by the 1-nn classifier using the L1 norm. The
magenta colour signifies when area which are equi-distant from the two
points. Note three different decision boundaries are formed based by moving
the blue point around. Let (x, y) be the coordinates of the blue point then:

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

(a) x > y (b) x = y (c) x < y

Of course the L2 norm decision boundaries formed for these different cases
are:
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(a) x > y (b) x = y (c) x < y
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Exercises 7: Nearest neighbour classification

Carefully examine the data from two classes shown in the figure below.

1 2

10

20

30

Answer the following questions about this example.

i) Can you apply a kNN (say with k = 5) classifier on this data using a
Euclidean distance metric and hope to obtain a sensible decision bound-
ary? Explain your answer.

ii) How must the data be processed before a kNN will produce an accurate
decision boundary ?

Solution:

i) No. The range of values in the second dimension are an order of mag-
nitude larger than those in the first. Thus the Euclidean distance com-
puted between any two points will be dominated from the contribution
from the second dimension and for this example all the discriminatory
information is contained in the first dimension.

ii) The data should be scaled in both dimensions such that the range of
values range between 0 and 1.
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Exercises 8: Nearest neighbour classification

The bias of a classifier at a point x measures the amount by which the
average of our estimate differs from the true class label:

Bias = E
[
L(y,E

[
f̂(x)

]
)2
]

while the variance of the classifier is the expected squared deviation of

E
[
f̂(x)

]
around its mean

Variance = E
[
(f̂(x)− E

[
f̂(x)

]
)2
]

Say we use the 0, 1 loss function and a kNN nearest classifier so that

f̂(x) = sgn

 ∑
xi a neighbor of x

yi


what effect will the size of k have on the bias and variance of our classifier?

Solution:

For small k, the estimate f̂(x) can potentially adapt itself better to the
underlying f(x). Therefore, the bias will be small. On the other hand the
variance can be large.

As we increase k, the bias - the squared difference between f(x) and the
average of f(x) at the k-nearest neighbours - will typically increase, while
the variance decreases.
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Exercises 9: Discriminant Functions I

Let p(x|ωi) ∼ N(µi,Σ) for i = 1, 2 in a two-class d-dimensional problem
with the same covariances but arbitrary means and prior probabilities.

a) Show that the decision boundary between the two classes is a hyper-plane.

b) Need this decision boundary be perpendicular to the line connecting the
two means µ1 and µ2.

c) In terms of the prior probabilities for the two classes P (ω1) and P (ω2)
state the condition that the Bayes decision does not pass between the two
means.

Solution:

Assume x ∈ Rd then for i = 1, 2:

p(x|ωi) =
1

(2π)
d
2 |Σ| 12

exp

(
−1

2
(x− µi)

TΣ−1(x− µi)

)

From Bayes’ Rule know that for i = 1, 2

p(ωi|x) =
p(x|ωi)p(ωi)

p(x)

a) The decision boundary is defined by

p(ω1|x) = p(ω2|x)

=⇒ p(x|ω1)p(ω1) = p(x|ω2)p(ω2)

=⇒ exp

(
−1

2
(x− µ1)T Σ−1(x− µ1)

)
p(ω1) = exp

(
−1

2
(x− µ2)T Σ−1(x− µ2)

)
p(ω2)

=⇒ − 1

2
(x− µ1)T Σ−1(x− µ1) + log p(ω1) = −1

2
(x− µ2)T Σ−1(x− µ2) + log p(ω2)

=⇒ µT
1 Σ−1x− 1

2
µT

1 Σ−1µ1 + log p(ω1) = µT
2 Σ−1x− 1

2
µT

2 Σ−1µ2 + log p(ω2)

=⇒ (µT
1 − µT

2 )Σ−1x− 1

2

(
µT

1 Σ−1µ1 − µT
2 Σ−1µ2

)
+ log

p(ω1)

p(ω2)
= 0

Thus the decision boundary is defined by the hyper-plane:

wTx + w0 = 0

where

w = Σ−1(µ1 − µ2) w0 = −1

2

(
µT1 Σ−1µ1 − µT2 Σ−1µ2

)
+ log

p(ω1)

p(ω2)

b) In general the answer is no. However, if
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i) Σ is equal to σ2I then the statement would be true.

ii) (µ1−µ2) is an eigen-vector of Σ then the decision boundary is orthog-
onal to line joining (µ1 − µ2).

c) For the decision hyperplane not to intersect the line joining the two means
between the two means implies that either p(ω1)/p(ω2) is large or small. To
get an exact value, we do the following calculations. For the condition to
hold either:

wTµ1 + w0 > 0 and wTµ2 + w0 > 0

or

wTµ1 + w0 < 0 and wTµ2 + w0 < 0

Let’s look at the first condition.

wTµ1 + w0 > 0 =⇒ log
p(ω1)

p(ω2)
> −(µ1 − µ2)

TΣ−1µ1 +
1

2

(
µT1 Σ−1µ1 − µT2 Σ−1µ2

)
=⇒ p(ω1)

p(ω2)
> exp

(
−(µ1 − µ2)

TΣ−1µ1 +
1

2

(
µT1 Σ−1µ1 − µT2 Σ−1µ2

))
=⇒ p(ω1)

p(ω2)
> exp (−A1)

where

A1 = (µ1 − µ2)
TΣ−1µ1 −

1

2

(
µT1 Σ−1µ1 − µT2 Σ−1µ2

)
Similarly

wTµ2 + w0 > 0 =⇒ p(ω1)

p(ω2)
> exp

(
−(µ1 − µ2)

TΣ−1µ2 +
1

2

(
µT1 Σ−1µ1 − µT2 Σ−1µ2

))
=⇒ p(ω1)

p(ω2)
> exp (−A2)

Therefore for the decision hyper-plane not to pass between the two means
the following must hold:

p(ω1)

p(ω2)
> max {exp (−A1), exp (−A2)}

The other set of conditions yields:

p(ω1)

p(ω2)
< min {exp (−A1), exp (−A2)}

16



Exercises 10: Convergence of the linear perceptron learning rule

Suppose we have n linearly separable points xi in Rp in general position,
with class labels yi ∈ {−1, 1}. Prove that the perceptron learning algorithm
converges to a separating hyperplane in a finite number of steps by proving
these sub-problems:

1. Denote a hyperplane by f(x) = wt
1x + w0 = 0, or in more compact

notation wtx∗ = 0, where x∗ = (x, 1) and w = (w1, w0). Let zi =
x∗i /‖x∗i ‖. Show that separability implies the existence of a wsep such
that yiw

T
sep zi ≥ 1 ∀i

2. Given a current wold, the perceptron algorithm identifies a point zi
that is misclassified, and produces the update wnew ← wold + yi zi.
Show that ‖wnew − wsep‖2 ≤ ‖wold − wsep‖2 − 1, and hence that
the algorithm converges to a separating hyperplane in no more than
‖wstart −wsep‖2 steps.

Solution:

1) Let wS be a hyperplane which separates the data then

yiw
t
S x
∗
i > 0 for i = 1, . . . , n

Let ε > 0 be defined such that

yiw
t
S x
∗
i ≥ ε for i = 1, . . . , n

and also note that as x∗ = (x, 1) =⇒ ‖x∗‖ ≥ 1. Define γ ≥ 1 such that

‖x∗i ‖ ≤ γ for i = 1, . . . , n

Let wsep = γwS
ε and then for i = 1, . . . , n

yiw
t
sep zi = yi

γwt
S

ε

x∗i
‖x∗i ‖

=
γ

‖x∗i ‖ε
(yiw

t
S x
∗
i )

≥ γ

‖x∗i ‖ε
ε, as yi w

t
S x∗i ≥ ε

=
γ

‖x∗i ‖
≥ 1, as γ ≥ ‖x∗i ‖ ∀i

Thus we have shown that

yiw
t
sep zi ≥ 1 for i = 1, . . . , n

17



2) Here we prove the first part of the question - each iteration of the linear
perceptron learning algorithm makes the estimate closer to a separating
hyperplane:

‖wnew −wsep‖2 = (wnew −wsep)t(wnew −wsep)

= (wold + yizi −wsep)t(wold + yizi −wsep), as wnew = wold + yi zi

= (wold −wsep)t(wold −wsep) + 2 yi(wold −wsep)t zi + y2i z
t
i zi

= ‖wold −wsep‖2 + 2 (yiw
t
old zi︸ ︷︷ ︸
≤0

− yiwt
sep zi︸ ︷︷ ︸
≥1

)

︸ ︷︷ ︸
≤−1

+ 1, as y2i = 1 and zti zi = 1

≤ ‖wold −wsep‖2 + 2(−1) + 1, as shown earlier yi w
t
sep zi ≥ 1

and yi w
t
old zi ≤ 0 as point zi was misclassified

= ‖wold −wsep‖2 − 1

In summary

‖wnew −wsep‖2 ≤ ‖wold −wsep‖2 − 1

Let w(t) be the tth estimate of the seperating hyperplane and w(0) the initial
estimate of this hyperplane. Then using the result just proved:

‖w(t) −wsep‖2 ≤ ‖w(t−1) −wsep‖2 − 1

≤ ‖w(t−2) −wsep‖2 − 1− 1

...

≤ ‖w(0) −wsep‖2 − t

Now let N be the smallest integer such that ‖w(0) −wsep‖2 ≥ N then

‖w(t) −wsep‖2 ≤ ‖w(0) −wsep‖2 − t ≤ N − t

As ‖w(t) −wsep‖2 ≥ 0 then either t ≤ N and algorithm has not converged
or else t > N and the algorithm has converged.

From this we conclude that the linear perceptron algorithm must converge
in a finite number of steps and the maximum number of steps is defined by
‖w(0) −wsep‖2.
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Exercises 11: Cross Validation

For k-fold cross-validation what are disdavantages and advantages for small
and large k values? Why? Let N be the number of training examples.

Solution:

What value should we choose for k? With k = N , the cross-validation
estimator is approximately unbiased for the true (expected) prediction error,
but can have high variance because the N “training sets” are so similar to
one another. The computational burden is also considerable, requiring N
applications of the learning method.

While on the other hand with k = 5 cross-validation has lower variance. But
bias could be a problem, depending on how the performance of the learning
method varies with the size of the training set.

Overall, five- or tenfold cross-validation are recommended as a good com-
promise by the experts!

Remeber bias measures the amount by which the average of our estimate
differs from the true mean while the variance is squared deviation of the
predictor around its mean.
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Exercises 12: LDA

Assume we have a two class problem. The feature vectors extracted from
each class are two dimensional and the class conditional densities are:

p(x|ω1) ∼ N(µ1,Σ) and p(x|ω2) ∼ N(µ2,Σ)

where

µ1 = (1, 1)T , µ2 = (3, 2)T and Σ =

(
σ2 0
0 0.22

)
In LDA you project each feature vector generated by these class conditionals
onto a line via wTx to obtain a scalar value.

For σ = 1 sketch the class conditional densities and indicate why in this
case it is better to project feature vectors from these two classes onto the y-
axis as opposed to the x-axis for performing discrimination on the resulting
scalar values.

For what values of σ will it be better to project onto the x-axis ?

For what values of σ will the y-axis tend towards the optimal projection line
with respect to the Fisher criterion?

Solution:

The mean of points projected from the two class is defined as

µ̃1 = wTµ1 =

{
1 if wT = (1, 0)

1 if wT = (0, 1)
, µ̃2 = wTµ2 =

{
3 if wT = (1, 0)

2 if wT = (0, 1)

The variance of points projected from the two class is defined as

σ21 = σ22 = wTΣw =

{
σ2 if wT = (1, 0)

.22 if wT = (0, 1)
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Obviously projecting onto the y-axis induces a much smaller amount of
confusion between the two classes then projecting onto the x-axis. Thus to
perform discrimination it would be better to project onto the y-axis.

For what values of σ will it be better to project onto the x-axis ?

We will use the Fisher score to decide which projection is better. Remem-
ber this score is proportional to

(µ̃1 − µ̃2)2
σ21 + σ22

=

{
4

2σ2 = 2
σ2 if wT = (1, 0)

1
2×.22 = 25

2 if wT = (0, 1)

If we want the Fisher score to be larger for projecting onto the x-axis then

2

σ2
>

25

2
when σ <

2

5

For what values of σ will the y-axis tend towards the optimal
projection line with respect to the Fisher criterion?

The optimal projection line according to the Fisher criterion is

w∗ ∝ (Σ + Σ)−1(µ2 − µ2) =
1

2
×
(

1
σ2 0
0 25

)(
2
1

)
=

(
1
σ2

25
2

)

The optimal projection w∗ tends to

(
0
1

)
when σ → ∞. Thus for large

values of σ you should project onto the y-axis.
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Exercises 13:

Draw the decision boundary formed by a 1-nearest neighbour classifier in
the two different figures below. Not that the sparse set of points is a subset
of the dense ones. What lesson should be learned from these examples?

(a) (b)

Solution:

(a) (b)

Drawing conclusions and learning decision boundaries from a small amount
of training data is, generally, not a very good idea! Also it should be noted
that one cannot usually extrapolate information far away from the training
data.
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Exercises 14: Näıve Bayes and Logistic regression*

Assume we have a two class problem. The feature vector x = (x1, . . . , xd)
extracted from each class is d dimensional and each xi ∈ {0, 1}. Let

p(xi = 1 |ω = 1) = θi1 p(xi = 0 |ω = 1) = 1− θi1
p(xi = 1 |ω = 0) = θi0 p(xi = 0 |ω = 0) = 1− θi0

Show that

i) The above likelihoods can be written as p(xi |ω = j) = θxiij (1− θij)1−xi
for j = 0, 1.

ii) Assuming a independence between the features write down the expres-
sion for p(x |ω = 0).

iii) If P (ω = 0) = p0 write down an expression for p(ω = 0 |x) (this
corresponds to the Naive Bayes’ model).

iv) Show how p(ω = 0 |x) can be written in the form

p(ω = 0 |x) =
1

1 + exp (w0 + wT x)

v) Then what are the expressions for p(ω = 0 |x) and

log
p(ω = 1 |x)

p(ω = 0 |x)

This is the same form as which discriminative model?

Solution:

i) Want to show

p(xi |ω = j) = θxiij (1− θij)1−xi for j = 0, 1

If j = 0 then

p(xi=0 |ω=0)=θ0i0 (1−θi0)1−0=1−θi0 and p(xi=1 |ω=0)=θ1i0 (1−θi0)1−1=θi0

and if j = 1 then

p(xi=0 |ω=1)=θ0i1 (1−θi1)1−0=1−θi1 and p(xi=1 |ω=1)=θ1i1 (1−θi1)1−1=θi1

Both of these are indeed equal to our original definition of p(xi = 0 |ω =
0) etc..
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ii)

p(x |ω = 0) =
d∏
i=1

p(xi |ω = 0) =
d∏
i=1

θxii0 (1− θi0)1−xi

iii)

p(ω = 0 |x) =
p(x |ω = 0)P (ω = 0)

p(x |ω = 0)P (ω = 0) + p(x |ω = 1)P (ω = 1)

=
p0
∏d
i=1 θ

xi
i0 (1− θi0)1−xi

p0
∏d
i=1 θ

xi
i0 (1− θi0)1−xi + (1− p0)

∏d
i=1 θ

xi
i1 (1− θi1)1−xi

iv)

p(ω = 0 |x) =
p0
∏d
i=1 θ

xi
i0 (1− θi0)1−xi

p0
∏d
i=1 θ

xi
i0 (1− θi0)1−xi + (1− p0)

∏d
i=1 θ

xi
i1 (1− θi1)1−xi

=
1

1 +
(1−p0)

∏d
i=1 θ

xi
i1 (1−θi1)1−xi

p0
∏d

i=1 θ
xi
i0 (1−θi0)1−xi

=
1

1 + exp

(
log

{
(1−p0)

∏d
i=1 θ

xi
i1 (1−θi1)1−xi

p0
∏d

i=1 θ
xi
i0 (1−θi0)1−xi

})
=

1

1+exp(
∑
xi[log θi1−log(1−θi1)−log θi0+log(1−θi0)]+log(1−p0)−log(p0)+

∑
[log(1−θi1)−log(1−θi0)])

=
1

1 + exp ( wTx + w0)

where

w0 = log(1− p0)− log(p0) +
∑

[log(1− θi1)− log(1− θi0)]

wi = log θi1 − log(1− θi1)− log θi0 + log(1− θi0) for i = 1, 2, . . . , d.

v) p(ω = 1 |x) can be expressed as:

p(ω = 1 |x) = 1− p(ω = 0 |x) = 1− 1

1 + exp ( wTx + w0)
=

exp
(
wTx + w0

)
1 + exp ( wTx + w0)

Therefore

log
p(ω = 1 |x)

p(ω = 0 |x)
= log

(
exp

(
wTx + w0

)
1

)
= wTx + w0
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This is the same form as in logistic regression. Thus if one had lots of
training data and no noise then the classifier found via logistic regression
and the generative modelling of the question should be exactly the
same. However, this is unlikely to the case. In the generative modelling
case we have 2d + 2 parameters to estimate from the training data
while in the logistic regression case there are only d + 1 parameters.
Perhaps then if training data is sparse and one is only interested in
the separating hyperplane, it would be more robust to estimate the
separating hyperplane directly as opposed to trying to estimate the
underlying generative model of the two classes.
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Exercises 15: Fisher’s Linear Discriminant and MSE*

The least squares approach to the determination of a linear discriminant
was based on the goal of making the model predictions as close as possible
to a set of target values. By constrast, the Fisher creterion is derived by
requiring maximum class separation in the output space in conjuction with
minimum within class spread. For the two-class problem the Fisher criterion
can be seen as a special case of least squares.

Take the targets for class ω1 and to be n
n1

where n1 is the number of patterns
from class ω1 and n is the total number of patterns. For class ω2 take the
targets to be − n

n2
where n2 is the number of patterns from class ω2.

The sum-of-squares error function is written as

J =
1

2

n∑
i=1

(wTxi + w0 − ti)2

where each ti = n
n1

or − n
n2

depending if xi belongs to class ω1 or ω2. Show
that J is minimized when

w ∝ S−1W (m2 −m1)

where

mi =
1

ni

∑
x∈ωi

x and Sw =
∑
x∈ω1

(x−m1)(x−m1)
T +

∑
x∈ω2

(x−m2)(x−m2)
T

Solution:

We want to maximize J with respect to w0 and w. Therefore we compute
the partial derivatives and set to zero:

∂J

∂wo
=

n∑
i=1

(wTxi + w0 − ti) = 0 (3)

∂J

∂w
=

n∑
i=1

(wTxi + w0 − ti)xi = 0 (4)

Expanding equation (??) gives

nw0 = −
n∑
i=1

wTxi +

n∑
i=1

ti

However, filling in the values assigned to ti when it is from class ω1 or ω2

get

n∑
i=1

ti = n1
n

n1
− n2

n

n2
= 0
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Thus

w0 = − 1

n

n∑
i=1

wTxi = −wT 1

n

n∑
i=1

xi = −wTm

Rearranging equation (??) get

n∑
i=1

(wTxi)xi + w0

∑
xi −

∑
tixi = 0 (5)

Now

n∑
i=1

(wTxi)xi =
n∑
i=1

xi x
T
i w =

( ∑
xi∈ω1

xi x
T
i +

∑
xi∈ω2

xi x
T
i

)
w

and ∑
tixi =

∑
xi∈ω1

ti xi +
∑
xi∈ω2

ti xi =
n

n1

∑
xi∈ω1

xi −
n

n2

∑
xi∈ω2

xi

=
n

n1
n1m1 −

n

n2
n2m2

= n (m1 −m2)

and

n∑
i=1

w0 xi = −wT m
n∑
i=1

xi = −(
n∑
i=1

xi)m
T w = −nmmT w

Now

m =
n1
n
m1 +

n2
n
m2

Therefore

nmmT =
1

n
(n1m1 + n2m2)(n1m1 + n2m2)T

=
1

n
(n21m1m

T
1 + n22m2m

T
2 + 2n1n2m1m

T
2 )

= n1m1m
T
1 −

n1 n2
n

m1m
T
1 + n2m2m

T
2 −

n1 n2
n

m2m
T
2 + 2

n1 n2
n

m1m
T
2

= n1m1m
T
1 + n2m2m

T
2 −

n1 n2
n

(m1 −m2)(m1 −m2)T
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But through some algebra trickery∑
xi∈ω1

xi x
T
i − n1m1m

T
1 =

∑
xi∈ω1

xi x
T
i − 2n1m1m

T
1 + n1m1m

T
1

=
∑
xi∈ω1

xi x
T
i − 2(

∑
xi∈ω1

xi)m
T
1 +

∑
xi∈ω1

m1m
T
1

=
∑
xi∈ω1

(xi x
T
i − 2xim

T
1 + m1m

T
1 )

=
∑
xi∈ω1

(xi −m1) (xi −m1)
T

Similarly ∑
xi∈ω2

xi x
T
i − n2m2m

T
2 =

∑
xi∈ω2

(xi −m2) (xi −m2)
T

Putting some of this together

n∑
i=1

(wTxi)xi + w0

∑
xi =

(
n∑
i=1

xi x
T
i − nmmT

)
w

=
(
SW +

n1n2
n

(m1 −m2)(m1 −m2)
T
)
w

From equation (??) and all the enusing algebra get

SW w +
n1n2
n

(m1 −m2)(m1 −m2)
Tw = n (m2 −m1)

Now notice that

(m1 −m2)(m1 −m2)
T w ∝ (m1 −m2)

Thus

SW w ∝ (m2 −m1)

=⇒ w = S−1W (m2 −m1)

Have ignored the irrelevant scale factors.

Thus the weight vector corresponds to that found by the Fisher criterion.
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Exercises 16: LDA II

We have two class-conditional probabilities:

p(x|ω1) ∝ exp
(
−.5xTΣ−1x

)
p(x|ω2) ∝ exp

(
−.5 (x− µ)TΣ−1(x− µ)

)
where x = (x, y) is a two dimensional vector and

µ = (1, 1)T Σ =

(
1 0
0 σ2

)
Define the function f(x) = ax + by which is the projection of the point x
onto a line passing through the origin.

1. Compute the values µi = E [f(x)|ωi] and σ2i = Var [f(x)|ωi] for i = 1, 2

2. Find the values of a and b that maximize the statistical Fisher dis-
criminant criterion:

J(a, b) =
(µ1 − µ2)2
σ21 + σ22

Solution

1) Compute the expected value of the projection onto the line for each class:

E [f(x) |ωi] = E [ax+ by |ωi] = aE [x |ωi] + bE [y |ωi] =

{
0 for class ω1

a+ b for class ω2

Next compute the variance, remember

Var [f(x) |ωi] = E
[
f(x)2 |ωi

]
− (E [f(x) |ωi])2 (6)

First

E
[
f(x)2 |ωi

]
= E

[
a2x2 + b2y2 + 2abxy |ωi

]
= a2 E

[
x2 |ωi

]
+ b2 E

[
y2 |ωi

]
+ 2abE [xy |ωi]

Using the definition of the variance from equation (??) then:

Var [x |ωi] = E
[
x2 |ωi

]
− (E [x |ωi])2 and Var [y |ωi] = E

[
y2 |ωi

]
− (E [y |ωi])2

and this implies that

E
[
x2 |ωi

]
=

{
1 for class ω1

2 for class ω2

E
[
y2 |ωi

]
=

{
σ2 for class ω1

σ2 + 1 for class ω2
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As Σ is a diagonal matrix then the variables x and y are uncorrelated thus:

E [xy |ωi] = E [x |ωi] E [y |ωi] =

{
0 for class ω1

1 for class ω2

Therefore by plugging in the appropriate values

E
[
f(x)2 |ωi

]
=

{
a2 + σ2b2 for class ω1

2a2 + b2(σ2 + 1) + 2ab for class ω2

and plugging in more values

Var [f(x) |ωi] =

{
a2 + b2σ2 for class ω1

a2 + b2σ2 for class ω2

2) Want to maximize J(a, b) with respect to a and b where:

J(a, b) =
(µ1 − µ2)2
σ21 + σ22

=
(a+ b)2

2(a2 + b2σ2)

Thus compute the appropriate derivative and set to zero

∂J

∂a
=

2(a+ b)

2(a2 + b2σ2)
− (a+ b)2

2(a2 + b2σ2)2
× 2a

=
(a+ b)(a2 + b2σ2)− a(a+ b)2

(a2 + b2σ2)2
= 0

Taking the numerator we get

(a+ b)(a2 + b2σ2)− a(a+ b)2 = 0

=⇒ (a2 + b2σ2)− a(a+ b) = 0

=⇒ a = bσ2

Thus if

σ = 1 =⇒ a = b

σ = 2 =⇒ a = 4b

σ = 10 =⇒ a = 100b

The graphs below show the class conditional distributions and projection
line found using the maximizing the Fisher criterion.
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Exercises 17: Gaussians*

Have the following model for IQ and test scores S

IQ ∼ N (100, 152), S | IQ ∼ N (IQ, 102)

You take the test and get a score of s1 = 130.

i) Derive the posterior density p(IQ | s1 = 130)

ii) You are a bit disappointed that Bayesians would consider you to have
an IQ less then your test score. So you decide to take the test again.
Let your score on the second test be S2. What is the posterior density
for p(S2 | s1 = 130)?

Solution:

i) Applying the chain rule get(
S
IQ

)
∼ N

((
100
100

)
,

(
152 + 102 102

102 102

))
(7)

then if reverse the order of the variables get(
IQ
S

)
∼ N

((
100
100

)
,

(
102 102

152 + 102 102

))
(8)

Apply the conditional of a Gaussian then

IQ |S = 130 ∼ N (µ, σ2) (9)

where

µ = 100 +
102

102 + 152
(130− 100) = 109.2308 (10)

σ2 = 102 − 102102

102 + 152
= 8.32052 (11)

ii)

p(S2 |S1 = 130) =

∫ ∞
q=−∞

p(S2, IQ = q|S1 = 130) dq

=

∫ ∞
q=−∞

p(S2 | IQ = q, S1 = 130) p(IQ = q |S1 = 130) dq

=

∫ ∞
q=−∞

p(S2 | IQ = q)N (q; µ, σ2) dq

=

∫ ∞
q=−∞

N (s2; q, 102)N (q; µ, σ2) dq, after some work

= N (s2; µ, 102 + σ2) = N (s2; 109.23, 13.0892)
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