
Course: DD2427 - Exercise Class 2

Questions with an asterix(*) are a bit more involved and are more to aid
understanding as opposed to representing potentional exam questions.

Exercises 1: Linear Separability

Given a set of data points {xi}, we can define the convex hull to be the set
of all points x given by

x =
∑
i

αi xi

where αi ≥ 0 and
∑

i αi = 1. Consider a set of points {yi} together with
their corresponding convex hull. By definition, the two sets of points will
be linearly separable if there exists a vector ŵ and a scalar ω0 such that
ŵt xi + ω0 > 0 for all xi, and ŵt xi + ω0 < 0 for all yi. Show that if their
convex hulls intersect, the two sets of points cannot be linearly separable,
and conversely that if they are linearly separable, their convex hulls do not
intersect.

Solution:

Part 1

Assume the convex hulls intersect and thus there exists z such that

z =
∑
i

ηi xi =
∑
j

γj yj

where for all i, j

αi, γj ≥ 0, and
∑
i

ηi =
∑
j

γj = 1

If the two sets of points are linearly separable, there exists a separating
hyper-plane w, w0 such that

wt xi + w0 > 0 ∀i
wt yj + w0 < 0 ∀j

Then

wtz + w0 = wt
∑
i

ηi xi + w0

=
∑
i

ηiw
txi + w0

∑
i

ηi, as
∑

i ηi = 1

=
∑
i

ηi (wtxi + w0)
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Similarly

wT z + w0 =
∑
j

γj (wTyj + w0)

Thus ∑
i

ηi (wTxi + w0) =
∑
j

γj (wTyj + w0)

But this implies that

ηi = 0 ∀i and γj = 0 ∀j

as wT xi + w0 > 0 ∀i and wT yj + w0 < 0 ∀j and the η′is and γj ’s are non-
negative. However, this is impossible as

∑
i ηi =

∑
j γj = 1. Thus assuming

the two sets of points are linearly separable leads us to a contradiction.
Therefore this assumption is false.

Thus if the convex hulls of two separate sets of points intersect =⇒ the
two sets are not linearly separable.

Part 2

Assume that the two sets of points are linearly separable.

Then imagine that there exists a point z that belongs to both convex hulls,
that is

z =
∑
i

ηi xi =
∑
j

γj yj

Therefore

wT z + w0 = wT
∑
i

ηi xi + w0

=
∑
i

ηiw
Txi + w0

∑
i

ηi, as
∑

i ηi = 1

=
∑
i

ηi (wTxi + w0) > 0

as each wTxi + w0 > 0 and the ηj ’s are non-negative and
∑
ηj = 1. The

latter means that there is at least one ηj > 0. But we also have

wT z + w0 =
∑
j

γj (wTyj + w0) < 0

as each wTyj + w0 < 0 and the γj ’s are non-negative and
∑
γj = 1. The

latter means that there is at least one γj > 0.
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Therefore we have

wT z + w0 > 0 and wT z + w0 < 0

This is not possible. Therefore the assumption that the convex hulls intersect
is incorrect.

Thus if the two sets of points are linearly separable =⇒ their convex hulls
cannot intersect.
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Exercises 2: Boosting

Imagine you have started your ex-jobb project and you have hired some first
year students to label some training data into two classes for you. Unfortu-
nately, the night before working for you the student spent the night partying
until early in the morning. Thus he has created a labelled dataset with lots
of labelling errors, say upto 20% of the data is misclassified. What conse-
quences will this have for your project if you are building a classifier using
a boosting mechanism? (Or indeed using a nearest neighbour classifier?)

What learning mechanism could I use instead to fit separate models to the
two different classes which would ignore the labels?

Solution:

Boosting puts increasing emphasis on the hard training examples. This is, of
course, great if the data is correctly labelled. However, if training examples
are incorrectly labelled then there can potentially be problems.

Consider the following example in the picture below. The left image shows
the feature vectors from two classes where each example is correctly labelled.
They are clearly linearly separable. Boosting with oriented lines as the weak
classifiers could easily find a good strong classifier. However, in the right
picture, it is the same feature data but some of them are now incorrectly
labelled. Boosting will now devote many weak classifiers to correctly clas-
sifying the incorrectly labelled examples. This will undoubtedly lead to a
strong classifier with a much more complicated strong classifier which will
probably have an incorrect decision boundary.

Correctly labelled training data Errors in labelling

Similarly, if you use a nearest neighbour classifier with data which has cor-
rupted labels you can run into problems. Consider the decision boundary
induced by a nearest neighbour classifier for the training data in the left
figure.

You could, of course, use unsupervised learning! For instance k means cluster
could be used to partition the feature vectors into two classes and then you
could fit or you similarly you could use EM and fit a Gaussian mixture model
to the training data.
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Exercises 3: Boosting II

a) What does the AdaBoost algorithm produce from a set of weak classifiers
and labelled training data?

b) Describe the steps of the AdaBoost algorithm.

c) In your opinion what is the critical step in the AdaBoost algorithm?

d) What quality must the weak classifiers possess in order for AdaBoost to
run successfully?

e) What are the strengths/weakness of using boosting to solve classification
problems?

Solution:

a) A strong classifier which is a weighted sum of weak classifiers which has
a much better performance than each of the individual classifiers.

b) See lecture notes.

c) The re-weighting of the training examples. So that at the next round of
boosting emphasis is put on hard examples.

d) They must perform better than chance.

e) Strengths Good generalization properties; it tends not to over-fit even
when the training error has reached zero; Weaknesses Requires a lot
of labelled training data; Training is slow; Not robust to errors in the
labellings of the training data.
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Exercises 4:

Imagine you have a face detector such that

P (f̂ = 1 | f = 1) = 1− ε and P (f̂ = 0 | f = 0) = 1− α

where f ∈ {0, 1} indicates the ground truth of whether a face is present or
not while f̂ ∈ {0, 1} is the prediction of the face detector.

Imagine you have K independent face detectors each having the same true
and false positive rate of the detector just described. If these detectors are
applied to an image patch we get

f̂ = (f̂1, f̂2, . . . , f̂K)

where f̂i ∈ {0, 1} is the prediction of the ith detector. kf̂ =
∑

i f̂i is equal
to the number of detectors which predict a face while K − kf̂ is the number
which predict a non-face. Let γ be the prior probability that the patch
contains a face. Given this information answer the following:

a) (.2) Write down the expression, remembering to exploit the indepen-
dence, for

p(f̂ | f = 1)

b) (.2) What is the posterior probability the patch contains a face given f̂?

c) (.3) Let γ = ε = α = .01 what is the constraint kf̂ must fulfill such that

p(f = 1 | f̂) ≥ .99

For K = 4, what is the minimal value of kf̂ such that the above perfor-
mance level is met? ForK = 10? And asK →∞ what ratio of detections
should correctly predict a face to ensure this level of performance.

d) (.3) Define a final classifier such that

F (f̂) =

{
1 if

∑
i f̂i ≥ K0

0 otherwise

Continuing with the parameter settings just given, write down an expres-
sion for the P (error) of this classifier.

Solution:

6



a)

p(f̂ | f = 1) =

K∏
i=1

p(f̂i | f = 1) =

K∏
i=1

(1− ε)f̂iε1−f̂i = (1− ε)
∑

i f̂iεK−
∑

i f̂i

= (1− ε)kf̂ εK−kf̂

b)

p(f = 1 | f̂) =
p(f̂ | f = 1) p(f = 1)

p(f̂)
=

γ (1− ε)kf̂ εK−kf̂
γ (1− ε)kf̂ εK−kf̂ + (1− γ)αkf̂ (1− α)K−kf̂

c) As γ = α = γ then

p(f = 1 | f̂) =
ε (1− ε)kf̂ εK−kf̂

ε (1− ε)kf̂ εK−kf̂ + (1− ε) εkf̂ (1− ε)K−kf̂

=
(1− ε)kf̂ εK−kf̂+1

(1− ε)kf̂ εK−kf̂+1 + εkf̂ (1− ε)K−kf̂+1
≥ A

This implies that

(1− ε)kf̂ εK−kf̂+1(1−A) ≥ Aεkf̂ (1− ε)K−kf̂+1

kf̂ log (1− ε) + (K − kf̂ + 1) log ε+ log (1−A) ≥ logA+ kf̂ log ε+ (K − kf̂ + 1) log (1− ε)

2 kf̂ (log (1− ε)− log ε) ≥ logA− log (1−A) + (K + 1)(log (1− ε)− log ε)

and finally

kf̂ ≥
logA− log (1−A)

2(log (1− ε)− log ε)
+

1

2
(K + 1)

Substituting in the values of ε = .01 and A = .99 get

kf̂ ≥ .5K + 1

d) There are two types of error we can make. The first is to classify a face
patch as a non-face patch. The probability of this occurring is:

P (F (f̂) = 0|f = 1) =
∑

all f̂ s.t.
∑

f̂i<K0

p(f̂ |f = 1) =

K0−1∑
k=0

∑
all f̂ s.t.

∑
f̂i = k

p(f̂ |f = 1)

=

K0−1∑
k=0

∑
all f̂ s.t.

∑
f̂i = k

(1− ε)kεK−k

=

K0−1∑
k=0

(
K

k

)
(1− ε)kεK−k
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While the second is to classify a non-face patch as a face patch. The
probability of this occurring is:

p(F (f̂) = 1|f = 0) =
∑

all f̂ s.t.
∑
f̂i≥K0

p(f̂ |f = 0) =

K∑
k=K0

(
K

k

)
αk(1− α)K−k

Therefore the probability of error

P (error) = P (f = 0)P (F (f̂) = 1 | f = 0) + P (f = 1)P (F (f̂) = 0 | f = 1)

= (1− γ)
K∑

k=K0

(
K

k

)
αk(1− α)K−k + γ

K0−1∑
k=0

(
K

k

)
(1− ε)kεK−k
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Exercises 5: k means clustering

Consider the k-means algorithm applied to a large amount of one-dimensional
data that comes from either of one of two classes with equal prior probabil-
ity. The class conditional distribution for each class is Gaussian with true
means µ = ±1 and both have standard deviation σ = 1. What happens
when you apply the k-means algorithm with k = 2 to this data? What can
you say about the means of the two clusters found and the mean of the
class-conditional distributions.

Solution:

The left image shows training examples randomly generated from each class.
If k-means clustering is applied to this data then the clusters found are shown
in the right image. Note the means of the distributions and the clusters are
shown by black crosses.

Training examples plus labels Labels after k-means clustering

The means of the clusters found by k-means are −1.2058 and 1.1488. Thus,
the distance between the cluster centres is larger than the distance between
the means of the class-conditional distributions.
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Exercises 6: k means clustering II

Consider these two clusters
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a) Will the standard k-means algorithm have a problem with finding the
two clusters even if good initial guesses of the cluster centres are given?

b) Why?

c) How could we quickly fix this problem?

Solution:

a) Yes.

b) In the k−means algorithm each point is assigned to the cluster such that

i∗ = min
i
‖x− µi‖2

However, if a cluster has more variation in one direction over another
then a measure of cluster membership using the Mahalobnis distance
would be a better bet.

c) One could adapt the k−means algorithm such that this cost score is
minimized

K∑
i=1

∑
x∈Ci

(x− µi)
t Σ−1i (x− µi)

where Σi is the estimated covariance matrix of the ith cluster which
would be updated after data point was assigned to a cluster using this
measure. This measure allows one to model elongated and rotated cluster
blobs.
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Exercises 7: Decision stumps

The type of weak binary classifier for data x ∈ Rd you have been using in
the face lab has a name. It is called a decision stump. As you know the
classification rule has parameters q ∈ {−1, 1}, j ∈ {1, 2, . . . , d} and θ and
takes the form:

h(x; j, q, θ) = q × sgn (xj − θ)

Decision stumps classify example x based only on the value of its jth coor-
dinate. θ is a threshold value in R and q is the parity.

Decision stumps, by themselves, are not very powerful classifiers. For in-
stance, a single vertical or horizontal decision stump can only shatter 2
points in R2. However, combining multiple decision stumps can give rise to
more complex classifiers, as you do in the boosting algorithm. In this part,
we calculate the VC dimensions of some combinations of decision stumps.

For points in R2, calculate the VC-dimension of the following sets of classi-
fiers:

a) Convex combinations (i.e. coefficients must be non-negative and sum to
1) of two vertical decision stumps.

b) Convex combinations of one vertical and one horizontal decision stump.

Solution:

a) Given two decision stump classifiers h1(x) and h2(x), the classifier ob-
tained as a convex combination is given by sgn (α1h1(x) + α2h2(x)). As
stated in the problem set, a single vertical decision stump (and hence
also a convex combination of two vertical decision stumps) can shatter
2 points in R2 . However, no set of 3 points can be shattered. For the
purpose of labelling points using vertical decision stumps, we need only
consider the horizontal coordinates of the points. Let these be x1, x2
and x3. Further, let sgn (0) be equal to +1. In this case, the labelling
x1 = −1, x2 = +1, x3 = −1 is not possible. Changing the definition of
sgn (0) does not help, as then the case x1 = +1, x2 = −1, x3 = +1 is not
possible.

b) Consider 3 points that form an equilateral triangle, one of whose sides is
parallel to the horizontal axis. Any required labelling of these 3 points
can be obtained by using either a single horizontal or a single vertical
decision stump. Thus, the set of convex combinations of a horizontal
and a vertical decision stump (in particular, the subset where one of the
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two weights in the combination is unity and the other zero) can shatter
3 points.

This convex combination divides the xy−plane into four quadrants. Let
the red color denote region the quadrants which generate a positive value.
We assume that sgn (0) is equal to +1 (it is easy to show that the opposite
assumption leads to equivalent results.)

signs classifier value α1 >
1
2 α1 <

1
2 α1 = 1

2

(+, +)

(+, -)(-, -)

(-, +) +1

-1 2     -1α1 

1 - 2 α1 

(+, +)

(+, -)(-, -)

(-, +) +1

-1 2     -1α1 

1 - 2 α1 

Enumerating all the possible combination of the two base classifiers we
can split the xy−plane in the following ways:

No set of 4 points can be shattered by the given set of classifiers. To see
this consider the two cases in which 4 points can be arranged (ignoring
the cases of 3 or more collinear points, which can clearly not be shattered)
with the above pictures to help you.

• The convex hull of the 4 points is a triangle, with one point lying
strictly inside this convex hull: in this case, labelling the points at
the vertices of the triangle as -1 and the interior point as +1 is not
possible. This is because the interior point cannot lie in a half-space
that does not contain any of the other three points.

• The convex hull of the 4 points is a quadrilateral: in this case, one
of the two labellings of non-adjacent vertices – both+1, remaining
vertices -1, or both-1, remaining vertices +1 – is not possible.
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Exercises 8: VC-dimension I

Remember that in order to prove that a class of functions H has VC-
dimension d you need to show that

• There exists a set of d points which can be shattered by H.

• There exists no set of d+ 1 points that can be shattered by H

a) When does a class of functionsH shatter a set of points X = {x1,x2, . . . ,xn}?

b) Show with appropriate diagrams that there exists 3 points in R2 that can
be shattered by a line.

c) What is the VC-dimension of intervals in R? In this case H is defined
such that each h ∈ H is associated with an interval [a, b] and x ∈ R has
h(x) = 1 if and only if x ∈ [a, b].

d) What is the VC-dimension of the union of k intervals on the real line?
In other words each h ∈ H is associated with k closed intervals [ai, bi],
i = 1, 2, . . . , k and h(x) = 1 if and only if x ∈ ∪ni=1[ai, bi].

e) What is the VC-dimension of axis parallel rectangles in R2? In other
words h ∈ H is associated with 2 closed intervals [ai, bi] for i = 1, 2 and
then for any x = (x1, x2) ∈ R2, h(x) = 1 if and only if xi ∈ [ai, bi] for
i = 1, 2.

f) Show that the VC-dimension of the class H of hyperplanes in R2 is 3?

g) Show that the VC-dimension of the class H of hyperplanes in Rd is ≥
d+ 1?

Solution:

a) See lecture notes.

b) See lecture notes.

c) 2. Obviously can’t shatter 3 points as the x o x cannot be classified
correctly by a single interval.

d) The hardest case to correctly classify is o x o x o . . . x o x. k intervals
can be used to define class x. Thus one can correctly 2k points.
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e) Can shatter 4 points but cannot shatter 5 points.

For any set of 5 points, choose the 4 points that have the max and min
in the first and the second coordinates. Then by definition, (assuming
no ties) the fifth point must be inside a rectangle given by the max and
min points. In this arrangement we cannot assign 1 on the edges and 0
inside. Thus, this proves that we cannot shatter 5 or more points with
rectangles.

(a) 5 points (b) bounding box of the points

f) See lecture notes.

g) See lecture notes.
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Exercises 9: VC-dimension II*

Prove that a oriented hyper-plane cannot shatter d+ 2 points in Rd.

Solution:

Before we prove the above we need the following result:

Radon’s Theorem Let S be set of d + 2 points in d dimensions. Then S
can be partitioned into two (disjoint) subsets S1 and S2 whose convex hulls
intersect.

Prove of Radon’s Theorem

Assume we have d + 2 points xi = (xi,1, xi,2, . . . , xi,d)
T and construct the

matrix B of size (d+ 1)× (d+ 2):

B =



1 1 1 · · · 1
x1,1 x2,1 x3,1 · · · xd+2,1

x1,2 x2,2 x3,2 · · · xd+2,2

x1,d x2,d x3,d · · · xd+2,d


Clearly, since the rank of this matrix is at most d + 1, the columns are
linearly dependent. Let λ = (λ1, x1, . . . , λd+2) be a non-zero vector such
that Bλ = 0. This means that

λ1 x1 + λ2 x2 + · · ·+ λd+2 xd+2 = 0 (1)

λ1 + · · ·+ λd+2 = 0. (2)

Let S1 = {xi : λi > 0} and let S2 = {xi : λi ≤ 0} and then from equation
(1) ∑

i:xi∈S1

λi xi = −
∑

i:xi∈S2

λi xi

Let L =
∑

i:xi∈S1 λi and note that this implies
∑

i:xi∈S2 λi = −L via equation
(2). Then

p =
∑

i:xi∈S1

λi
L

xi

is in the convex hull of S1, using the fact that the λi’s and L are non-negative.
But p is also in the convex hull of S2 since

−
∑

i:xi∈S2

λi
L

xi =
∑

i:xi∈S1

λi
L

xi = p
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So the convex hulls intersect.

Proof that a oriented hyper-plane cannot shatter d + 2 points in
Rd.

If S is a set of d + 2 points, then by Radon’s theorem we may partition S
into sets S1 and S2 whose convex hulls intersect. Let p be a point in that
intersection. No hyperplane can have S1 on one side and S2 on the other
since that would imply that the convex hull of S1 is on one side and the
convex hull of S2 is on the other. which means that p is on both sizes. So,
no set of d+ 2 points can be shattered.
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Exercises 10: Lagrange Multipliers

Minimize

(x1 −
3

2
)2 + (x2 −

1

8
)2

subject to

x21 + x22 ≤ 1
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Exercises 11: SVM

i) Consider the degree-two polynomial kernel defined by K(x, z) = (1 +
xT z)2. Expand this out completely for the three-dimensional case (i.e.,
x = 〈x1, x2, x3〉 and z = 〈z1, z2, z3〉. Verify that this has the same form
as the quadratic expansion, although with different coefficients on the
terms.

ii) Continuing from the previous question, what is the form of Φ so that
K(x, z) = Φ(x)TΦ(z)? (You need only consider the three-dimensional
data case.) How does this differ from the expansion

Φ(x) = 〈x1, x2, x3, x21, x22, x23, x1x2, x1x3, x2x3〉?

iii) Consider optimizing an SVM with squared loss on the ξ variables. That
is, an optimization problem of the form:

min
w,b

1

2
‖w‖2 + λ

∑
n

ξ2n s.t.

yn(wTxn + b) ≥ 1− ξn (∀n)

ξn ≥ 0 (∀n)

Construct the dual formulation for this problem. In particular, con-
struct the Lagrangian, optimize it with respect to w and b, plug these
solutions back in and get an optimization problem just in terms of the
dual (Lagrange) variables α. How does this compare to the dual for-
mulation for the standard SVM?

iv) For D dimensional data, consider using the degree d polynomial kernel
defined by K(x, z) = (1 + xT z)d. What is the general form of the
expansion? What are the coefficients on all the different forms in the
expansion?

Solution:

i)

K(x, z) = (1 + xT z)2

= (1 + (x1, x2, x3) · (z1, z2, z3))2

= (1 + x1 z1 + x2 z2 + x3 z3)
2

= 1 + 2

3∑
i=1

xizi +

3∑
i=1

x2i z
2
i + 2(x1z1x2z2 + x1z1x3z3 + x3z3x2z2)
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ii) Want

Φ(x)TΦ(z) = 1 + 2

3∑
i=1

xizi +

3∑
i=1

x2i z
2
i + 2(x1z1x2z2 + x1z1x3z3 + x3z3x2z2)

Thus

Φ(x) = (1,
√

2x1,
√

2x2,
√

2x3, x
2
1, x

2
2, x

2
3,
√

2x1 x2,
√

2x1 x3,
√

2x2 x3)
T

This differs from

Φ0(x) = (x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3)

in that in this latter transformation there is no constant term and also
in some of the weightings of the terms.

iii) This is the constrained optimization problem we want to solve

min
w,b

1

2
‖w‖2 + C

∑
i

ξ2i s.t.

yi(w
Txi + b) ≥ 1− ξi (∀i)

ξi ≥ 0 (∀i)

The Lagrangian is:

L(w, b, ξ,λ, r) =
1

2
wT w + C

∑
i

ξ2i +
n∑
i=1

λi
[
1− ξi − yi(wTxi + b)

]
−

n∑
i=1

ri ξi

Taking the derivative of L w.r.t. w, b and ξ we get:

∂L
∂w

= w −
∑

λiyixi,

∂L
∂b

= −
∑

λiyi

∂L
∂ξj

= 2C ξj − λj − rj for j = 1, 2, . . . , n

and setting these equal to zero get:

w∗ =
∑

λiyixi,
∑

λiyi = 0, λj + rj = 2C ξj

Plugging these back into the Lagrangian and after some algebra get:

Θ(λ, r) =

n∑
i=1

λi −
1

2C

∑
(λi + ri)

2 − 1

2

n∑
i=1

n∑
j=1

λi λj yi yj x
T
i xj
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The dual formulation of the problem is then

max
λ,r


n∑

i=1

λi −
1

2C

∑
(λi + ri)

2 − 1

2

n∑
i=1

n∑
j=1

λi λj yi yj x
T
i xj


subject to

rj ≥ 0, λj ≥ 0 for j = 1, . . . , n and

n∑
i=1

λiyi = 0

This can be simplified to

max
λ


n∑

i=1

λi −
1

2C

∑
λ2i −

1

2

n∑
i=1

n∑
j=1

λi λj yi yj x
T
i xj


subject to

λj ≥ 0 for j = 1, . . . , n and

n∑
i=1

λiyi = 0

as the terms involving the ri’s are always negative and are maximized
when each ri = 0.

iv) A very useful result is the binomial theorem it states:

(x+ y)n =
n∑
k=0

(
n

k

)
xn−k yk

Therefore

(1 + x)n =

n∑
k=0

(
n

k

)
xk

and the multinomial theorem which states that

(x1 + x2 + · · ·+ xn)s =
∑

j1,j2,...,jn
0≤ji≤s for each i

and j1 + · · ·+ jk = s

s !

j1! j2! · · · jn!
xj11 x

j2
2 . . . xjnn

Let vi = xizi then

K(x, z) = (1 + xT z)d =
d∑
s=0

(
d

s

)
(xT z)s =

d∑
s=0

(
d

s

)( n∑
i=1

vi

)s

=
d∑
s=0

(
d

s

) ∑
j1,j2,...,jn

0≤ji≤s for each i

and j1 + · · ·+ jk = s

s !

j1! j2! · · · jn!
vj11 v

j2
2 . . . vjnn
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Exercises 12: Mixture Models

a) Sketch this one dimensional probability distribution

p(x) = π1N (0, .5) + (1− π1)N (5, 1)

when π1 = 1
2 ; π1 = .1; and π1 = .9.

b) If you have n points generated from p(x) when π1 = 1
2 and you fit a

Gaussian distribution to this data. Sketch what this distribution will
look like. What’s the problem here?

c) This issue highlights a problem with parametric methods. What is it?

d) What method is used to find the parameters of a Gaussian mixture model
from training examples generated from the distribution?

Solution:

a)
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0.6

0.7

0.8

π1 = .5 π1 = .1 π1 = .9

b) In this case the mean of the n sampled points will be between the two
modes of p(x). Therefore the peak of the estimated distribution will occur
aver a region where p(x) is close to zero.

−4 −2 0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

c) If the possible shape of your parametric curve does not match that of the
true distribution then you will not get a could estimate of this distribution.

d) If one knew the number of clusters one could use the EM algorithm.
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Exercises 13: Kernel SVM*

Show that the radial basis function is a valid kernel function

k(x, z) = exp

(
−‖x− z‖2

2σ2

)
Solution:

To show the above we will need the following results - Say k1(., .) and k2(., .)
are valid kernels then the k(., .)’s given by

R1 : k(x, z) = k1(x, z) + k2(x, z) (3)

R2 : k(x, z) = k1(x, z) k2(x, z) (4)

R3 : k(x, z) = a k1(x, z) for all a ∈ R+ (5)

R4 : k(x, z) = k1(x, z) + c for all c ∈ R+ (6)

R5 : k(x, z) = f(x) f(z) for any f : X → R (7)

are also valid kernels

There are several parts to this proof.

Result 1

First we will show that if k1(x, z) is a valid kernel then so is

k(x, z) = exp
(
k1(x, z)/σ2

)
Now remember

ex =
∞∑
i=0

xj

j!

Therefore

k(x, z) = 1 +
∞∑
i=1

1

j!σ2j
(k1(x, z))j

Part a

First we will show that each

1

j!σ2j
(k1(x, z))j

is a valid kernel.

Note that

(k1(x, z))2 = k1(x, z) k1(x, z)
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therefore (k1(x, z))2 is a valid kernel as k1(x, z) is a valid kernel from R2.
If (k1(x, z))j−1 is a valid kernel, then

(k1(x, z))j = k1(x, z)︸ ︷︷ ︸
valid kernel

(k1(x, z))j−1︸ ︷︷ ︸
valid kernel

is a valid kernel by R2. Thus by induction if k1(x, z) is a valid kernel then
(k1(x, z))j is also valid kernel (where j a positive integer).

Next let k2(x, z) = (k1(x, z))j and a = 1
j!σ2j . By definition a > 0 therefore

a k2(x, z) is a valid kernel from R3.

Thus

1

j!σ2j
(k1(x, z))j

is a valid kernel.

Part b

Using induction and R1 it is obvious that

n∑
j=1

kj(x, z)

is a valid kernel if each kj(x, z) is a valid kernel. Therefore

∞∑
i=1

1

j!σ2j
(k1(x, z))j

is a valid kernel and then by R4

exp(k1(x, bz)/σ
2) = 1 +

∞∑
i=1

1

j!σ2j
(k1(x, z))j

is a valid kernel.

Result 2

Next we will show that

k(x, z) = exp

(
−‖x− z‖2

2σ2

)
is a valid kernel.

Firstly

‖x− z‖2 = (x− z)t(x− z) = xtx + ztz− 2xtz
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thus

k(x, z) = exp

(
− xtx

2σ2

)
exp

(
− ztz

2σ2

)
exp

(
xtz

σ2

)
= f(x) f(z)︸ ︷︷ ︸

valid kernel by R5

exp

(
xtz

σ2

)
︸ ︷︷ ︸

valid kernel by the previous result

where f(x) = exp(−.5xtx/σ2) and set k1(x, z) = xtz is obviously a valid
kernel function! Therefore k(x, z) is the product of two valid kernels there-
fore it is a valid kernel.
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Exercises 14: Kernel magic*

Assume you are given m one dimensional training examples and their asso-
ciated labels, that is {(xi, yi)}mi=1 where each xi ∈ R1 and yi ∈ {−1,+1}.

a) Draw a case where you have m = 3 training examples which are not
linearly separable.

b) You know if you transform your one-dimensional data to a higher dimen-
sional space then there is a higher likelihood that they will be linearly
separable. Thus you define a feature transformation φn : R1 → Rn where

φn(x) =

(
e−

x2

2 , x e−
x2

2 , x
2
√
2
e−

x2

2 , . . . , x
n
√
n!
e−

x2

2

)
Explain why any set of 3 points (with no duplicates) can be linearly
separated when transformed via φ2. Similarly explain why any set of n+1
points (with no duplicates) can be linearly separated when transformed
by φn.

c) Consider the case when n→∞ and φn becomes

φ∞(x) =

{
e−

x2

2 , x e−
x2

2 , x
2
√
2
e−

x2

2 , . . . , x
j
√
j!
e−

x2

2 , . . .

}
Can you explicitly construct φ∞(x) ? (Not a trick question)

d) Is there a finite set of points, containing no duplicates, that cannot be
linearly separated after applying φ∞?

e) A linear classifier can be expressed using only the inner products of sup-
port vectors in the transformed feature space. The Kernel trick, exploited
by the SVM, is to define a function K(·, ·) such that

K(x, y) = φ∞(x) · φ∞(y)

where the inner product between two infinite vectors a = (a1, a2, . . .) and
c = (c1, c2, . . .) is defined as

a · c =
∞∑
i=1

ai bi

Given the definition of φ∞ compute the form of K(x, y). Hint you may
want to use the Taylor series expansion of ex:

ex = lim
n→∞

n∑
j=0

xj

j!
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f) With such a high dimensional feature space should we be concerned about
over-fitting?

Solution:

Remember Given a set of n + 1 data points (xi, yi) where no two xi are
the same, then one can always fit a polynomial of degree n

f(x) = w0 + w1x+ w2x
2 + · · ·+ wnx

n

s.t.

f(xi) = w0 + w1xi + w2x
2
i + · · ·+ wnx

n
i = yi

for i = 1, 2, . . . , n+ 1.

a) Draw a case where you have m = 3 training examples which are not
linearly separable.

b) Case I: 3 points We have 3 points x1, x2, x3 with labels y1, y2, y3 and
want to find a w, w0 such that for i = 1, 2, 3:

wTφ2(xi) + w0 > 0 or wTφ2(xi) + w0 < 0

depending on the yi’s. Now

φ2(xi) = e−
x2i
2 (1, xi,

x2i√
2
) for i = 1, 2, 3

From the polynomial result know that there exists (w′0, w
′
1, w

′
2) such that

w′0 + w′1 xi + w′2 x
2
i = yi for i = 1, 2, 3

This implies that for i = 1, 2, 3:

e−
x2i
2 (w′0 + w′1 xi + w′2 x

2
i ) = e−

x2i
2 yi

=⇒ e−
x2i
2 (w′0, w

′
1,
√

2w′2)

 1
xi
x2i√
2

 = e−
x2i
2 yi

=⇒ (w′0, w
′
1,
√

2w′2)φ2(xi) = e−
x2i
2 yi

=⇒ wT φ2(xi) = e−
x2i
2 yi, where wT = (w′0, w

′
1,
√

2w′2)

As e−
x2i
2 > 0 this implies:

wT φ2(xi) > 0 if yi = 1 and wT φ2(xi) < 0 if yi = −1
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Thus wT = (w′0, w
′
1,
√

2w′2) and w0 = 0 is a hyperplane which linearly
separates the points φ2(x1), φ2(x2), φ2(x3). Thus the points φ2(x1), φ2(x2), φ2(x3)
are linearly separable.

Case II: (n+1) points Basically the same argument works for n + 1
points and φn(·). Can construct a polynomial of degree n such that

w′0 + w′1 xi + w′2 x
2
i + · · ·+ w′n x

n
i = yi for i = 1, 2, . . . , n+ 1

From this one can define a hyperplane such that w, w0 such that for
i = 1, . . . , n+ 1

wTφn(xi) + w0 > 0 if yi = 1 and wTφn(xi) + w0 < 0 if yi = −1

c) No.

d) No. Givenm points one can project them into anm dimensional space via
φm−1(·) and in this space the points are linearly separable. So obviously
any finite set of points, without duplicates, can be separated by φ∞(·).

e) If we substitute in the expressions for φ∞ and also use the Taylor series
expansion for ex we can show that:

K(x, y) = φ∞(x) · φ∞(y)

=

∞∑
j=0

xj√
j!
e−

x2

2
yj√
j!
e−

y2

2

= e−
(x2+y2)

2

∞∑
j=0

xj√
j!

yj√
j!

= e−
(x2+y2)

2

∞∑
j=0

(x y)j

j!

= e−
(x2+y2)

2 exy = e−
(x−y)2

2

f) If we are using an SVM to find the separating hyperplane then the prac-
tice of finding the one with largest margin should protect us from over-
fitting. However, there is of course the trade-off to be made between
finding a hyperplane which correctly classifies the training data and hav-
ing the width of the margin. This is controlled by the value C in the notes
and cross-validation should be used to find a value of C which defines a
good trade-off.
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Exercises 15: EM*

We have two coins. The first is a fair coin while the second is not necessarily
fair. In summary:

P (H|coin 1) =
1

2
P (H|coin 2) = α

This procedure is as follows:

Coin 1 is tossed. If this results in a head then coin 1 is tossed
again otherwise coin 2 is tossed.

a) What is the probability that the 2nd toss results in a head ?

b) The above process is repeated N independent times and n2 times a head
is obtained on the 2nd toss. What is the maximum likelihood estimate for
α ?

c) Say we’re told that the process was repeated N times and in total M
heads were obtained (this includes the first and second toss). What two
update equations can we repeatedly apply to obtain an estimate for α ?

Solution:

a)

P (2nd coin toss is a head) = P (HH) + P (TH)

= P (H|coin 1)P (H|coin 1) + P (T |coin 1)P (H|coin 2)

=
1

2
× 1

2
+

1

2
× α =

1

4
+
α

2

b)

P (2nd coin toss results in n2 heads and N − n2 tails) = K

(
1

4
+
α

2

)n2
(

3

4
− α

2

)N−n2

log p1 = logK + n2 log

(
1

4
+
α

2

)
+ (N − n2) log

(
3

4
− α

2

)
Want to maximize this value wrt α. So

∂ log p1
∂α

=n2
2

1 + 2α
− (N − n2)

2

3− 2α
= 0

=⇒ n2
1 + 2α

=
N − n2
3− 2α

=⇒ 4n2 −N = 2Nα

=⇒ α̂ =
4n2 −N

2N
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c) The hidden data is n2 the number of times the second toss was a head.
Let n1 be the number of times the first toss was a head. So M = n1 + n2.

If we have an estimate n̂2 for n2 then from part b of this question we know
we can estimate α by:

α̂ =
4n̂2 −N

2N

Say we have an estimate α̂ for α, then from this and M we want to estimate
n2. Given α̂ and M the expected value of n2 is

n̂2 =
1
4 + α̂

2
3
4 + α̂

2

M =
1 + 2α̂

3 + 2α̂
M

as the ratio n1 : n2 should be the same as 1
2 : (14 + α

2 ).

α can then be estimated as follows. Initialize by setting α(0) = 1
2 . Then

iterate between

n
(t)
2 =

1 + 2α(t)

3 + 2α(t)
M

and

α(t+1) =
4n

(t)
2 −N
2N

until convergence.

29


