
Course: DD2427 - Exercise Class 1

Questions with an asterix(*) are a bit more involved and are more to aid
understanding as opposed to representing potentional exam questions.

Exercises 1: Bayes I

You have written a face detection algorithm. Let a denote the variable that
there is a face in the image and b the output of your algorithm.

a =

{
1 if there is a face in the image

0 there is not a face in the image
b =

{
1 your algorithm reports there’s a face in the image

0 your algorithm reports there’s not a face in the image

Your face detection algorithm has a false positive rate of .05 and a true
positive rate of .85. Your algorithm is examining images that are taken
from your front door.

You run your algorithm on an image taken at 10am (the time when the
postman usually passes your house) and the result is positive. What is the
probability the image contains a face ?

You run your algorithm on an image taken at 2am and the result is positive.
What is the probability the image contains a face ?

Exercises 2: Bayes Decision Theory

A binary 2×2 image is generated by some random mechanism. By studying
a large number of noise free realizations of the images generated it has been
found that [

0 1
1 0

]
has probability 1

4 ,[
1 0
0 1

]
has probability 1

4 ,[
1 1
1 0

]
has probability 1

2

(a priori probabilities). One of these images has been distorted by noise in
the sense that the value of a pixel has been changed with probability ε, that
is

P (observing 0 | the correct value is 1) = P (observing 1 | the correct value is 0) = ε

Assume that the noise in different pixels is independent. Now consider the

1



image [
0 1
1 1

]
Using Bayes theorem calculate the MAP (maximum a posterior) estimation
of the scene if

1. ε = 10%

2. ε = 50%

Exercises 3:

Consider a binary 4× 4 image of a scene with a vertical line. In the correct
image all pixels would be white except one vertical row with black pixels.
Unfortunately, the camera used is far from perfect. Errors in different pixels
are independent with

p(white | line) = p(black | not line) = ε

and consequently

p(black | line) = p(white |not line) = 1− ε
Assume the a priori probability for the line to be located in column 1 or 4
is 0.3 (each) and the a priori probability that the line is in column 2 or 3 is
0.2 (each). Calculate the maximum a posteriori estimation of the following
image when ε = 0.2

Z Z = HS + ε Z, S ε
H n × n ε

0 σ2

Y = Z − 1

4
NZ

N n × n Nij 1 i j
0 HS

Yi i Y

Yi

4×4

ε
1 − ε

ε = 0.2

5 × 3 ω1

ω2 ω3

x
x x

Exercises 4: Bayes’ Decision Theory

Assume you have a two class classification problem. Each class generates a
one dimensional feature vector according to p(x|ωi) = N (µi, σ

2
i ) for i = 1, 2.

The prior probabilities for each class are p(ω1) = p(ω2) = .5. In the graphs
below p(x|ωi) p(ωi) for i = 1, 2 are shown for different values of the µ’s and
σ’s. For each example µ1 = 0, σ1 = 1 and then 1) µ2 = 1.5, σ2 = 1, 2)
µ2 = 1.5, σ2 = .5 and 3) µ2 = 0, σ2 = .5
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(1) µ1 6= µ2, σ1 = σ2 (2) µ1 6= µ2, σ1 > σ2 (3) µ1 = µ2, σ1 > σ2

i) For the two-class problem how is the Bayes’ Classifier defined?

ii) In the figure draw the decision boundaries/boundary defined by a Bayes’
classifier.

iii) For case (2) explicitly calculate the decision boundaries.

iv) For case (2) write down the P (error) for the Bayes’ Classifier and show
in a diagram where the errors are being made.

v) What is optimal about the Bayes’ Classifier?

Exercises 5: Bayes Risk I

Consider the following 2 class classification problem. The likelihood func-
tions for each class is a Gaussian:

P (x|ωi) =
1

σi
√

2π
exp

(
−(x− µi)2

2σ2i

)
with µ1 = 0, σ21 = 5 and µ2 = 3, σ22 = 1. The priors for each class are
P (ω1) = P (ω2) = .5. Define the (mis)classification costs as C11 = C22 = 0,
C12 = 1, C21 =

√
5.

Determine a decision rule minimizing the probability of error.

Exercises 6: k Nearest Neighbour classifier

Remember the distance metric used in a nearest neighbour classifier affects
the performance of the classifier. A commonly used distance metric family
is the Lp norm where

‖x‖p =

(
d∑

i=1

|xi|p
) 1

p
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Consider the case of using a kNN classifier, but with the L1 norm to measure
distances rather than the L2 (Euclidean) norm. Draw (in two dimensions)
a simple case of a binary classification problem for which the L1 classifier
would return a different class for a test point than an L2 classifier. In
particular, draw ≥ 1 training points (one for each class) and a test point
that would be classified differently according to the two distance metrics.

What properties of a data set do you imagine would influence whether the
L1 distance would work better or worse than the L2 distance?

Exercises 7: Nearest neighbour classification

Carefully examine the data from two classes shown in the figure below.

1 2

10

20

30

Answer the following questions about this example.

i) Can you apply a kNN (say with k = 5) classifier on this data using a
Euclidean distance metric and hope to obtain a sensible decision bound-
ary? Explain your answer.

ii) How must the data be processed before a kNN will produce an accurate
decision boundary ?

Exercises 8: Nearest neighbour classification

The bias of a classifier at a point x measures the amount by which the
average of our estimate differs from the true class label:

Bias = E
[
L(y,E

[
f̂(x)

]
)2
]

while the variance of the classifier is the expected squared deviation of

E
[
f̂(x)

]
around its mean

Variance = E
[
(f̂(x)− E

[
f̂(x)

]
)2
]
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Say we use the 0, 1 loss function and a kNN nearest classifier so that

f(x) = sgn

 ∑
xi a neighbor of x

yi


what effect will the size of k have on the bias and variance of our classifier?

Exercises 9: Discriminant Functions I

Let p(x|ωi) ∼ N(µi,Σ) for i = 1, 2 in a two-class d-dimensional problem
with the same covariances but arbitrary means and prior probabilities.

a) Show that the decision boundary between the two classes is a hyper-plane.

b) Need this decision boundary be perpendicular to the line connecting the
two means µ1 and µ2.

c) In terms of the prior probabilities for the two classes P (ω1) and P (ω2)
state the condition that the Bayes decision does not pass between the two
means.

Exercises 10: Convergence of the linear perceptron learning rule

Suppose we have n points xi in Rp in general position, with class labels
yi ∈ {−1, 1}. Prove that the perceptron learning algorithm converges to
a separating hyperplane in a finite number of steps by proving these sub-
problems:

1. Denote a hyperplane by f(x) = wT
1 x + w0 = 0, or in more compact

notation wTx∗ = 0, where x∗ = (x, 1) and w = (w1, w0). Let zi =
x∗i /‖x∗i ‖. Show that separability implies the existence of a wsep such
that yiw

T
sep zi ≥ 1 ∀i

2. Given a current wold, the perceptron algorithm identifies a point zi
that is misclassified, and produces the update wnew ← wold + yi zi.
Show that ‖wnew − wsep‖2 ≤ ‖wold − wsep‖2 − 1, and hence that
the algorithm converges to a separating hyperplane in no more than
‖wstart −wsep‖2 steps.

Exercises 11: Cross Validation

For k-fold cross-validation what are disdavantages and advantages for small
and large k values? Why?
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Exercises 12: LDA

Assume we have a two class problem. The feature vectors extracted from
each class are two dimensional and the class conditional densities are:

p(x|ω1) ∼ N(µ1,Σ) and p(x|ω2) ∼ N(µ2,Σ)

where

µ1 = (1, 1)T , µ2 = (3, 2)T and Σ =

(
σ2 0
0 0.22

)
In LDA you project each feature vector generated by these class conditionals
onto a line via wTx to obtain a scalar value.

For σ = 1 sketch the class conditional densities and indicate why in this
case it is better to project feature vectors from these two classes onto the y-
axis as opposed to the x-axis for performing discrimination on the resulting
scalar values.

For what values of σ will it be better to project onto the x-axis ?

For what values of σ will the y-axis tend towards the optimal projection line
with respect to the Fisher criterion?

Exercises 13:

Draw the decision boundary formed by a 1-nearest neighbour classifier in
the two different figures below. Not that the sparse set of points is a subset
of the dense ones. What lesson should be learned from these examples?

(a) (b)

Exercises 14: Näıve Bayes and Logistic regression*

Assume we have a two class problem. The feature vector x = (x1, . . . , xd)
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extracted from each class is d dimensional and each xi ∈ {0, 1}. Let

p(xi = 1 |ω = 1) = θi1 p(xi = 0 |ω = 1) = 1− θi1
p(xi = 1 |ω = 0) = θi0 p(xi = 0 |ω = 0) = 1− θi0

Show that

i) The above likelihoods can be written as p(xi |ω = j) = θxi
ij (1− θij)1−xi

for j = 0, 1.

ii) Assuming a independence between the features write down the expres-
sion for p(x |ω = 0).

iii) If P (ω = 0) = p0 write down an expression for p(ω = 0 |x) (this
corresponds to the Naive Bayes’ model).

iv) Show how p(ω = 0 |x) can be written in the form

p(ω = 0 |x) =
1

1 + exp (w0 + wT x)

v) Then what are the expressions for p(ω = 0 |x) and

log
p(ω = 1 |x)

p(ω = 0 |x)

This is the same form as which discriminative model?

Exercises 15: Fisher’s Linear Discriminant and MSE*

The least squares approach to the determination of a linear discriminant
was based on the goal of making the model predictions as close as possible
to a set of target values. By constrast, the Fisher creterion is derived by
requiring maximum class separation in the output space in conjuction with
minimum within class spread. For the two-class problem the Fisher criterion
can be seen as a special case of least squares.

Take the targets for class ω1 and to be n
n1

where n1 is the number of patterns
from class ω1 and n is the total number of patterns. For class ω2 take the
targets to be − n

n2
where n2 is the number of patterns from class ω2.

The sum-of-squares error function is written as

J =
1

2

n∑
i=1

(wTxi + w0 − ti)2
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where each ti = n
n1

or − n
n2

depending if xi belongs to class ω1 or ω2. Show
that J is minimized when

w ∝ S−1W (m2 −m1)

where

mi =
1

ni

∑
x∈ωi

x and Sw =
∑
x∈ω1

(x−m1)(x−m1)
T +

∑
x∈ω2

(x−m2)(x−m2)
T

Exercises 16: LDA II

We have two class-conditional probabilities:

p(x|ω1) ∝ exp
(
−.5xTΣ−1x

)
p(x|ω2) ∝ exp

(
−.5 (x− µ)TΣ−1(x− µ)

)
where x = (x, y) is a two dimensional vector and

µ = (1, 1)T Σ =

(
1 0
0 σ2

)
Define the function f(x) = ax + by which is the projection of the point x
onto a line passing through the origin.

1. Compute the values µi = E [f(x)|ωi] and σ2i = Var [f(x)|ωi] for i = 1, 2

2. Find the values of a and b that maximize the statistical Fisher dis-
criminant criterion:

J(a, b) =
(µ1 − µ2)2
σ21 + σ22

Exercises 17: Gaussians*

Have the following model for IQ and test scores S

IQ ∼ N (100, 152), S | IQ ∼ N (IQ, 102)

You take the test and get a score of s1 = 130.

i) Derive the posterior density p(IQ | s1 = 130)

ii) You are a bit disappointed that Bayesians would consider you to have
an IQ less then your test score. So you decide to take the test again.
Let your score on the second test be S2. What is the posterior desnity
for p(S2 | s1 = 130)?
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