
Course: DD2427 - Exercise Class 2

Questions with an asterix(*) are a bit more involved and are more to aid
understanding as opposed to representing potentional exam questions.

Exercises 1: Linear Separability

Given a set of data points {xi}, we can define the convex hull to be the set
of all points x given by

x =
∑
i

αi xi

where αi ≥ 0 and
∑

i αi = 1. Consider a set of points {yi} together with
their corresponding convex hull. By definition, the two sets of points will
be linearly separable if there exists a vector ŵ and a scalar ω0 such that
ŵT xi + ω0 > 0 for all xi, and ŵT xi + ω0 < 0 for all yi. Show that if their
convex hulls intersect, the two sets of points cannot be linearly separable,
and conversely that if they are linearly separable, their convex hulls do not
intersect.

Exercises 2: Boosting

Imagine you have started your ex-jobb project and you have hired some first
year students to label some training data into two classes for you. Unfortu-
nately, the night before working for you the student spent the night partying
until early in the morning. Thus he has created a labelled dataset with lots
of labelling errors, say upto 20% of the data is misclassified. What conse-
quences will this have for your project if you are building a classifier using
a boosting mechanism? (Or indeed using a nearest neighbour classifier?)

What learning mechanism could I use instead to fit separate models to the
two different classes which would ignore the labels?

Exercises 3: Boosting II

a) What does the AdaBoost algorithm produce from a set of weak classifiers
and labelled training data?

b) Describe the steps of the AdaBoost algorithm.

c) In your opinion what is the critical step in the AdaBoost algorithm?
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d) What quality must the weak classifiers possess in order for AdaBoost to
run successfully?

e) What are the strengths/weakness of using boosting to solve classification
problems?

Exercises 4: Imagine you have a face detector such that

P (f̂ = 1 | f = 1) = 1− ε and P (f̂ = 0 | f = 0) = 1− α

where f ∈ {0, 1} indicates the ground truth of whether a patch is present
or not while f̂ ∈ {0, 1} is the prediction of the face detector.

Imagine you have K independent face detectors each having the same true
and false positive rate of the detector just described. If these detectors are
applied to an image patch we get

f̂ = (f̂1, f̂2, . . . , f̂K)

where f̂i ∈ {0, 1} is the prediction of the ith detector. kf̂ =
∑

i f̂i is equal
to the number of detectors which predict a face while K − kf̂ is the number
which predict a non-face. Let γ be the prior probability that the patch
contains a face. Given this information answer the following:

a) (.2) Write down the expression, remembering to exploit the indepen-
dence, for

p(f̂ | f = 1)

b) (.2) What is the posterior probability the patch contains a face given f̂?

c) (.3) Let γ = ε = α = .01 what is the constraint kf̂ must fulfill such that

p(f = 1 | f̂) ≥ .99

For K = 4, what is the minimal value of kf̂ such that the above perfor-
mance level is met? ForK = 10? And asK →∞ what ratio of detections
should correctly predict a face to ensure this level of performance.

d) (.3) Define a final classifier such that

F (f̂) =

{
1 if

∑
i f̂i ≥ K0

0 otherwise

Continuing with the parameter settings just given, write down an expres-
sion for the P (error) of this classifier.
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Exercises 5: k means clustering

Consider the k-means algorithm applied to a large amount of one-dimensional
data that comes from either of one of two classes with equal prior probabil-
ity. The class conditional distribution for each class is Gaussian with true
means µ = ±1 and both have standard deviation σ = 1. What happens
when you apply the k-means algorithm with k = 2 to this data? What can
you say about the means of the two clusters found and the mean of the
class-conditional distributions.

Exercises 6: Decision stumps

The type of weak binary classifier for data x ∈ Rd you have been using in
the face lab has a name. It is called a decision stump. As you know the
classification rule has parameters q ∈ {−1, 1}, j ∈ {1, 2, . . . , d} and θ and
takes the form:

h(x; j, q, θ) = q × sgn (xj − θ)

Decision stumps classify example x based only on the value of its jth coor-
dinate. θ is a threshold value in R and q is the parity.

Decision stumps, by themselves, are not very powerful classifiers. For in-
stance, a single vertical or horizontal decision stump can only shatter 2
points in R2. However, combining multiple decision stumps can give rise to
more complex classifiers, as you do in the boosting algorithm. In this part,
we calculate the VC dimensions of some combinations of decision stumps.

For points in R2, calculate the VC-dimension of the following sets of classi-
fiers:

a) Convex combinations (i.e. coefficients must be non-negative and sum to
1) of two vertical decision stumps.

b) Convex combinations of one vertical and one horizontal decision stump.

Exercises 7: VC-dimension I

Remember that in order to prove that a class of functions H has VC-
dimension d you need to show that

• There exists a set of d points which can be shattered by H.

• There exists no set of d+ 1 points that can be shattered by H
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a) When does a class of functionsH shatter a set of points X = {x1,x2, . . . ,xn}?

b) Show with appropriate diagrams that there exists 3 points in R2 that can
be shattered by a line.

c) What is the VC-dimension of intervals in R? In this case H is defined
such that each h ∈ H is associated with an interval [a, b] and x ∈ R has
h(x) = 1 if and only if x ∈ [a, b].

d) What is the VC-dimension of the union of k intervals on the real line?
In other words each h ∈ H is associated with k closed intervals [ai, bi],
i = 1, 2, . . . , k and h(x) = 1 if and only if x ∈ ∪ni=1[ai, bi].

e) What is the VC-dimension of axis parallel rectangles in R2? In other
words h ∈ H is associated with 2 closed intervals [ai, bi] for i = 1, 2 and
then for any x = (x1, x2) ∈ R2, h(x) = 1 if and only if xi ∈ [ai, bi] for
i = 1, 2.

f) Show that the VC-dimension of the class H of hyperplanes in R2 is 3?

g) Show that the VC-dimension of the class H of hyperplanes in Rd is ≥
d+ 1?

Exercises 8: VC-dimension II

Prove that a oriented hyper-plane cannot shatter d+ 2 points in Rd.

Exercises 9: SVM

i) Consider the degree-two polynomial kernel defined by K(x, z) = (1 +
xT z)2. Expand this out completely for the three-dimensional case (i.e.,
x = 〈x1, x2, x3〉 and z = 〈z1, z2, z3〉. Verify that this has the same form
as the quadratic expansion, although with different coefficients on the
terms.

ii) Continuing from the previous question, what is the form of Φ so that
K(x, z) = Φ(x)TΦ(z)? (You need only consider the three-dimensional
data case.) How does this differ from the expansion

Φ(x) = 〈x1, x2, x3, x21, x22, x23, x1x2, x1x3, x2, x3〉?

iii) Consider optimizing an SVM with squared loss on the ξ variables. That
is, an optimization problem of the form:
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min
w,b

1

2
‖w‖2 + λ

∑
n

ξ2n s.t.

yn(wTxn + b) ≥ 1− ξn (∀n)

ξn ≥ 0 (∀n)

Construct the dual formulation for this problem. In particular, con-
struct the Lagrangian, optimize it with respect to w and b, plug these
solutions back in and get an optimization problem just in terms of the
dual (Lagrange) variables α. How does this compare to the dual for-
mulation for the standard SVM?

iv) For D dimensional data, consider using the degree d polynomial kernel
defined by K(x, z) = (1 + xT z)d. What is the general form of the
expansion? What are the coefficients on all the different forms in the
expansion?

Exercises 10: Mixture Models

a) Sketch this one dimensional probability distribution

p(x) = π1N (0, .5) + (1− π1)N (5, 1)

when π1 = 1
2 ; π1 = .1; and π1 = .9.

b) If you have n points generated from p(x) when π1 = 1
2 and you fit a

Gaussian distribution to this data. Sketch what this distribution will
look like. What’s the problem here?

c) This issue highlights a problem with parametric methods. What is it?

d) What method is used to find the parameters of a Gaussian mixture model
from training examples generated from the distribution?

Exercises 11: Kernel magic*

Assume you are given m one dimensional training examples and their asso-
ciated labels, that is {(xi, yi)}mi=1 where each xi ∈ R1 and yi ∈ {−1,+1}.

a) Draw a case where you have m = 3 training examples which are not
linearly separable.
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b) You know if you transform your one-dimensional data to a higher dimen-
sional space then there is a higher likelihood that they will be linearly
separable. Thus you define a feature transformation φn : R1 → Rn where

φn(x) =

(
e−

x2

2 , x e−
x2

2 , x2
√
2
e−

x2

2 , . . . , xn
√
n!
e−

x2

2

)
Explain why any set of 3 points (with no duplicates) can be linearly
separated when transformed via φ2. Similarly explain why any set of n+1
points (with no duplicates) can be linearly separated when transformed
by φn.

c) Consider the case when n→∞ and φn becomes

φ∞(x) =

{
e−

x2

2 , x e−
x2

2 , x2
√
2
e−

x2

2 , . . . , xj
√
j!
e−

x2

2 , . . .

}
Can you explicitly construct φ∞(x) ? (Not a trick question)

d) Is there a finite set of points, containing no duplicates, that cannot be
linearly separated after applying φ∞?

e) A linear classifier can be expressed using only the inner products of sup-
port vectors in the transformed feature space. The Kernel trick, exploited
by the SVM, is to define a function K(·, ·) such that

K(x, y) = φ∞(x) · φ∞(y)

where the inner product between two infinite vectors a = (a1, a2, . . .) and
c = (c1, c2, . . .) is defined as

a · c =

∞∑
i=1

ai bi

Given the definition of φ∞ compute the form of K(x, y). Hint you may
want to use the Taylor series expansion of ex:

ex = lim
n→∞

n∑
j=0

xj

j!

f) With such a high dimensional feature space should we be concerned about
over-fitting?

Exercises 12: EM*
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We have two coins. The first is a fair coin while the second is not necessarily
fair. In summary:

P (H|coin 1) =
1

2
P (H|coin 2) = α

This procedure is as follows:

Coin 1 is tossed. If this results in a head then coin 1 is tossed
again otherwise coin 2 is tossed.

a) What is the probability that the 2nd toss results in a head ?

b) The above process is repeated N independent times and n2 times a head
is obtained on the 2nd toss. What is the maximum likelihood estimate for
α ?

c) Say we’re told that the process was repeated N times and in total M
heads were obtained (this includes the first and second toss). What two
update equations can we repeatedly apply to obtain an estimate for α ?
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