
Course: DD2427 - Exercise Set 1

Before Starting

You will write the programming exercises for this course in Matlab. Besides
invoking Matlab commands, you will be required to run a few operating
system commands. For these commands I will assume your computer’s
operating system is either linux or unix. If otherwise, you’ll have to fend for
yourself. But all the non-Matlab commands needed are more-or-less trivial.

These notes, and those to follow, give explicit instructions about which
Matlab commands to use. However, I will not give detailed explanations
about their usage. I assume you have some previous experience with Matlab
and are aware of many of the in-built functions and how to manipulate
vectors and matrices. Keep in mind the function help can be called to
obtain information about particular functions. So for example

>> help plot

will display information about the Matlab command plot.

Background 1: Getting Started

Set up your environment

Create a new directory to hold all the Matlab files you will write for this
course:

$ mkdir DirName

$ cd DirName

$ mkdir Pics

$ mkdir Result Pics

Download the test images, for the Matlab functions you write, from the
course website
http://www.csc.kth.se/utbildning/kth/kurser/DD2427/bik11/. Move
the StartImages.tar file to the Pics directory you have just created, untar
the file and then move up to the parent directory. Also download the file
montage.m and move it to DirName.

$ mv montage.m DirName/

$ mv StartImages.tar DirName/Pics

$ cd DirName/Pics

$ tar xvf StartImages.tar

$ cd ..

1



Starting Matlab

We are now ready to start running Matlab

$ matlab &

Once the matlab interpretor window is open you should see the prompt >>.
First check which directory you are in.

>> pwd

If the response is not equal to DirName type

>> cd DirName

Next use the command addpath to tell Matlab where the images are stored.

>> addpath DirName/Pics

Background 2: Useful Display Function

At the beginning of this document you copied a function called montage.m,
which is a slightly modified version of the function available at:
http://www.mathworks.com/matlabcentral/fileexchange/22387

This is a useful function as it allows you to efficiently view the images in a
directory:

>> montage(’Pics’);

Use help to find out the different ways montage can be called.

Background 3: Images in Matlab - The Basics

We are ready to start; to begin, enter the instructions below to load an
image and display it

>> im = imread(’bike small gray.jpg’);

>> fig = figure;

>> imagesc(im);

>> axis equal

>> colormap(gray)

2

http://www.mathworks.com/matlabcentral/fileexchange/22387


You have just loaded and displayed a grayscale image whose height is larger
than its width. The matrix im contains the pixel intensity data. Typing the
command

>> size(im)

returns the numbers 717 538, which are the dimensions of the matrix im.
It has 717 rows and 538 columns. However, note that the image loaded has
dimensions of width 538 pixels and height 717 pixels. The rows correspond
to the y− dimension and the columns to the x− dimension. Therefore to
obtain the value of the image intensity of pixel (x, y) you need to access the
xth column and yth row of the matrix im. For example the intensity at pixel
(500, 355) is given by

>> im(355, 500)

which gives the result 123. To plot a cross on the image at the location
(500, 355) invoke the following commands:

>> figure(fig);

>> hold on

>> plot(500, 355, ’gx’, ’LineWidth’, 2, ’MarkerSize’, 12)

To reinforce this point, plot the intensity values along the vertical line from
pixel (500, 355) to pixel (500, 595) by calling these commands.

>> plot([500, 500], [355, 595], ’r-’, ’LineWidth’, 2)

>> pix int = im(355:595, 500);

>> y values = 355:595;

>> fig1 = figure;

>> figure(fig1);

>> plot(y values, pix int, ’b-’)

Examine the fluctuations of the intensity pattern especially those that cor-
respond to the white stripes of the zebra crossing.

It is possible to turn the matrix im into a vector via

>> pixs = im(:);

>> disp([size(pixs)])

>> disp(size(im, 1)*size(im, 2))

Notice that pixs is a column vector whose length is equal to the number of
pixels in the image. However, now you may be unsure, depending on your

3



knowledge of Matlab memory structure, how to access the intensity value of
pixel (x, y) via the vector pixs. Matlab stores the elements of im column-
wise. The command im(:) concatenates the columns of im starting with
the first one. Therefore pixel (x, y)’s intensity can be indexed at the iith
entry of im(:) where

ii = size(im, 1)*(x-1) + y

As a concrete example the index for pixel (500, 355) is

>> ind = size(im, 1) * 499 + 355

>> disp([im(355, 500), pixs(ind)])

>> disp([pix int(1:5), pixs(ind:ind+4)])

To reassure yourself you can re-plot the intensities along the vertical line
from pixel (500, 355) to pixel (500, 595) by accessing the values via pixs.

>> ind vals = size(im, 1) * 499 + y values

>> pix intA = pixs(ind vals)

>> fig2 = figure;

>> figure(fig2)

>> plot(y values, pix intA, ’b-’)

As a quick note you can use the function reshape to obtain the original
image matrix from pixs.

>> oim = reshape(pixs, size(im, 1), size(im, 2));

>> size(oim)

Background 4: Colour Images

So far we have only loaded a grayscale image. Now it is time to explore the
world of colour! Let’s load a colour image:

>> col im = imread(’bike small.jpg’);

>> col fig = figure;

>> imagesc(col im);

>> axis equal

You have loaded and displayed a colour version of our grayscale image. The
array col im contains the RGB data for each pixel. How is this data stored
in col im? Enter the following commands:

4



>> ndims(col im)

>> size(col im)

The number 3, the number of dimensions of the array col im, is returned
after the first command and the numbers 717 538 3 after the second. This
indicates we have three matrices of size 717 × 538. The RGB data can be
accessed as

>> R = double(col im(:, :, 1));

>> G = double(col im(:, :, 2));

>> B = double(col im(:, :, 3));

Each of the matrices R, G, B can be manipulated identically to the grayscale
image im. The red value of pixel (500, 355) is given by

>> R(355, 500)

and the RGB value of pixel (500, 355) by

>> disp([R(355, 500), G(355, 500), B(355, 500)])

This latter command will output 125 124 120. We can also display each
component.

>> figure(col fig)

>> montage({R, G, B}, ’Size’, [1, 3]);

These commands result in a figure in which the colour image and then each
of the colour components are displayed. Notice how the lady’s red hair is
bright in the R image and dark in the G, B images and the blueish jumper is
brightest in the B image.

Exercise 1: Digitally simulating dichromat vision

Background theory

Colour-blindness is hereditary and mainly affects males; upto 8% of all males
suffer from it in some form. Therefore, when you are designing web-pages or
talks you should choose colour schemes which are discernible to both people
with normal colour vision and those with colour blindness. Dichromacy is
a particular form of colour-blindness. It occurs when one type of the colour
cones in the retina is missing and perceived colours can only be generated
from mixing the responses from the two remaining cone types.

5



Luckily though, you are now going to write a function to simulate the appear-
ance of a colour picture to a person with dichromatic vision. In the future
you will be able to check if your digital content has been well-designed for
all! We will describe a method for computing the transform presented by
Viénot et al. [1].

The two most common dichromats are Protan (person only possesses green
and blue cones on the retina) and Deutan (person only possesses red and
blue cones on the retina). These are the two types of colour blindness you
will simulate. The steps of the algorithm are now described.

The details

Assume that a pixel’s colour in the original image is (R,G,B). Then the
steps of the transformation to convert it to (Rp, Gp, Bp) and (Rd, Gd, Bd) its
representation for a protan dichromat and deutan dichromat respectively
are as follows:

1. Transform the original (R,G,B) via

r = (R/255)2.2 , g = (G/255)2.2 , b = (B/255)2.2 (1)

2. Slightly reduce the colour domain represented. A different transform
is used for each type of the dichromat vision:

protanopes deuteranopes

r1 = 0.992052 r + 0.003974 r1 = 0.957237 r + 0.0213814
g1 = 0.992052 g + 0.003974 g1 = 0.957237 g + 0.0213814
b1 = 0.992052 b + 0.003974 b1 = 0.957237 b + 0.0213814

3. Transform the RGB representation to a LMS representation using ma-
trix M .

M =

 17.8824 43.5161 4.11935
3.45565 27.1554 3.86714

0.0299566 0.184309 1.46709

 (2)

In the LMS system colours are specified in terms of the relative excita-
tions of the longwave sensitive (red), the middlewave sensitive (green),
and the shortwave sensitive (blue) cones.

4. Reduce the colour domain to the dichromat domain. In the LMS
representation it is possible to learn the projection matrix from normal
vision to a dichromat’s vision, which the authors of [1] have done.
These two projection matrices are

P =

0 2.02344 −2.52581
0 1 0
0 0 1

 , D =

 1 0 0
0.494207 0 1.24827

0 0 1

 (3)

6



5. Transform back to RGB space using M−1. The concatenation of the
transformations in steps 3-5 isrp

gp
bp

 = M−1PM

r1
g1
b1

 ,

rd
gd
bd

 = M−1DM

r1
g1
b1

 (4)

6. Finally, invert the first step:

Rp = 255(r1/2.2p ), Gp = 255(g1/2.2p ), Bp = 255(b1/2.2p ) (5)

Rd = 255(r
1/2.2
d ), Gd = 255(g

1/2.2
d ), Bd = 255(b

1/2.2
d ) (6)

Your task

What you have to do now is to write a function MakeDichromatIms.m that
takes an image as input and outputs two images. One of the images is
how a protan dichromat would perceive the input image and the other how
a deutan dichromat would. Or in words apply the transformation(s) just
described to each pixel in the input image.

[pim, dim] = function MakeDichromatIms(im)

You can display the results with the function

>> montage({im, pim/256, dim/256}, ’Size’, [1, 3]);

For the image FireEngine.jpg you should obtain the images in figure 1.

Original image protanope sees deuteranope sees

Figure 1: The middle and right picture show what your algorithm should output.

(This picture is best viewed on screen).

Due for the lecture: 22th of March

Bring a print out of your function MakeDichromatIms.m. Also save the
pictures you compute from the image Flowers.jpg, with the commands:

7



>> imwrite(pim/256, ’Result Pics/pFlowers.png’, ’png’);

>> imwrite(dim/256, ’Result Pics/dFlowers.png’, ’png’);

If you have access to a colour printer print these pictures out and bring them
to the next lecture.

References

[1] F. Viénot, H. Brettel, and J. Mollon. Digital video colourmaps for checking the
legibility of displays by dichromats. Color Research and Application, 24:243–
252, 1999.

8


