Course: DD2427 - Exercise Set 10

Exercise 1: Non-linear SVM

Consider training data of 1-dimensional points from two categories:

wi:—9H,b
wo:—2,1

a) Plot these points. Are they linearly separable 7

b) Consider the transformation ¢ : R! — R? defined by ¥ (z) = (v, 22).
Transform the data using () and plot these transformed points. Are these
transformed points linearly separable ?

c) What is the optimal separating hyper-plane in the transformed space 7
This separating hyper-plane results in a non-linear discriminant function in
the original space. Plot this non-linear discriminant function.

For the next lecture: 3rd May

Bring your hand written solution to this exercise.

Exercise 2: SVM and Digit Recognition (optional)

In this exercise you will write code to use the package 1ibsvm to implement
a SVM classifier on the digit data. Your first task is go to the webpage
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

and download the Matlab package in the list Interfaces to LIBSVM. Unzip
the file you download and then move to the directory 1ibsvm-mat-2.91-1.
Here you may have to edit the file Makefile. This depends on which oper-
ating system etc you are using. Basically, you have to ensure that the code
knows where the Matlab libaries are on your machine. Thus for my csc
machine I changed the line

MATLABDIR 7= /usr/local/matlab
in Makefile to
MATLABDIR 7= /pkg/matlab/rQOOSb

Afterwards, while you are sitting in the directory libsvm-mat-2.91-1 run
the command.



$ make

If this goes without a hitch then you should have generated the commands
for SVM training and evaluation that can be used by Matlab.

Now you are ready to get going. Upon starting Matlab add the directory
containing the digit figures, you used in the previous exercise set, and the
directory containing the SVM code to your path.

To begin with load all the training images and store them as columns in a
data matrix X of size 784 x 1000. Make sure you normalise each image
to have a minimum pixel intensity value of 0 and a maximum intesnity value
of 1. This is required for numerical reasons and allows the SVM code to run
more efficiently. Also keep a record of the labels of the images. Note that
the feature vector you are using is just the raw pixel data. Once you have
loaded the data you will try and find a separating hyper-plane between one
digit and the others. You will use an SVM to do this.

To summarize you will need to write functions to perform the following:

e Load the training data. Normalize each image and construct the data
row X of size 784 x 1000. Each column of X is a training image. Also
keep a record of the image labels which correspond to the digit in the
image. This can be obtained from the name of the image.

e Write a function that calls the package 1ibsvm to train and return a
SVM structure to find a seperating hyperplane between one digit and
the rest. This function will have the form

function svm = SVMLearning(X, labs, d1)

The inputs to the function are the training data X, the labels of the
images and an integer d1 representing the digit you want to recognise.
You will find a separating hyperplane between digits of type d1 and
the other digits. (These will be the two classes and will have labels t=
-1 and 1.) Then you can train your svm with the command:

svm = svmtrain(ts, X’, -t 0 -w1 1 -w-1 9 -q -c 1%);

Most importantly the flag >-t 0’ indicates you are fitting a linear
SVM, the flag >-wl 1 -w-1 9’ indicates that you have unbalanced
training data and therefore you should penalize a misclassification of
a training example from class -1 with a weight of 9 and from class
1 with a weight of 1 (note this is the ratio of the number of class 1
examples to class -1 examples). Finally the flag >~c 1’ controls the
penalty term added to the cost term when a hyperplane misclassifies
an example. This last parameter we will return to later.

Type the command



>> svmtrain

within Matlab to get a summary of what these parameters represent
and other available parameter settings

e Once you have learnt svm, load the test images into another data
matrix X1 and the labels labs1, of course, remember to normalize.
Then see how many of the digits of type d1 you can classify correctly,
the number of true positives tp, in conjunction with the number of
true negatives tn as well as the accuracy of the classifier. Do all this
in a function called

function [tp, tn, acc] = TestHyperPlane(X1, labsl, dil, svm)
In TestHyperPlane you will call the function
[pred_labels, acc, d_values] = svmpredict(ts, X1’, svm);

where ts are the labels of the test examples which have value -1 or 1.
The useful outputs of this function are the predicted labels of the test
examples and the accuracy of the classifier, which is if you remember
(tp+tn) / (tp+fp+tn+fn).

Run the code you write and print out tp, tn and acc for the digits 0, 4 and
9. The numbers I got when I learnt a separating hyperplane for each of the
digits against all the others are shown in the table.

Classified Digit tp tn  acc

0 89 882 9710
1 97 896 .9930
2 69 841 .9100
3 66 876 .9420
4 40 867 .9070
5 75 839 .9140
6 67 858 .9250
7 71 876 .9470
8 51 851 .9020
9 46 856 .9020

Exercise 3: SVM and Digit Recognition II (optional)

There was one parameter ¢ which we set in training the SVM. We gave it
value 1. However, it is not clear what the best setting of c is. A process
called k-fold cross validation is a way to explore how to set this parameter.
Here is a brief description of k-fold cross validation



First split the set of positive training examples into k subsets
of equal size such that each example appears in only one subset.
Similarly split the set of negative training examples into k subsets
of equal size. Fix the value of c.

Use the first k — 1 subsets of the positive and negative examples
to train an SVM. Apply this learned SVM to the kth subset
of positive and negative examples that you omitted from the
training process and record the accuracy of the classifier. Then
retrain the SVM using all the training data minus the (k — 1)th
subset. Use the retrained SVM on the k—1 subset and record the
new classifier’s accuracy. Repeat the process with the (k — 2)th
subset omitted, then the (k—3)rd and so on until you’ve omitted
the 1st subset. Record the average accuracy of the classifiers you
have constructed. This average accuracy is an estimation of how
good the parameter settings of ¢ was.

Repeat the process for different settings of c¢. Then choose the
setting which produces the best average accuracy.

Luckily, for you svmtrain has a flag which performs cross validation. So if
you call the command as follows

acc = svmtrain(ts, X’, -t 0 -wl1 1 -w-1 9 -q ¢ 1 -v 5%);

Then it will perform 5-fold cross validation and return the average accuracy
of the classifiers learnt given a c setting of 1. Therefore, your task is to run
the command svmtrain with the -v flag and different values of c. Record
the value of ¢ that produces the best accuracy. Given, c_best, the best
value of ¢, train your SVM using all the training data with the command

mstr = [’-t 0 -wl1 1 -w-1 9 -q -¢ ’, num2str(c_best)];
svm = svmtrain(ts, X’, mstr);

Typically a loose search is performed with ¢=272,273, ... 2" and then af-
terwords you can try and improve upon these values by performing a finer
search around the local maximum you found.

Once you have re-learned your SVM, then you can test how well it performs
on the test data. So does for the digits 0, 4 and 9 and record the results.

Once you have re-learned your SVM, then you can test how well it performs
on the test data. So does for the digits 0, 4 and 9 and record the results.

The package 1ibsvm also allows you to map your data to higher dimensional
spaces via various kernel functions. If you are interested you can play around
with these and see if you can improve your recognition rates. However, with
different kernels you’ll have to redo your search for a good value of c.



