
Course: DD2427 - Exercise Set 2

When you start Matlab remember to add your image directory to your path.
Download from the course homepage the images for this exercise set. (These
are image patches taken from the IMM face database.) They are contained
in two separate directories Aligned Pics and Misaligned Pics. Using the
command montage you can see both these directories contain images of eyes
and noses. In the first directory all the images of the same part are centred
at the same point while the in the second directory that is not the case
(hence the title misaligned). In this exercise you will extract simple global
feature vectors to summarize the content in these image patches and see
how invariant to small shifts in translation.

Background 1: Extract image template descriptor

To get started, read in the image Aligned Pics/eye001.png and transform
it to a grayscale image from a colour image. The command single casts
the grayscale values to single precision, while the last line normalizes the
grayscale values and results in some robustness to illumination variations.

>> col im = imread(’Pics/eye001.png’);

>> im = single(rgb2gray(col im));

>> im = (im - mean(im(:)))/ std(im(:));

I have ensured that all the images you will load for this Exercise Set have
the same size. Thus you can make a feature vector of size 4900×1 from the
grayscale image im with the simple command:

>> fs = im(:);

This feature vector is known as the template image. As all the images have
the same size each of the images will generate an fs of the same size and
can be compared using standard distance functions such as the Euclidean
distance. However, in general, this will not be the case and one has to choose
a strategy for extracting fs of the same size - resize all images to a fixed
size or extract a central sub-patches of a fixed size from each image.

You can plot fs using the command stem:

>> stem(fs(1:10:end);

1

http://www2.imm.dtu.dk/~aam/


Note you have plotted just every 10th entry of fs otherwise the figure would
be too cluttered. When you do this you should get the figure shown in 1(a).

Background 2: Compute histogram of pixel intensities

Next you will build an image feature descriptor based on the histogram of
the pixel intensities in an image. Use the Matlab function hist to compute
a histogram of the pixel intensities for the image im:

>> nbins = 30;

>> [fs, xx] = hist(im(:), nbins);

>> fs = fs(:)/sum(fs);

>> stem(xx, fs);

The command hist returns a histogram with nbins bins and the vector H

contains the number of pixels which have grayscale values within each bin.
The bin centres are stored in the vector xx. The command fs(:)/sum(fs)

turns the vector fs into a column vector and normalizes the feature vector
so that its elements sum to one. Once again you can use the function stem

to plot fs. You should get the figure shown in 1(b) when this is applied
to image Aligned Pics/eye001.png. Note that a normalized histogram
produces a feature vector of size nbins×1 and with entries of the same
magnitude irrespective of the size of the image.

0 50 100 150 200 250 300 350 400 450 500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

140

(a) Template (b) Histogram (c) Grid histograms (d) Sift

Figure 1: Descriptors of the image patch eye001.png. Above are shown each

of the descriptors which you calculate in this exercise to summarize a patch. Note

the template feature has been sub-sampled by a factor of 10 for clarity.

Background 3: Compute an ng×ng grid of histograms

As stated in the lectures a histogram feature, while invariant to shifts in
translation, destroys any spatial information within the image patch (ie
there is a set of bright pixels in the upper left hand corner). One simple
way to combat this is to split the image into a regular grid of ng×ng sub-
patches, see figure 2, compute a histogram of the pixel intensities for each

2



of these sub-regions and then concatenate these histograms to produce one
single feature vector. The following code shows how to grab the top-left
hand sub-region from a 2×2 grid and compute its histogram:

>> ng = 2;

>> xs = floor(linspace(1, size(im, 2)+1, ng+1));

>> ys = floor(linspace(1, size(im, 1)+1, ng+1));

>> ii = xs(1):xs(2)-1;

>> jj = ys(1):ys(2)-1;

>> pim = im(jj, ii);

>> fs = hist(pim(:), nbins);

>> fs = fs(:)/sum(fs);

Now you should write a function

function fs = ExtractGridHistogram(im, ng, nbins)

which returns a column vector fs of size (ng*ng*nbins)×1 and should
contain these nested for loops and perform the following.

fs = [];

for i=1:ng

ii = xs(i):xs(i+1)-1;

for j=1:ng

jj = ys(j):ys(j+1)-1;

Extract image patch defined by ii and jj

Compute histogram of the patch’s pixel intensities

Normalize the histogram

Concatenate this histogram to fs

end

end

If you call this function with the image Aligned Pics/eye001.png, ng=2
and nbins=30 one should get the descriptor shown in figure 1(c). Note you
may visit the sub-regions in a different order to me, so vary this order if
your feature vector does not look like the one shown.

Background 4: Extract SIFT descriptor

The final descriptor you extract from the image im is a SIFT descriptor.
Luckily there is open-source Matlab code - VLFeat - which provides functions
to compute this feature. Please download the package, unpack and install it.
Follow the instructions given in VLfeat’s Matlab install page. The following
is code to compute the SIFT descriptor of the image im:

3

http://www.vlfeat.org/
http://www.vlfeat.org/install-matlab.html


Sub-
Patch
1

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sub-patches 1st sub-patch histogram Histograms concatenated

Figure 2: Descriptor based on concatenation of histograms. The image is

divided into a regular grid of ng×ng sub patches. A histogram of the pixel intensi-

ties are used to describe each sub-patch. These histograms are then concatenated

to form a final descriptor of the image patch.

w = size(im, 1);

sc = (w-2)/ 12;

fc = [w/2; w/2; sc; 0];

[fc, fs] = vl sift(im, ’frames’, fc);

fs = double(fs(:));

If you plot fs using stem then the SIFT feature should look as in 1(d). The
4 element vector fc contains the frame information of the SIFT feature.
One can also visualize it via these commands (see figure 3)

>> figure(1)

>> hold off;imagesc(im); colormap(gray); axis equal;

>> hold on;

>> h3 = vl plotsiftdescriptor(fs, fc);

>> set(h3, ’color’, ’r’, ’Linewidth’, 3);

You should write a function

function fs = ExtractSiftDescriptor(im)

to wrap about the SIFT extraction code.

Exercise 1: Extract the four types of image descriptors

You will now write a function ComputeDescriptors.m. This function will
read in the images you uploaded for this exercise and compute their feature
vectors. Define it as:

4



Figure 3: The grid used in your Sift descriptor. The histogram of the

orientations of the image gradients is extracted from each sub-patch and are shown

above.

function Fs = ComputeDescriptors(DirName, nbins, ng)

The variable DirName is the name of the directory containing the eye and
nose images. To begin with set DirName to the Aligned Pics/. The func-
tion’s output Fs is a cell array of length 4. Each cell entry Fs{i} is a matrix
of size nf i×ni where ni is the number of images in the directory and nf i

is the dimension of the ith extracted feature vector (70*70 for the template
, nbins for the histogram, ng*ng*nbins for grid histogram and 128 for the
SIFT features). I assume that these images are in a directory with no other
images. To get a list of images in a directory:

• Use the command dir to list all the image files in the directory and
then load each image and save in a cell array as follows

mystr = [DirName, ’/*.png’];

im files = dir(mystr);

ni = length(im files);

ims = cell(1, ni);

addpath(DirName);

for i=1:ni

col im = imread(im files(i).name);

im = single(rgb2gray(col im));

ims{i} = (im - mean(im(:)))/ std(im(:));

end

• Declare the cell array Fs = cell(1, 4)

• Initialize each matrix Fs{i} to keep a record of the description of each
image w.r.t. feature type i:

Fs{i} = [];

• Run through all the images and using the functions you’ve previously
written compute its

5



– template description (fs1 of length 70*70)

– histogram description (fs2 of length nbins=30)

– grid histogram description (fs3 of length ng*ng*nbins=2*2*120)

– SIFT description (fs4 of length 128)

and keep a record of each of these descriptors via a command like

Fs{1} = [Fs{1}, fs1];

Exercise 2: Compare histogram feature vectors

In this function you will compare the feature vector description for each
image using the Euclidean distance. This is perhaps not the best distance
to use when comparing histograms, but it is the easiest to compute. In case
you’ve forgotten what this distance is; let me remind you. If f1 and f2 are
vectors of length nf then the Euclidean distance between them in Matlab
syntax is

sqrt(sum((f1 - f2).*(f1 - f2)))

A small Euclidean distance corresponds to the feature vectors being similar.

Your task is to write the function

function D = ComputeDistanceMatrix(Fs)

It will take the matrix of one type of features, Fs{i}, you have computed
from the downloaded images using ComputeDescriptors and compute the
Euclidean Distance between every pair of images. This information is then
stored in a symmetric matrix D of size ni×ni where the entry D(i, j) is the
Euclidean distance between the feature vector on the ith column and the
one on the jth column. Remember D(i, j) = D(j, i).

You can then plot D using imagesc. If the images have been computed in
the right order then you should get a D which exhibits some block struc-
ture. Note that if DirName = ’Aligned Pics/’ then the D returned from
ComputeDistanceMatrix(Fs{1}) should look as in figure 4(a).

Write a function which calls ComputeDistanceMatrix(Fs{i}) for each of
the feature types you have extracted and display the distance matrices you
compute. Note how the histogram features produce distance matrices with
less block structure than those extracted from the SIFT and template fea-
tures, see figure 4.

6



(a) Histogram (b) Grid histogram (c) Sift (d) Template

Figure 4: Distance matrices computed from the different feature types

computed from the aligned images. In this case both the Sift and template

descriptors can discriminate between the eye and nose images patches while the

histogram features cannot.

Exercise 3: Repeat process for the misaligned pictures

Rerun the function ComputeDescriptors(DirName, nbins, ng) but this
time using the misaligned image patches and also recompute the distance
matrices. You should get results similar to those as shown in figure 5.

(a) Histogram (b) Grid histogram (c) Sift (d) Template

Figure 5: Distance matrices computed from the different feature types

computed from the misaligned images. In this case both the Sift and template

descriptors can discriminate between these eye and nose patches but not as well for

the aligned patches.

Exercise 4: Visualize feature vectors (optional)

There is a method called multi-dimensional scaling which when given an n×n
distance matrix D, such as those we have computed, finds p dimensional
vectors whose pairwise distances produce a distance matrix close to the
original one. This allows us to approximately visualize our high dimensional
feature vectors in a low dimensional embedding. There is Matlab function
which performs the multi-dimensional scaling. It is called as follows and
one can also plot the embedded feature vectors. The colour coding in the
plotting function is dependent on the fact that all the feature vectors from
one class are followed by all the vectors from the other class, where ni is

7



the number of images examined.

>> Y = mdscale(D, 2);

>> figure

>> plot(Y(1:ni/2, 1), Y(1:ni/2, 2), ’rx’, ’MarkerSize’, 10);

>> hold on

>> plot(Y(ni/2+1:end, 1), Y(ni/2+1:end, 2), ’bo’, ’MarkerSize’,

10);

>> axis equal

Run this code on the different distance matrices you have computed and
note how the block structure in the distance matrices is translated to the
points from the two different classes being separated in the 2 dimensional
embedding, see figure 6. Also notice how the points are more spread out for
the misaligned image patches.

Aligned Images

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−300 −200 −100 0 100 200 300

−250

−200

−150

−100

−50

0

50

100

150

200

250

−60 −40 −20 0 20 40 60
−50

−40

−30

−20

−10

0

10

20

30

40

50

Misaligned Images

−0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−300 −200 −100 0 100 200 300

−250

−200

−150

−100

−50

0

50

100

150

200

250

−60 −40 −20 0 20 40 60

−50

−40

−30

−20

−10

0

10

20

30

40

50

(a) Histogram (b) Grid histogram (c) Sift (d) Template

Figure 6: Two-dimensional points which have the same distance matrix

as those computed from the different image patch descriptors. The in-

teresting point is that the template descriptor is perhaps less tolerant to shifts in

translation. Also note if you well aligned images and not too much variation in

appearance then template matching is as good as you can do.

For the lecture: 27th of March

Bring a print out of

• the three functions you have written ExtractGridHistogram, ComputeDescriptors
and ComputeDistanceMatrix and

• the pictures

8



– of the 4 distance matrices for the images in Aligned Pics and

– of the 4 distance matrix for the images in Misaligned Pics.

9


