
Course: DD2427 - Exercise Set 4

In this exercise you will model skin colour with a multi-variate Gaussian.
Let x be the vector that contains the data associated with a pixel’s colour
(its rgb value for instance) then assume
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where |Σs| denotes the determinant of the matrix Σs. However, the values
of the parameters (µs,Σs), defining this model, are unknown. These need
to be learned from training data.

Exercise 1: Learning the multi-variate Gaussian

To learn the parameters of the multi-variate Gaussian, we require train-
ing data. Fortunately, lots of people have built databases of colour images
of human faces and have made them available publicly. We will use im-
ages available at http://vis-www.cs.umass.edu/lfw/. The complete database
contains a large number of images, far more than needed for our purposes,
therefore you should just download a small proportion of them available at:
http://vis-www.cs.umass.edu/lfw/lfw-bush.tgz. You can gunzip and tar to
extract the images. Place them in a separate directory. You will use these
to learn the colour of skin pixels and you will, in reality, only require a small
number of them to learn the multi-variate Gaussian model.

In the downloaded images the centre of the face is at the centre of the
image and composes roughly 30% of the area of the image (exact details are
available at the face database web-site). If you grab the pixels in a relatively
small rectangular region centred at the centre of the image, then you can
be quite sure that these will be skin coloured pixels. Your first task is to
write a function that takes as input the name of the file and a number,
p, in [0,1]. The function then grabs the centre rectangular region of size
(floor(p*W))(floor(p*H)) from the image where W and H are the width
and height of the original image. Call this function via

function cim = GrabCenterPixels(im fname, p)

The returned array cim will have size floor(p*H)×floor(p*W)×3. You can
turn the pixel data in this array into a more useful shape with the command:

rgb data = reshape(cim, [size(cim,1)*size(cim,2), 3]);
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This reshapes cim into the array, rgb data, of size size(cim,1)*size(cim,2)×3.
Each row of the matrix corresponds to the rgb value of one skin pixel. The
first column of this array corresponds to the r data, the second column to
the g data and the third to the b blue data.

Next read in n (∼20) of the downloaded face images. From each image
extract the central pixels with the function you’ve just written, keep a record
of these skin pixels and then compute the mean value of the rgb pixel values
and the covariance of these pixels. Use the Matlab functions mean and cov

to compute these quantities. Perform this task in the function

function [mu, Sigma] = TrainColourModel(DirName, n)

which takes as input the name of the directory containing the face images
and the number, n, of images to be used for training. The output will be
the mean vector, mu (size 3 × 1), of the rgb pixel data you have extracted
and its covariance, Sigma (size 3 × 3).

Matlab Tip Remember you can concatenate an array A of size n a×3 and
another array B of size n b×3 into a new array of size (n a + n b)×3 with
the command: C = [A;B];

When I performed this task with n=20, p=.2 and used the first n images, I
calculated mu and Sigma as:

mu =
[
176.91 129.18 103.88

]
, Sigma = 1000 ∗

1.7264 1.4316 1.4479
1.4316 1.4268 1.4498
1.4479 1.4498 1.5935



(a) image (b) p(x|skin) (c) p(x|non-skin) (d) p(x|skin)

p(x|non-skin)
(d) classification

Figure 1: The quantities evaluated to decide via a likelihood ratio test if a pixel

corresponds to skin or not. These results were obtained using an rgb representation

of color.

Exercise 2: Skin Colour Likelihood

At this stage you have learnt the parameters for

p(x | skin pixel)
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where x is a pixel’s rgb value. Now you’ll investigate the usefulness of this
model. Load the image bike small.jpg. For each pixel in bike small.jpg

we want to compute p(x | skin pixel) as defined in equation (1) where x
contains the rgb value of the pixel and µs = mu and Σs = Sigma. The
Matlab functions det and inv compute the determinant and inverse of a
matrix. Write a function that evaluates equation (1) for a set of points.
These points are contained in the array xs of size N×d where N is the number
of points and d is the dimension of each point.

function lvals = GaussLikelihood(xs, mean, Sigma)

Matlab Tip If lvals is an array of size N×1, then it can be turned into an
array of dimensions equal to the test image im with the command:

im lvals = reshape(lvals, [size(im, 1), size(im, 2)]);

Run your new function on the rgb pixel values obtained from the image
bike small.jpg; display the results. These results should look something
like those in figure 1(b).

Exercise 3: Use HSV colour model

Is the rgb colour model the best represention of colour for this task of detect-
ing skin pixels ? In this exercise you will investigate using the HSV colour
model instead. Fortunately, you can reuse, with only minor additions, most
of the code you’ve already written. Before you start, note that as the hue of a
colour is an angle, it is easier to let x = (cos(hue), sin(hue), saturation, value)
to avoid the nuisance of 0◦ = 360◦. The four things you have to do are

• Amend the function TrainColourModel to take an extra input param-
eter. This will be a flag, m, to indicate which colour model you are
using. Thus it becomes:

function [mu, Sigma] = TrainColourModel(DirName, n, m);

Once you have grabbed the training data then if m indicates you are
using the HSV colour model then convert the rgb pixel data into hsv
pixel data via the Matlab command rgb2hsv.

• From the hsv data create the augmented hsv data where its first col-
umn is cos(hue), the second sin(hue), the third saturation and the last
value.

• The rest of the function should work as before assuming you haven’t
hard coded in the fact that your feature has dimension 3. You should
get a new mean vector and covariance matrix.

3



• Convert the test image pixels into the same form of the HSV data
as the training data and then compute the likelihood of each pixel
corresponding to skin using GaussLikelihood. Display the result. It
should look as in figure 2(b).

Exercise 4: Likelihood ratio test to classify pixels as skin or non skin

Finally, you can classify a pixel in your image as skin if

p(x | skin pixel)

p(x |non-skin pixel)
> 1 (2)

using the liklihood ratio test for classes with equal priors.

However, this requires some model/representation of p(x |non-skin pixel).
There are obviously lots of options for this. One suggestion is to use a
multi-variate Gaussian as in the case of skin pixels. However, if you use
this, training data (lots of non-skin pixels) is required from which you can
learn the parameters of the Gaussian. Luckily for you I have downloaded a
few such images from flickr for this task.

Download these from the course website and put them into a separate direc-
tory. Now you can reuse the function TrainColourModel, though you may
want to grab the whole image as opposed to a central rectangle, to obtain a
mean vector and covariance for the distribution describing the colour pixels
for the background (or at least our sparsely sampled version of the back-
ground). If you run GaussLikelihood on the pixel data obtained from the
image bike small.jpg you should get an image that looks as figure 1(c),
for an rgb representation and as figure 2(c), for a hsv representation.

If you plot the ratio of the likelihood values for the skin and non-skin models
you should get results as in figures 1(d) and 2(d). Finally, you can create an
image from the binary classification rule based on equation (3). To do this,
create an array full of zeros, Matlab command zeros, and set an entry to
one if for that pixel its likelihood of being skin coloured is greater than that
of being non-skin coloured. The results you get should be similar to those
in figures 1(e) and 2(e) depending on which colour model you use.

It may be useful to save the different mean vectors and covariance matrices
you have calculated and to gather the commands you used to classify the
pixels in an image into one function. It can be called with an image array
as input and returns the binary image of classified pixels:

function bim = SkinClassifier(im)
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Mathematical Tip: In most cases it is better to compute log-likelihoods
as oppose to likelihoods. That is compute

log( p(x | skin pixel) ) = −d
2

log( 2π )− 1

2
log(|Σs|)−

1

2
(x− µs)

T Σ−1
s (x− µs)

The classification can then be computed with this test:

log( p(x | skin pixel) )− log( p(x | non-skin pixel) ) > 0 (3)

This avoids computing the relatively expensive exp function and also is more
numerically stable for values of x that produce very small likelihood values.
For this exercise you can use either the likelihood or the log-likelihood. But,
in general, it is probably better to use the log-likelihood values.

(a) image (b) p(x|skin) (c) p(x|non-skin) (d) p(x|skin)

p(x|non-skin)
(d) classification

Figure 2: The quantities evaluted to decide via a likelihood ratio test if a pixel

corresponds to skin or not. These results were obtained using a hsv representation

of color.

Exercise 5: Finding your classmate

Download StudentImages.tar from the course website. It contains images
of some of DD2424 students over the years. Apply your skin classifier to the
image Student1.jpg. You can either write your function FindBiggestComp

or download it from the course website. This function finds the largest
connected componenent of skin pixels in the binary image:

function [bX, bY] = FindBiggestComp(bim)

It returns one vector containing the x−coordinates, the other the y− coor-
dinates, of the corners of the bounding box. Plot this bounding box on the
original image and see if it overlaps with the face, see figure 3.

(If you write the function yourself use Matlab function bwlabeln to find
the connected components in the image. Find the largest one. Compute
the smallest rectangle that encloses this connected component - aka the
bounding box. The Matlab function regionprops can help you do this.)
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Well done you have written your very first face detector! Not to rain on
your parade though this is not a particularly robust or clever one. See what
happens when you run the same process on the other student images...

Original image Skin pixels Found face

Figure 3: Using the HSV representation and simple blob analysis a face is
found.

For the lecture on: 12th of April

Bring the following:

• a print out of the functions you wrote for this exercise GrabCenterPixels,
TrainColourModel, GaussLikelihood, SkinClassifier.

• a print out of the images shown in figure 3 for the images Student1.jpg
and one other of the Student images.
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