
Course: DD2427 - Exercise Set 5

In this set of exercises you will examine classifiers based on the nearest
neighbour rule.

Exercise 1: Nearest neighbour decision boundary

Assume that you have one feature vector x1 = (x1, y1) from class ω1 and
another feature vector x2 = (x2, y2) from class ω2. These two 2d points
can be used to define a very simple 1NN (nearest neighbour) classifier to
distinguish between the classes ω1 and ω2. Show that the decision boundary
induced by this classifier is a straight line.

(HINT: When will a query point x = (x, y) be classified as class ω1 ? And
similarly when will it be classified as class ω2 ? And finally, when is the query
point not clearly belonging to either class. This latter situation occurs at
the decision boundary.)

Exercise 2: Nearest neighbour example
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Figure 1: The training data for simple 1-NN classifier.

Next consider we have two attributes x1, x2 ∈ R and a class label y ∈ {0, 1}
and a training set that looks like:
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Class 1 points:

{(7, 11), (15, 9), (15, 7), (13, 5), (14, 4), (9, 3), (11, 3)}

Class 2 points:

{(11, 11), (13, 11), (8, 10), (9, 9), (7, 7), (7, 5), (15, 3)}

Graphically, these points appear as in figure 1. Draw the decision bound-
aries for 1-nearest neighbour classification on this data. Assume the
classifier uses a Euclidean distance metric and outputs either 1 or 2.

The boundary does not need to be exact - a print out of figure 1 with
boundaries drawn approximately is sufficient. Make sure to label the regions
with the classification label that would be given.

Exercise 3: Nearest neighbour example II

One of the problems with k-nearest neighbor classification is selecting a
value for k. Say you are given the data set shown in figure 2 as training
data from which a kNN classifier is constructed. Assume the classifier uses
a Euclidean distance metric and outputs either 1 or 2.
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(a) Draw the decision boundaries for the 1-nearest neighbor algorithm assuming that we are
using standard Euclidean distance to compute nearest neighbors. A plus indicates a positive
example and a star indicates a negative example.

(b) How will the point (8, 1) be classified by the 1-nearest neighbor classifier?

(c) How will the point (8, 8) be classified?

2. (Modified from Mitchell and Guestrin) One of the problems with k-nearest neighbor learning is
selecting a value for k. For this exercise, you will use Weka to empirically determine a reasonable
value for k, given a specific training set.

Say you are given the data set shown below. This is a binary classification task in which the
instances are described by two real-valued attributes.

*

0

0

2 4 6 8 10

2

4

6

8

10

*
*

*
*

*

*

2Figure 2: Training data for a kNN classifier.
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Questions Why might using too large a value of k be bad for this data set?
Why might using too small a value be bad for this data set?

For the lecture: 13th April

Bring the following:

• Written solutions to Exercises 1 to 3.

Exercise 4: Error bound for 1-nearest neighbour classifier (optional)

A classic paper of Cover and Hart [1] from 1967 shows that, as the amount
of training data approaches infinity, the error rate of 1-nearest neighbour
classifier is at most twice the Bayes-optimal error rate. In this exercise you
will go through the proof for the case of binary classification with real-valued
inputs.

Let {x1,x2, . . . ,xn} be the training examples where each xi ∈ R and {θ1, θ2, . . . , θn}
be their corresponding class labels, where each θi ∈ {ω1, ω2}. Let p(x |ωi)
be the true class conditional probability distribution for points in class ωi

and P (ωi) is the prior probability distribution for each class.

Error of the Bayes’ classifier

From Lecture 3 we know that the classifier which minimizes the probability
of error is defined and referred to as the Bayes’ classifier:

ωm = arg max
i

P (ωi |x) = arg max
i

p(x |ωi)P (ωi)

Denote by PB(error) the error associated with the Bayes’ classifier. It can
be computed as follows via PB(error |x):

PB(error |x) = 1− PB(correct |x) = 1− P (ωm |x)

The error of the Bayes classifier, the best one can do, is then:

PB(error) =

∫
x
PB(error|x) p(x) dx =

∫
x

(1− P (ωm |x)) p(x) dx

Error of the 1-NN classifier

Now let’s investigate the 1-NN (nearest neighbour) classifier and its prob-
ability of error. Suppose that the true class of an unseen point x is θ and
that x′ ∈ {x1,x2, . . . ,xn} is x’s nearest neighbour from the training data.
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For the nearest neighbour classifier the probabiliy of error given x and its
nearest neighbour x′ is:

PN (error |x,x′) = 1− PN (correct |x,x′)

= 1−
2∑

i=1

P (θ = ωi, θ
′ = ωi |x,x′)

= 1−
2∑

i=1

P (θ = ωi |x,x′)P (θ′ = ωi |x,x′), x and x′ drawn independently

= 1−
2∑

i=1

P (θ = ωi |x)P (θ′ = ωi |x′)

The probability of error for the nearest neighbour classifier given x is:

PN (error |x) =

∫
x′
PN (error |x,x′) p(x′ |x) dx′

Error of the 1-NN classifier as training data tends towards ∞

As the number of training examples tends towards infinity that is n → ∞
then x′ → x and p(x′ |x)→ δ(x′ − x). Thus as n→∞

PN (error |x,x′) = 1−
2∑

i=1

P (ωi |x)P (ωi |x′) −→ 1−
2∑

i=1

P (ωi |x)2

and

PN (error |x) =

∫
x′
PN (error |x,x′) p(x′ |x) dx′ −→ 1−

2∑
i=1

P (ωi |x)2 (1)

Let ωm be the prediction of the class of x by the Bayes classifier. Then let
ωl be the other class and thus

P (ωl |x) = 1− P (ωm |x) = PB(error |x)

Therefore

P (ωm |x) = 1− PB(error |x) (2)

Use equations (1) and (2) to express PN (error |x) in terms of
PB(error |x). Then express PN (error) in terms of PB(error) and
deduce that PN (error) ≤ 2PB(error) for the case of infinite train-
ing data.
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