
Course: DD2427 - Exercise Set 7

In this set of exercises you will compute a two different set of eigenfaces from
two different datasets. You will then use one set to reconstruct a frontal view
of your own face.

Exercise 1: Eigenfaces - Load training data

To compute a set of eigenfaces training images are required. Fortunately,
there are lots of images of faces. To start with, we will use the Bush images
that you have previously used.

So your first task is to load these images and grab the centre patch which
corresponds to the face. The prototype of the function will be

function [X, w, h] = LoadData(DirName, p)

In this function for each image you read in from DirName you should:

1. Convert it, if necessary, to a grayscale image. For this you can use the
function rgb2gray.

2. Grab the center patch which is p percent of the image’s area. (For
reference - to create the George Bush basis given an image of size w

x h I took the face patch to be a central patch which had height h *

.5 and width w * .33. While for the other face database I took the
whole image as the face patch.)

3. Next normalize this pixel data to introduce some invariance to illumi-
nation effects. To do this compute the mean pixel intensity value, µ,
and its standard deviation, σ, and then normalize:

I(x, y) =
I(x, y) − µ

σ

After this the mean of the pixel intensities will have mean 0 and stan-
dard deviation 1. Note that the Matlab functions mean and std can
be used to compute the mean and standard deviation of a vector of
numbers.

4. Then you should store this normalized pixel data as a column of X.

This function will return an array, X, of size d×n where d is the number of
pixels in each image patch you extract and n is the number of images loaded.
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You should probably keep a record of the original dimensions of the images
you used to create X. These dimensions will be useful when displaying
computed eigenfaces and when using the eigenface basis to reconstruct novel
image patches.

Exercise 2: Eigenfaces - Computation

You now have a function that loads the pixel data required to compute
the eigenfaces. The next step is to compute the eigenfaces. Before you do
this take note of the following. As we said X is an array of size d×n. The
covariance of the data contained in X can be computed as

C =
1

n
* Xc * Xc’; (1)

Xc is the same as X except that the mean vector of the training vectors has
been subtracted from each column. C is a matrix of size d×d. The eigen-
vectors of C correspond to the eigenfaces. However, for the Bush example
d is a very large number and if you try to use the Matlab command eig

to compute the eigenvectors of this d×d matrix, you’ll probably hang your
machine. But luckily there is a way around this problem!

So what should you do if d is much greater that n? First compute the
matrix:

C1 =
1

n
* Xc’ * Xc; (2)

This has size n×n. If n is of a reasonable size then you can compute the
eigenvectors of C1. Now if v is an eigenvector of C1 with corresponding
eigenvalue lambda then

v1 = Xc * v; (3)

is an eigenvector of C with corresponding eigenvalue lambda. As part of
this assignment show that this is indeed the case.

Now you are ready to write the function to compute the eignfaces. The
function will have the form

function [mu, W, D] = ComputePCABasis(X)

The function will perform the following

1. Compute the mean vector, mu from the columns of X. You should get
a result that looks something like the first image in figure 1.

2. Centre the data by taking mu from each column of X to obtain Xc.
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3. Check if d>n. If yes then you need to compute C1 as defined in
equation 2. Otherwise compute C as in equation 1.

4. Use the Matlab function eig to compute the eigenvalues of C1 or C. If
you compute the eignevectors of C1 then you need to transform these
eigenvectors as in equation 3. You now have your eigenfaces.

5. Ensure that each of the eignfaces has norm 1.

The output of the function is:

• mu the mean vector of the training data (size d×1),

• an array W of size d×n. Each column of W is an eigenface,

• a vector D of size d×1 whose values are the eignvalues corresponding to the
eigenfaces in W. These pop out from the eigen-decomopostion. Note that the
function diag extracts the main diagonal from a matrix.

Important note please check the order in which the Matlab function eig

outputs the eigenvectors. For me they were sorted according to the increas-
ing values of the eigenvalues. This means the end columns of W are the
interesting eignfaces.

Once you have written the function, run it on the Bush dataset. Remember
you can turn an eigenface vector v into a 2d array via

im v = reshape(v, [h, w]);

and then display it as normal. Figure 1 displays the top 19 eigenfaces
I computed from this dataset. Check them against those that you have
computed.

Figure 1: The mean face and the top 19 eigenfaces from the Bush dataset.

The top left hand corner is the mean face. While the the rest of the images show

the eigenfaces with the largest eigenvalues shown in descreasing order from left to

right.
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You can also analyze the eigenvalues associated with the eigenfaces. It is
also interesting to plot the cumulative values of the eigenvalues D (divided by
their total sum). The Matlab function cumsum allows you to do this. If you
make this plot for the Bush dataset you should get something as in figure
2(a). Note I had to reverse the order of elements of D to make this plot
so that the largest values were at the beginning not the end. How many
eignfaces are required to reconstruct 90% of the variation in the
Bush dataset for the eigenface basis you constructed?
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(a) Bush dataset (b) Small face dataset

Figure 2: Cumulative influence of the eigenvectors. Thes graphs are com-

puted by computing the cumulative sum of the eigenvalues associated with each

eigenface when they are sorted in descending order. This sum is a measure of the

percentage of variation in the training data captured by the eigenvectors included

in the sum.

Exercise 3: Face reconstruction using eigenfaces

It was interesting to see what the main variations were with respect to pho-
tographs of George Bush’s fronal face. However, using training examples
from one person is not sufficient to build a basis that can be used to recon-
struct images from a novel person. To be able to do this we will use another
dataset and this can be downloaded from the course website. In this dataset
the images cover a smaller part of the face, are very well aligned and are
also much smaller (19×19).

Run the code you have just written to compute the mean face, eigenfaces,
etc of this dataset. You may have to adapt your code slightly so that it
grabs the whole image as opposed to the centre patch. Note that in this
case generally the size of C will be smaller than C1. Thus you can perform
eigendecomposition directly on C. Also you don’t have to load all the images
(use at least 3,000 to get nice results), though you can if you want but it
may slow things down.
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For reference, figure 3 displays the mean face and the top 19 eigenfaces I
computed from using all the training data.

Figure 3: The mean face and the top 19 eigenfaces from the second

dataset. The top left hand corner is the mean face. While the the rest of the

images show the eigenfaces in descreasing order wrt to eigenvalue from left to right.

Now that you have a set of nice eigenfaces, the next task is to investigate if it
can be used to reconstruct a novel face. Load the image Student4.jpg from
the set of images associated with Exercise Set 4. Convert it to a greyscale
image and then grab the patch

im = im(183:248, 297:362);

This is a patch that corresponds to one of the faces in the image. You will
now write the function

function rim = ReconstructFace(im, mu, W, w, h, N)

that finds the best reconstruction of the image patch im using the top N

eigenfaces.

1. Resize the image patch im to have size [h,w]. Use the Matlab function
imresize. Then turn it into a column vector.

2. Normalize the patch so that its intensity values have mean 0 and stan-
dard deviation 1. Keep a record of the original mean value and stan-
dard deviation as these will be re-used at the end.

3. Project the normalized image patch minus mu onto each of the top
N eigenfaces, i.e. the last N columns of W. Keep a record of these
coefficients.

4. Approximate the original patch as a weighted sum of the top n eigen-
faces (using the coefficients you just computed) plus the mean face.

5. Reverse the normalization you computed at the beginning.
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6. Convert your reconstruction into a 2d array of size [h, w] using
reshape. Then use imresize to resize it back to the size of the original
patch. This is the output rim of your function.

Call this function with N=1, 10, 20, 50, 100, 150, 200, 250 and see
how the reconstruction improves. For reference, my results are shown in
figure 4. You should note that this method only works well if the image
patch we are trying to reconstruct is well aligned with the eigenfaces.

Figure 4: Accuracy of the reconstruction increases with the number of

eigenfaces used. The top left hand corner shows the face we are trying to recon-

struct. The rest of the images show the reconstruction when using the top 1, 2, 10,

20, 50, 10, 150, 200 and 250 eigenfaces.

For the lecture: 19th April

Bring the following:

• a small proof of the question in Exercise 2 concerning the relationship
between the eigenvalues of C1 and C.

• a print out of the functions you wrote for this exercise LoadData,
ComputePCABasis, Reconstruct.

• a print out of the top 10 eigenfaces computed from the first and second
database used, the plot of the cumulative sum of the eigenvalues and
the reconstruction of the Student4.jpg using 10, 50, 100, and 200
eigenfaces.
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