KKT conditions and Duality

March 23, 2012

Tutorial Example

Want to solve this constrained optimization problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{2}} f(\mathbf{x})=\min _{\mathbf{x} \in \mathbb{R}^{2}} .4\left(x_{1}^{2}+x_{2}^{2}\right)
$$

subject to

$$
g(\mathbf{x})=2-x_{1}-x_{2} \leq 0
$$

Tutorial example - Cost function

$$
f(\mathrm{x})=.4\left(x_{1}^{2}+x_{2}^{2}\right)
$$

Tutorial example - Constraint

Solve this problem with Lagrange Multipliers

Can solve this constrained optimization with Lagrange multipliers:

$$
L(\mathbf{x}, \lambda)=f(\mathbf{x})+\lambda g(\mathbf{x})
$$

Solution:

The Lagrangian is

$$
\mathcal{L}(\mathrm{x}, \lambda)=.4 x_{1}^{2}+.4 x_{2}^{2}+\lambda\left(2-x_{1}-x_{2}\right)
$$

The KKT conditions say that at an optimum $\lambda^{*} \geq 0$ and

$$
\begin{aligned}
& \frac{\partial \mathcal{L}\left(\mathbf{x}^{*}, \lambda^{*}\right)}{\partial x_{1}}=.8 x_{1}^{*}-\lambda^{*}=0 \\
& \frac{\partial \mathcal{L}\left(\mathbf{x}^{*}, \lambda^{*}\right)}{\partial x_{2}}=.8 x_{2}^{*}-\lambda^{*}=0 \\
& \frac{\partial \mathcal{L}\left(\mathbf{x}^{*}, \lambda^{*}\right)}{\partial \lambda}=2-x_{1}^{*}-x_{2}^{*}=0
\end{aligned}
$$

Solve this problem with Lagrange Multipliers

Can solve this constrained optimization with Lagrange multipliers:

$$
L(\mathbf{x}, \lambda)=f(\mathbf{x})+\lambda g(\mathbf{x})
$$

Solution ctd:

Find $\left(x_{1}^{*}, x_{2}^{*}, \lambda^{*}\right)$ which fulfill these simultaneous equations. The first two equations imply

$$
x_{1}^{*}=\frac{5}{4} \lambda^{*}, \quad x_{2}=\frac{5}{4} \lambda^{*}
$$

Substituting these into the last equation we get

$$
8-5 \lambda^{*}-5 \lambda^{*}=0 \quad \Longrightarrow \lambda^{*}=\frac{4}{5} \leftarrow \text { greater than } 0
$$

and in turn this means

$$
x_{1}^{*}=\frac{5}{4} \lambda^{*}=1, \quad x_{2}^{*}=\frac{5}{4} \lambda^{*}=1
$$

Solve this particular problem in another way

Alternate solution:

Construct the Lagrangian dual function

$$
q(\lambda)=\min _{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda)=\min _{\mathbf{x}}(f(\mathbf{x})+\lambda g(\mathbf{x}))
$$

Find optimal value of \mathbf{x} wrt $\mathcal{L}(\mathbf{x}, \lambda)$ in terms of the Lagrange multiplier:

$$
x_{1}^{*}=\frac{5}{4} \lambda, \quad x_{2}^{*}=\frac{5}{4} \lambda
$$

Substitute back into the expression of $\mathcal{L}(\mathbf{x}, \lambda)$ to get

$$
q(\lambda)=\frac{5}{4} \lambda^{2}+\lambda\left(2-\frac{5}{4} \lambda-\frac{5}{4} \lambda\right)
$$

Find $\lambda \geq 0$ which maximizes $q(\lambda)$. Luckily in this case the global optimum of $q(\lambda)$ corresponds to the constrained optimum

$$
\frac{\partial q(\lambda)}{\partial \lambda}=-\frac{5}{2} \lambda+2=0 \quad \Longrightarrow \quad \lambda^{*}=\frac{4}{5} \quad \Longrightarrow \quad x_{1}^{*}=x_{2}^{*}=1
$$

Solve the same problem in another way

The Primal Problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{2}} f(\mathbf{x}) \text { subject to } g(\mathbf{x}) \leq 0
$$

The Lagrangian Dual Problem

$$
\max _{\lambda \in \mathbb{R}} q(\lambda) \text { subject to } \lambda \geq 0
$$

where

$$
q(\lambda)=\min _{\mathbf{x} \in \mathbb{R}^{2}}(f(\mathbf{x})+\lambda g(\mathbf{x}))
$$

is referred to as the Lagrangian dual function.

The general statement

In general we will have multiple inequality and equality constraints. The statement of the Primal Problem is

```
min
```

subject to

$$
\mathbf{g}(\mathbf{x}) \leq \mathbf{0} \quad \text { and } \quad \mathbf{h}(\mathbf{x})=\mathbf{0}
$$

While the Dual problem is

Lagrangian Dual Problem

$$
\max _{\boldsymbol{\lambda} \cdot \boldsymbol{\mu}} q(\boldsymbol{\lambda}, \boldsymbol{\mu}) \text { subject to } \boldsymbol{\lambda} \geq \mathbf{0}
$$

where

$$
q(\boldsymbol{\lambda}, \boldsymbol{\mu})=\min _{\mathbf{x}}\left[f(\mathbf{x})+\boldsymbol{\lambda}^{t} \mathbf{g}(\mathbf{x})+\boldsymbol{\mu}^{t} \mathbf{h}(\mathbf{x})\right]
$$

is the Lagrangian dual function.

This dual approach is not guaranteed to succeed. However,

- It does for a certain class of functions
- In these cases it often leads to a simpler optimization problem.
- Particularly in the case when the dimension of \mathbf{x} is much larger than the number of constraints.
- The expression of \mathbf{x}^{*} in terms of the Lagrange multipliers may give some insight into the optimal solution i.e. the optimal separating hyper-plane found by the SVM.

This dual approach is not guaranteed to succeed. However,

- It does for a certain class of functions
- In these cases it often leads to a simpler optimization problem.
- Particularly in the case when the dimension of \mathbf{x} is much larger than the number of constraints.
- The expression of \mathbf{x}^{*} in terms of the Lagrange multipliers may give some insight into the optimal solution i.e. the optimal separating hyper-plane found by the SVM.

We will now focus on the geometry of the dual solution...

Geometry of the Dual Problem

Map the original problem

- Map each point $\mathbf{x} \in \mathbb{R}^{2}$ to $(g(\mathbf{x}), f(\mathbf{x})) \in \mathbb{R}^{2}$.
- This map defines the set

$$
G=\left\{(y, z) \mid y=g(\mathbf{x}), z=f(\mathbf{x}) \text { for some } \mathbf{x} \in \mathbb{R}^{2}\right\} .
$$

- Note: $\mathcal{L}(\mathbf{x}, \lambda)=z+\lambda y$ for some z and y.

Map the original problem

Define $G \subset \mathbb{R}^{2}$ as the image of \mathbb{R}^{2} under the (g, f) map

$$
G=\left\{(y, z) \mid y=g(\mathbf{x}), z=f(\mathbf{x}) \text { for some } \mathbf{x} \in \mathbb{R}^{2}\right\}
$$

In this space only points with $y \leq 0$ correspond to feasible points.

The Primal Problem

- The primal problem consists in finding a point in G with $y \leq 0$ that has minimum ordinate z.
- Obviously this optimal point is $\left(y^{*}, z^{*}\right)$.

Visualization of the Lagrangian

- Given a $\lambda \geq 0$, the Lagrangian is given by

$$
\mathcal{L}(\mathbf{x}, \lambda)=f(\mathbf{x})+\lambda g(\mathbf{x})=z+\lambda y
$$

with $(y, z) \in G$.

- Note $z+\lambda y=\alpha$ is the eqn of a straight line with slope $-\lambda$ that intercepts the z-axis at α.

Visualization of the Lagrangian Dual function

For a given $\lambda \geq 0$ Lagrangian dual sub-problem is find: $\min _{(y, z) \in G}(z+\lambda y)$

- Move the line $z+\lambda y$ in the direction $(-\lambda,-1)$ while remaining in contact with G.
- The last intercept on the z-axis obtained this way is the value of $q(\lambda)$ corresponding to the given $\lambda \geq 0$.

Solving the Dual Problem

Finally want to find the dual optimum: $\max _{\lambda} q(\lambda)$

- the line with slope $-\lambda$ with maximal intercept, $q(\lambda)$, on the z-axis.
- This line has slope λ^{*} and dual optimal solution $q\left(\lambda^{*}\right)$.

Solving the Dual Problem

- For this problem the optimal dual objective z^{*} equals the optimal primal objective z^{*}.
- In such cases, there is no duality gap (strong duality).

Properties of the Lagrangian Dual Function

Theorem

Let $D_{q}=\{\boldsymbol{\lambda} \mid q(\boldsymbol{\lambda})>-\infty\}$ then $q(\boldsymbol{\lambda})$ is concave function on D_{q}.
Proof.
For any $\mathbf{x} \in X$ and $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2} \in D_{q}$ and $\alpha \in(0,1)$

$$
\begin{aligned}
\mathcal{L}\left(\mathbf{x}, \alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}\right) & =f(\mathbf{x})+\left(\alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}\right)^{t} g(\mathbf{x}) \\
& =\alpha\left(f(\mathbf{x})+\boldsymbol{\lambda}_{1}^{t} g(\mathbf{x})\right)+(1-\alpha)\left(f(\mathbf{x})+\boldsymbol{\lambda}_{2}^{t} g(\mathbf{x})\right) \\
& =\alpha \mathcal{L}\left(\mathbf{x}, \boldsymbol{\lambda}_{1}\right)+(1-\alpha) \mathcal{L}\left(\mathbf{x}, \boldsymbol{\lambda}_{2}\right)
\end{aligned}
$$

Take the min on both sides

$$
\begin{aligned}
\min _{\mathbf{x} \in X}\left\{\mathcal{L}\left(\mathbf{x}, \alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}\right)\right\} & =\min _{\mathbf{x} \in X}\left\{\alpha \mathcal{L}\left(\mathbf{x}, \boldsymbol{\lambda}_{1}\right)+(1-\alpha) \mathcal{L}\left(\mathbf{x}, \boldsymbol{\lambda}_{2}\right)\right\} \\
& \geq \alpha \min _{\mathbf{x} \in X}\left\{\mathcal{L}\left(\mathbf{x}, \boldsymbol{\lambda}_{1}\right)\right\}+(1-\alpha) \min _{\mathbf{x} \in X}\left\{\mathcal{L}\left(\mathbf{x}, \boldsymbol{\lambda}_{2}\right)\right\}
\end{aligned}
$$

Therefore

$$
q\left(\alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}\right) \geq \alpha q\left(\boldsymbol{\lambda}_{1}\right)+(1-\alpha) q\left(\boldsymbol{\lambda}_{2}\right)
$$

This implies that q is concave over D_{q}.

The set of Lagrange Multipliers is convex

Theorem

Let $D_{q}=\{\boldsymbol{\lambda} \mid q(\boldsymbol{\lambda})>-\infty\}$. This constraint ensures valid Lagrange Multipliers exist. Then D_{q} is a convex set.

Proof.

Let $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2} \in D_{q}$. Therefore $q\left(\boldsymbol{\lambda}_{1}\right)>-\infty$ and $q\left(\boldsymbol{\lambda}_{2}\right)>-\infty$. Let $\alpha \in(0,1)$, then as q is concave

$$
q\left(\alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}\right) \geq \alpha q\left(\boldsymbol{\lambda}_{1}\right)+(1-\alpha) q\left(\boldsymbol{\lambda}_{2}\right)>-\infty
$$

and this implies

$$
\alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2} \in D_{q}
$$

Hence D_{q} is a convex set.

Significance of these results

- The dual is always concave, irrespective of the primal problem.
- Therefore finding the optimum of the dual function is a convex optimization problem.

Weak Duality

Weak Duality

Theorem (Weak Duality)

Let \mathbf{x} be a feasible solution, $\mathbf{x} \in \mathcal{X}, g(\mathbf{x}) \leq 0$ and $h(\mathbf{x})=0$, to the primal problem P. Let $(\boldsymbol{\lambda}, \boldsymbol{\mu})$ be a feasible solution, $\boldsymbol{\lambda} \geq 0$, to the dual problem D. Then

$$
f(\mathbf{x}) \geq q(\boldsymbol{\lambda}, \boldsymbol{\mu})
$$

Weak Duality

Proof of the Weak Duality Theorem.

Remember

$$
q(\boldsymbol{\lambda}, \boldsymbol{\mu})=\inf \left\{f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{i=1}^{l} \mu_{i} h_{i}(\mathbf{x}): \mathbf{x} \in X_{F}\right\}
$$

Then we have

$$
\begin{aligned}
q(\boldsymbol{\lambda}, \boldsymbol{\mu}) & =\inf \left\{f(\tilde{\mathbf{x}})+\boldsymbol{\lambda}^{t} g(\tilde{\mathbf{x}})+\boldsymbol{\mu}^{t} h(\tilde{\mathbf{x}}): \tilde{\mathbf{x}} \in X_{F}\right\} \\
& \leq f(\mathbf{x})+\boldsymbol{\lambda}^{t} g(\mathbf{x})+\boldsymbol{\mu}^{t} h(\mathbf{x}) \\
& \leq f(\mathbf{x})
\end{aligned}
$$

and the result follows.

Weak Duality

Corollary
Let

$$
\begin{aligned}
& f^{*}=\inf \{f(\mathbf{x}): \mathbf{x} \in X, g(\mathbf{x}) \geq 0, h(\mathbf{x})=0\} \\
& q^{*}=\sup \{q(\boldsymbol{\lambda}, \boldsymbol{\mu}): \boldsymbol{\lambda} \geq 0\}
\end{aligned}
$$

then

$$
q^{*} \leq f^{*}
$$

- Thus the
ontimal value of the primal problem \geq optimal value of the dual problem.
- If optimal value of the primal problem $>$ optimal value of the dual problem, then there exists a duality gap.

Corollary

Let

$$
\begin{aligned}
f^{*} & =\inf \{f(\mathbf{x}): \mathbf{x} \in X, g(\mathbf{x}) \geq 0, h(\mathbf{x})=0\} \\
q^{*} & =\sup \{q(\boldsymbol{\lambda}, \boldsymbol{\mu}): \boldsymbol{\lambda} \geq 0\}
\end{aligned}
$$

then

$$
q^{*} \leq f^{*}
$$

- Thus the
optimal value of the primal problem \geq optimal value of the dual problem.
- If optimal value of the primal problem >optimal value of the dual problem, then there exists a duality gap.

Example with a Duality Gap

Example with a non-convex objective function

- Consider the constrained optimization of this 1D non-convex objective function.
- Let's visualize $G=\{(y, z) \mid \exists x \in \mathbb{R}$ s.t. $y=g(x), z=f(x))\}$ and its dual solution...

Dual Solution < Primal Solution: Have a Duality Gap

- Above is the geometric interpretation of the primal and dual problems.
- Note there exists a duality gap due to the nonconvexity of the set G.

Strong Duality

When does Dual Solution = Primal Solution?

The Strong Duality Theorem states, that if some suitable convexity conditions are satisfied, then there is no duality gap between the primal and dual optimisation problems.

Strong Duality

Theorem (Strong Duality)

Let

- X be a non-empty convex set in \mathbb{R}^{n}
- $f: X \rightarrow \mathbb{R}$ and each $g_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(i=1, \ldots, m)$ be convex,
- each $h_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(i=1, \ldots, l)$ be affine.

If

- there exists $\hat{\mathbf{x}} \in X$ such that $g(\hat{\mathbf{x}})<0$ and
- $\mathbf{0} \in \operatorname{int}(\mathbf{h}(X))$ where $\mathbf{h}(X)=\{\mathbf{h}(\mathbf{x}): \mathbf{x} \in X\}$.
then

$$
\inf \{f(\mathbf{x}): \mathbf{x} \in X, g(\mathbf{x}) \leq 0, h(\mathbf{x})=0\}=\sup \{q(\boldsymbol{\lambda}, \boldsymbol{\mu}): \boldsymbol{\lambda} \geq \mathbf{0}\}
$$

where $q(\boldsymbol{\lambda}, \boldsymbol{\mu})=\inf \left\{f(\mathbf{x})+\boldsymbol{\lambda}^{t} \mathbf{g}(\mathbf{x})+\boldsymbol{\mu}^{t} \mathbf{h}(\mathbf{x}): \mathbf{x} \in X\right\}$.

Strong Duality

Theorem (Strong Duality ctd)

Furthermore, if

$$
\inf \{f(\mathbf{x}): \mathbf{x} \in X, g(\mathbf{x}) \leq 0, h(\mathbf{x})=0\}>-\infty
$$

then the

$$
\sup \{q(\boldsymbol{\lambda}, \boldsymbol{\mu}): \boldsymbol{\lambda} \geq 0\}
$$

is achieved at $\left(\boldsymbol{\lambda}^{*}, \boldsymbol{\mu}^{*}\right)$ with $\boldsymbol{\lambda}^{*} \geq 0$. If the \inf is achieved at \mathbf{x}^{*} then

$$
\left(\boldsymbol{\lambda}^{*}\right)^{t} \mathbf{g}\left(\mathbf{x}^{*}\right)=0
$$

