# KKT conditions and Duality

March 23, 2012

#### Want to solve this constrained optimization problem

$$\min_{\mathbf{x}\in\mathbb{R}^2} f(\mathbf{x}) = \min_{\mathbf{x}\in\mathbb{R}^2} .4 \left( x_1^2 + x_2^2 \right)$$

subject to

$$g(\mathbf{x}) = 2 - x_1 - x_2 \le 0$$

# Tutorial example - Cost function



## Tutorial example - Constraint



#### Solve this problem with Lagrange Multipliers

Can solve this constrained optimization with Lagrange multipliers:

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda \, g(\mathbf{x})$$

#### Solution:

The Lagrangian is

$$\mathcal{L}(\mathbf{x}, \lambda) = .4 x_1^2 + .4 x_2^2 + \lambda (2 - x_1 - x_2)$$

The KKT conditions say that at an optimum  $\lambda^* \geq 0$  and

$$\frac{\partial \mathcal{L}(\mathbf{x}^*, \lambda^*)}{\partial x_1} = .8 x_1^* - \lambda^* = 0$$
$$\frac{\partial \mathcal{L}(\mathbf{x}^*, \lambda^*)}{\partial x_2} = .8 x_2^* - \lambda^* = 0$$
$$\frac{\partial \mathcal{L}(\mathbf{x}^*, \lambda^*)}{\partial \lambda} = 2 - x_1^* - x_2^* = 0$$

## Solve this problem with Lagrange Multipliers

Can solve this constrained optimization with Lagrange multipliers:

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda \, g(\mathbf{x})$$

#### Solution ctd:

Find  $(x_1^*,x_2^*,\lambda^*)$  which fulfill these simultaneous equations. The first two equations imply

$$x_1^* = \frac{5}{4}\lambda^*, \qquad \qquad x_2 = \frac{5}{4}\lambda^*$$

Substituting these into the last equation we get

$$8 - 5\lambda^* - 5\lambda^* = 0 \implies \lambda^* = \frac{4}{5} \leftarrow \text{greater than } 0$$

and in turn this means

$$x_1^* = \frac{5}{4}\lambda^* = 1,$$
  $x_2^* = \frac{5}{4}\lambda^* = 1$ 

#### Solve this particular problem in another way

#### Alternate solution:

Construct the Lagrangian dual function

$$q(\lambda) = \min_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda) = \min_{\mathbf{x}} \ \left( f(\mathbf{x}) + \lambda g(\mathbf{x}) \right)$$

Find optimal value of  ${\bf x}$  wrt  ${\cal L}({\bf x},\lambda)$  in terms of the Lagrange multiplier:

$$x_1^* = \frac{5}{4}\lambda, \qquad \qquad x_2^* = \frac{5}{4}\lambda$$

Substitute back into the expression of  $\mathcal{L}(\mathbf{x},\lambda)$  to get

$$q(\lambda) = \frac{5}{4}\lambda^2 + \lambda\left(2 - \frac{5}{4}\lambda - \frac{5}{4}\lambda\right)$$

Find  $\lambda \ge 0$  which maximizes  $q(\lambda)$ . Luckily in this case the global optimum of  $q(\lambda)$  corresponds to the constrained optimum

$$\frac{\partial q(\lambda)}{\partial \lambda} = -\frac{5}{2}\lambda + 2 = 0 \quad \Longrightarrow \quad \lambda^* = \frac{4}{5} \quad \Longrightarrow \quad x_1^* = x_2^* = 1$$

#### The Primal Problem

$$\min_{\mathbf{x}\in\mathbb{R}^2}\,f(\mathbf{x}) \quad \text{subject to} \quad g(\mathbf{x})\leq 0$$

The Lagrangian Dual Problem

$$\max_{\lambda \in \mathbb{R}} \, q(\lambda) \quad \text{subject to} \quad \lambda \geq 0$$

where

$$q(\lambda) = \min_{\mathbf{x} \in \mathbb{R}^2} \left( f(\mathbf{x}) + \lambda \, g(\mathbf{x}) \right)$$

is referred to as the Lagrangian dual function.

In general we will have multiple inequality and equality constraints. The statement of the **Primal Problem** is

$$\min_{\mathbf{x}\in X} f(\mathbf{x})$$

subject to

$$\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$$
 and  $\mathbf{h}(\mathbf{x}) = \mathbf{0}$ 

#### Lagrangian Dual Problem

$$\max_{oldsymbol{\lambda},oldsymbol{\mu}} q(oldsymbol{\lambda},oldsymbol{\mu}) \,\,\, {\sf subject to} \,\,\, oldsymbol{\lambda} \geq oldsymbol{0}$$

#### where

$$q(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \min_{\mathbf{x}} \left[ f(\mathbf{x}) + \boldsymbol{\lambda}^t \, \mathbf{g}(\mathbf{x}) + \boldsymbol{\mu}^t \, \mathbf{h}(\mathbf{x}) \right]$$

is the Lagrangian dual function.

This dual approach is not guaranteed to succeed. However,

- It does for a certain class of functions
- In these cases it often leads to a simpler optimization problem.
- Particularly in the case when the dimension of x is much larger than the number of constraints.
- The expression of x<sup>\*</sup> in terms of the Lagrange multipliers may give some insight into the optimal solution i.e. the optimal separating hyper-plane found by the SVM.

This dual approach is not guaranteed to succeed. However,

- It does for a certain class of functions
- In these cases it often leads to a simpler optimization problem.
- Particularly in the case when the dimension of x is much larger than the number of constraints.
- The expression of x<sup>\*</sup> in terms of the Lagrange multipliers may give some insight into the optimal solution i.e. the optimal separating hyper-plane found by the SVM.

We will now focus on the geometry of the dual solution...

## Geometry of the Dual Problem

## Map the original problem



- Map each point  $\mathbf{x} \in \mathbb{R}^2$  to  $(g(\mathbf{x}), f(\mathbf{x})) \in \mathbb{R}^2$ .
- This map defines the set

 $G = \{(y,z) \, | \, y = g(\mathbf{x}), \, z = f(\mathbf{x}) \text{ for some } \mathbf{x} \in \mathbb{R}^2 \}.$ 

• Note:  $\mathcal{L}(\mathbf{x}, \lambda) = z + \lambda y$  for some z and y.

## Map the original problem



Define  $G \subset \mathbb{R}^2$  as the image of  $\mathbb{R}^2$  under the (g, f) map

$$G = \{(y, z) \,|\, y = g(\mathbf{x}), \, z = f(\mathbf{x}) \text{ for some } \mathbf{x} \in \mathbb{R}^2\}$$

In this space only points with  $y \leq 0$  correspond to feasible points.

## The Primal Problem



- The primal problem consists in finding a point in G with  $y \leq 0$  that has minimum ordinate z.
- Obviously this optimal point is  $(y^*, z^*)$ .

## Visualization of the Lagrangian



• Given a  $\lambda \ge 0$ , the *Lagrangian* is given by

$$\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x}) = z + \lambda y$$

with  $(y, z) \in G$ .

• Note  $z + \lambda y = \alpha$  is the eqn of a straight line with slope  $-\lambda$  that intercepts the *z*-axis at  $\alpha$ .

## Visualization of the Lagrangian Dual function



For a given  $\lambda \geq 0$  Lagrangian dual sub-problem is find:  $\min_{(y,z) \in G} \; (z+\lambda \, y)$ 

- Move the line  $z + \lambda y$  in the direction  $(-\lambda, -1)$  while remaining in contact with G.
- The last intercept on the z-axis obtained this way is the value of q(λ) corresponding to the given λ ≥ 0.

## Solving the Dual Problem



Finally want to find the dual optimum:  $\max_{\lambda} q(\lambda)$ 

- the line with slope  $-\lambda$  with maximal intercept,  $q(\lambda)$ , on the z-axis.
- This line has slope  $\lambda^*$  and dual optimal solution  $q(\lambda^*)$ .

## Solving the Dual Problem



- For this problem the optimal dual objective  $z^*$  equals the optimal primal objective  $z^*$ .
- In such cases, there is **no duality gap (strong duality)**.

## **Properties of the Lagrangian Dual Function**

# $q(oldsymbol{\lambda})$ is concave

#### Theorem Let $D_q = \{\lambda | q(\lambda) > -\infty\}$ then $q(\lambda)$ is concave function on $D_q$ . Proof. For any $\mathbf{x} \in X$ and $\lambda_1, \lambda_2 \in D_q$ and $\alpha \in (0, 1)$ $\mathcal{L}(\mathbf{x}, \alpha \lambda_1 + (1 - \alpha)\lambda_2) = f(\mathbf{x}) + (\alpha \lambda_1 + (1 - \alpha)\lambda_2)^t g(\mathbf{x})$ $= \alpha (f(\mathbf{x}) + \lambda_1^t g(\mathbf{x})) + (1 - \alpha)(f(\mathbf{x}) + \lambda_2^t g(\mathbf{x}))$ $= \alpha \mathcal{L}(\mathbf{x}, \lambda_1) + (1 - \alpha) \mathcal{L}(\mathbf{x}, \lambda_2).$

Take the  $\min$  on both sides

$$\begin{split} \min_{\mathbf{x}\in X} \{\mathcal{L}(\mathbf{x}, \alpha \boldsymbol{\lambda}_1 + (1-\alpha)\boldsymbol{\lambda}_2)\} &= \min_{\mathbf{x}\in X} \{\alpha \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}_1) + (1-\alpha)\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}_2)\} \\ &\geq \alpha \min_{\mathbf{x}\in X} \{\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}_1)\} + (1-\alpha) \min_{\mathbf{x}\in X} \{\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}_2)\} \end{split}$$

Therefore

$$q(\alpha \boldsymbol{\lambda}_1 + (1-\alpha)\boldsymbol{\lambda}_2) \ge \alpha q(\boldsymbol{\lambda}_1) + (1-\alpha) q(\boldsymbol{\lambda}_2)$$

This implies that q is concave over  $D_q$ .

## The set of Lagrange Multipliers is convex

#### Theorem

Let  $D_q = \{\lambda | q(\lambda) > -\infty\}$ . This constraint ensures valid Lagrange Multipliers exist. Then  $D_q$  is a convex set.

#### Proof.

Let  $\lambda_1, \lambda_2 \in D_q$ . Therefore  $q(\lambda_1) > -\infty$  and  $q(\lambda_2) > -\infty$ . Let  $\alpha \in (0, 1)$ , then as q is concave

$$q(\alpha \, \boldsymbol{\lambda}_1 + (1 - \alpha) \, \boldsymbol{\lambda}_2) \ge \alpha \, q(\boldsymbol{\lambda}_1) + (1 - \alpha) \, q(\boldsymbol{\lambda}_2) > -\infty$$

and this implies

$$\alpha \, \boldsymbol{\lambda}_1 + (1 - \alpha) \, \boldsymbol{\lambda}_2 \in D_q$$

Hence  $D_q$  is a convex set.

- The dual is always concave, irrespective of the primal problem.
- Therefore finding the **optimum of the dual function** is a **convex optimization problem**.

## Weak Duality

#### Theorem (Weak Duality)

Let x be a feasible solution,  $\mathbf{x} \in \mathcal{X}$ ,  $g(\mathbf{x}) \leq 0$  and  $h(\mathbf{x}) = 0$ , to the primal problem P. Let  $(\boldsymbol{\lambda}, \boldsymbol{\mu})$  be a feasible solution,  $\boldsymbol{\lambda} \geq 0$ , to the dual problem D. Then

 $f(\mathbf{x}) \geq q(\boldsymbol{\lambda}, \boldsymbol{\mu})$ 

Weak Duality

#### Proof of the Weak Duality Theorem. Remember

$$q(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf\{f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^{l} \mu_i h_i(\mathbf{x}) : \mathbf{x} \in X_F\}$$

Then we have

$$q(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf\{f(\tilde{\mathbf{x}}) + \boldsymbol{\lambda}^t g(\tilde{\mathbf{x}}) + \boldsymbol{\mu}^t h(\tilde{\mathbf{x}}) : \tilde{\mathbf{x}} \in X_F\}$$
  
$$\leq f(\mathbf{x}) + \boldsymbol{\lambda}^t g(\mathbf{x}) + \boldsymbol{\mu}^t h(\mathbf{x})$$
  
$$\leq f(\mathbf{x})$$

and the result follows.



#### Corollary

Let

$$f^* = \inf\{f(\mathbf{x}) : \mathbf{x} \in X, g(\mathbf{x}) \ge 0, h(\mathbf{x}) = 0\}$$
$$q^* = \sup\{q(\boldsymbol{\lambda}, \boldsymbol{\mu}) : \boldsymbol{\lambda} \ge 0\}$$

then

$$\boxed{q^* \le f^*}$$

• Thus the

optimal value of the primal problem  $\geq$  optimal value of the dual problem.

 If optimal value of the primal problem > optimal value of the dual problem, then there exists a duality gap.



#### Corollary

Let

$$f^* = \inf\{f(\mathbf{x}) : \mathbf{x} \in X, g(\mathbf{x}) \ge 0, h(\mathbf{x}) = 0\}$$
$$q^* = \sup\{q(\boldsymbol{\lambda}, \boldsymbol{\mu}) : \boldsymbol{\lambda} \ge 0\}$$

then

$$\boxed{q^* \le f^*}$$

• Thus the

optimal value of the primal problem  $\geq$  optimal value of the dual problem.

 If optimal value of the primal problem > optimal value of the dual problem, then there exists a duality gap.

# Example with a **Duality Gap**

### Example with a non-convex objective function



- Consider the constrained optimization of this 1D non-convex objective function.
- Let's visualize  $G = \{(y, z) | \exists x \in \mathbb{R} \text{ s.t. } y = g(x), z = f(x))\}$  and its dual solution...

## Dual Solution $\leq$ Primal Solution: Have a Duality Gap



- Above is the geometric interpretation of the primal and dual problems.
- Note there exists a **duality gap** due to the nonconvexity of the set *G*.

# **Strong Duality**

The **Strong Duality Theorem** states, that if some suitable convexity conditions are satisfied, then there is no duality gap between the primal and dual optimisation problems.



#### Theorem (Strong Duality)

Let

- X be a non-empty convex set in  $\mathbb{R}^n$
- $f: X \to \mathbb{R}$  and each  $g_i: \mathbb{R}^n \to \mathbb{R}$  (i = 1, ..., m) be convex,
- each  $h_i : \mathbb{R}^n \to \mathbb{R}$   $(i = 1, \dots, l)$  be affine.

#### lf

- there exists  $\hat{\mathbf{x}} \in X$  such that  $g(\hat{\mathbf{x}}) < 0$  and
- $\mathbf{0} \in \operatorname{int}(\mathbf{h}(X))$  where  $\mathbf{h}(X) = {\mathbf{h}(\mathbf{x}) : \mathbf{x} \in X}.$

then

$$\inf\{f(\mathbf{x}) \, : \, \mathbf{x} \in X, g(\mathbf{x}) \le 0, h(\mathbf{x}) = 0\} = \sup\{q(\boldsymbol{\lambda}, \boldsymbol{\mu}) \, : \, \boldsymbol{\lambda} \ge \mathbf{0}\}$$

where  $q(\lambda, \mu) = \inf\{f(\mathbf{x}) + \lambda^t \mathbf{g}(\mathbf{x}) + \mu^t \mathbf{h}(\mathbf{x}) : \mathbf{x} \in X\}.$ 

# Theorem (Strong Duality ctd) *Furthermore, if*

$$\inf\{f(\mathbf{x}) \,:\, \mathbf{x} \in X, g(\mathbf{x}) \le 0, h(\mathbf{x}) = 0\} > -\infty$$

then the

 $\sup\{q(\boldsymbol{\lambda},\boldsymbol{\mu}):\boldsymbol{\lambda}\geq 0\}$ 

is achieved at  $(\lambda^*, \mu^*)$  with  $\lambda^* \ge 0$ . If the  $\inf$  is achieved at  $\mathbf{x}^*$  then

 $(\boldsymbol{\lambda}^*)^t \mathbf{g}(\mathbf{x}^*) = 0$