Expectation Maximization without tears!

 ${\sf Josephine} \ {\sf Sullivan} \ + \ {\sf the} \ {\sf web}$

Some stuff you probably already know

Parameter estimation

Have *n* independent draws $\mathbf{x}_1, \ldots, \mathbf{x}_n$ from $p(\mathbf{x} \mid \Theta)$.

Each $\mathbf{x}_i \sim N(\mathbf{x} \,|\, \boldsymbol{\mu}, \Sigma)$ where $\Theta = (\boldsymbol{\mu}, \Sigma)$

Parameter estimation

Have *n* independent draws $\mathbf{x}_1, \ldots, \mathbf{x}_n$ from $p(\mathbf{x} | \Theta)$.

Each $\mathbf{x}_i \sim N(\mathbf{x} \,|\, \boldsymbol{\mu}, \Sigma)$ where $\Theta = (\boldsymbol{\mu}, \Sigma)$

Want to estimate the parameters Θ from the \mathbf{x}_i 's

Josephine Sullivan + the web,

Parameter estimation

Have *n* independent draws $\mathbf{x}_1, \ldots, \mathbf{x}_n$ from $p(\mathbf{x} | \Theta)$.

Want to estimate the parameters Θ from the \mathbf{x}_i 's. HOW??

Choose the Θ which maximizes the likelihood of your data:

$$\Theta^* = \arg \max_{\Theta} p(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \,|\, \Theta)$$

Choose the Θ which maximizes the likelihood of your data:

$$I(\Theta; \mathbf{X}) \equiv p(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \,|\, \Theta)$$
$$= \prod_{i=1}^n p(\mathbf{x}_i \,|\, \Theta) \quad \leftarrow \text{assuming independent samples}$$

Choose the Θ which maximizes the likelihood of your data:

$$I(\Theta; \mathbf{X}) \equiv p(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \,|\, \Theta)$$
$$= \prod_{i=1}^n p(\mathbf{x}_i \,|\, \Theta) \quad \leftarrow \text{assuming independent samples}$$

Easier to work with the log-likelihood

$$L(\Theta; \mathbf{X}) = \log (I(\Theta; \mathbf{X})) = \sum_{i=1}^{n} \log (p(\mathbf{x}_i \mid \Theta))$$

Choose the Θ which maximizes the likelihood of your data:

Note

$$\Theta^* = \arg \max_{\Theta} \, \mathit{I}(\Theta; \mathbf{X}) = \arg \max_{\Theta} \, \mathit{L}(\Theta; \mathbf{X})$$

An example Log-likelihood function

Our 1D example of points drawn from $N(\mu, \Sigma)$

An example Log-likelihood function

Our 1D example of points drawn from $N(\mu, \Sigma)$

Want to find the maximum of this function $L(\Theta; \mathbf{X})$.

The formula for a normal distribution for $\mathbf{x} \in \mathcal{R}^d$:

$$\rho(\mathbf{x} \mid \Theta) = (2\pi)^{-\frac{d}{2}} \mid \Sigma \mid^{-\frac{1}{2}} \exp\left(-.5(\mathbf{x} - \boldsymbol{\mu})^t \, \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

The formula for a normal distribution for $\mathbf{x} \in \mathcal{R}^d$:

 $p(\mathbf{x} \mid \Theta) = (2\pi)^{-\frac{d}{2}} \left| \Sigma \right|^{-\frac{1}{2}} \exp\left(-.5(\mathbf{x} - \boldsymbol{\mu})^t \, \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu}) \right)$

The log-likelihood of our n data-points is

$$\begin{split} L(\Theta; \mathbf{X}) &= \sum_{i=1}^{n} \log \left(p(\mathbf{x}_{i} \mid \Theta) \right) \\ &= \sum_{i=1}^{n} \left[-\frac{d}{2} \log(2\pi) - \frac{1}{2} \log \left(\mid \Sigma \mid \right) - .5 (\mathbf{x}_{i} - \mu)^{t} \Sigma^{-1} (\mathbf{x}_{i} - \mu) \right] \\ &= -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log \left(\mid \Sigma \mid \right) - .5 \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu)^{t} \Sigma^{-1} (\mathbf{x}_{i} - \mu) \\ &= -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log \left(\mid \Sigma \mid \right) - .5 \operatorname{tr} \left[\sum_{i=1}^{n} (\mathbf{x}_{i} - \mu)^{t} \Sigma^{-1} (\mathbf{x}_{i} - \mu) \right] \end{split}$$

$$\begin{split} \mathcal{L}(\Theta; \mathbf{X}) &= -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log(|\Sigma|) - .5 \operatorname{tr} \left[\sum_{i=1}^{n} (\mathbf{x}_{i} - \mu)^{t} \Sigma^{-1} (\mathbf{x}_{i} - \mu) \right] \\ &= -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log(|\Sigma|) - .5 \operatorname{tr} \left[\sum_{i=1}^{n} \Sigma^{-1} (\mathbf{x}_{i} - \mu) (\mathbf{x}_{i} - \mu)^{t} \right] \\ &= -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log(|\Sigma|) - .5 \operatorname{tr} \left[\Sigma^{-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu) (\mathbf{x}_{i} - \mu)^{t} \right] \end{split}$$

Note Σ is a symmetric positive definite matrix. Thus $\Sigma={\mathcal T}^t{\mathcal T}$ therefore

$$L(\Theta; \mathbf{X}) = -\frac{nd}{2} \log(2\pi) - \frac{n}{2} \log(|T^{t}T|) - .5 \operatorname{tr} \left[(T^{t}T)^{-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu) (\mathbf{x}_{i} - \mu)^{t} \right]$$
$$= -\frac{nd}{2} \log(2\pi) - n \log(|T|) - .5 \operatorname{tr} \left[(T^{t}T)^{-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu) (\mathbf{x}_{i} - \mu)^{t} \right]$$

Josephine Sullivan + the web,

How do we analytically solve for an optimum?

Take derivative of function wrt each variable.

How do we analytically solve for an optimum?

- Take derivative of function wrt each variable.
- Set each derivative to zero.

Remember

How do we analytically solve for an optimum?

- Take derivative of function wrt each variable.
- Set each derivative to zero.
- ► Solve the set of simultaneous equations if possible.

For our Normal distribution

$$L(\Theta; \mathbf{X}) = -\frac{nd}{2}\log(2\pi) - n\log\left(|T|\right) - .5\operatorname{tr}\left[(T^{t}T)^{-1}\sum_{i=1}^{n}(\mathbf{x}_{i}-\mu)(\mathbf{x}_{i}-\mu)^{t}\right]$$

Take derivative of function wrt each variable:

$$\frac{\partial L(\Theta; \mathbf{X})}{\partial \mu} = \sum_{i=1}^{n} \Sigma^{-1} (\mathbf{x}_{i} - \mu)$$
$$\frac{\partial L(\Theta; \mathbf{X})}{\partial T} = -nT^{-t} + T(T^{t}T)^{-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu) (\mathbf{x}_{i} - \mu)^{t} (T^{t}T)^{-1}$$

Remember: The Matrix Cookbook is your friend.

For our Normal distribution

$$L(\Theta; \mathbf{X}) = -\frac{nd}{2}\log(2\pi) - n\log\left(|\mathcal{T}|\right) - .5\operatorname{tr}\left[(\mathcal{T}^{t}\mathcal{T})^{-1}\sum_{i=1}^{n}(\mathbf{x}_{i}-\mu)(\mathbf{x}_{i}-\mu)^{t}\right]$$

Set each derivative to zero:

$$\mathbf{0} = \Sigma^{-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu)$$

$$\mathbf{0} = -nT^{-t} + T(T^{t}T)^{-1} \left[\sum_{i=1}^{n} (\mathbf{x}_{i} - \mu)(\mathbf{x}_{i} - \mu)^{t} \right] (T^{t}T)^{-1}$$

Remember: The Matrix Cookbook is your friend.

For our Normal distribution

$$L(\Theta; \mathbf{X}) = -\frac{nd}{2} \log(2\pi) - n \log(|T|) - .5 \operatorname{tr} \left[(T^{t}T)^{-1} \sum_{i=1}^{n} (\mathbf{x}_{i} - \mu) (\mathbf{x}_{i} - \mu)^{t} \right]$$

Solve the set of simultaneous equations if possible:

$$\mu^* = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$$
$$T^{*t} T^* = \Sigma^* = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i - \mu^*) (\mathbf{x}_i - \mu^*)^t$$

Remember: The Matrix Cookbook is your friend.

Back to our 1D example:

Red curve is the MLE pdf (n = 25) Black curve is the ground truth

Estimate becomes better as n increases

Red curve is the MLE pdf (n = 200) Black curve is the ground truth

Some more stuff you probably already know

Limitations of Normal distributions

Unfortunately Normal distributions are not very expressive.

They can only accurately represent distributions with one mode.

Limitations of Normal distributions

Unfortunately Normal distributions are not very expressive.

What do we do in this situation ??

Josephine Sullivan + the web,

Gaussian Mixture Models (GMM)

They can accurately represent any distribution.

Mathematical definition

$$p(\mathbf{x} \mid \Theta) = \sum_{k=1}^{K} \pi_k N(\mathbf{x}_k; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where

$$\sum_{k=1}^{K} \pi_k = 1$$
 and $\pi_k \ge 0$ for $k = 1, \dots, K$

and
$$\Theta = (\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K, \boldsymbol{\Sigma}_1, \dots, \boldsymbol{\Sigma}_K, \pi_1, \dots, \pi_K)$$

Josephine Sullivan + the web,

Gaussian Mixture Models (GMM)

They can accurately represent any distribution.

Parameter estimation for a GMM

Given *n* independent samples $\mathbf{x}_1, \ldots, \mathbf{x}_n$ from a GMM.

Parameter estimation for a GMM

Given *n* independent samples $\mathbf{x}_1, \ldots, \mathbf{x}_n$ from a GMM.

Can still use MLE to estimate Θ from the \mathbf{x}_i 's, but...

Attempt 1: Analytic Solution

The log-likelihood of the data is

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$$

(Note: We'll assume K is known and fixed.)

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Let's try to maximize $L(\Theta; \mathbf{X})$ analytically subject to the constraint $\sum_k \pi_k = 1$ and each $\Sigma_k = \mathcal{T}_k^t \mathcal{T}_k$. Construct the Lagrangian $\mathcal{L}(\Theta, \lambda; \mathbf{X})$.

$$\mathcal{L}(\Theta, \lambda; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right) + \lambda \left(1 - \sum_{k=1}^{K} \pi_k \right)$$

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Let's try to maximize $L(\Theta; \mathbf{X})$ analytically subject to the constraint $\sum_k \pi_k = 1$ and each $\Sigma_k = T_k^t T_k$. Construct the Lagrangian $\mathcal{L}(\Theta, \lambda; \mathbf{X})$.

Take derivatives for $k = 1, \ldots, K$:

$$\begin{split} \frac{\partial \mathcal{L}(\Theta, \lambda; \mathbf{X})}{\partial \boldsymbol{\mu}_{k}} &= \sum_{i=1}^{n} \frac{\pi_{k} N(\mathbf{x}_{i}; \boldsymbol{\mu}_{k}, T_{k}^{t} T_{k})}{GMM(\mathbf{x}_{i}; \Theta)} \left(T_{k}^{t} T_{k}\right)^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k}) \\ \frac{\partial \mathcal{L}(\Theta, \lambda; \mathbf{X})}{\partial T_{k}} &= \text{something complicated}..... \\ \text{etc} \end{split}$$

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Let's try to maximize $L(\Theta; \mathbf{X})$ analytically subject to the constraint $\sum_k \pi_k = 1$ and each $\Sigma_k = \mathcal{T}_k^t \mathcal{T}_k$. Construct the Lagrangian $\mathcal{L}(\Theta, \lambda; \mathbf{X})$.

Set derivatives to zero:

$$\sum_{i=1}^{n} \frac{\pi_k N(\mathbf{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{GMM(\mathbf{x}_i; \Theta)} \ \boldsymbol{\Sigma}_k^{-1}(\mathbf{x}_i - \boldsymbol{\mu}_k) = \mathbf{0}$$

etc

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Let's try to maximize $L(\Theta; \mathbf{X})$ analytically subject to the constraint $\sum_k \pi_k = 1$ and each $\Sigma_k = \mathcal{T}_k^t \mathcal{T}_k$. Construct the Lagrangian $\mathcal{L}(\Theta, \lambda; \mathbf{X})$.

Solve the set of simultaneous equations NO ANALYTIC SOLUTION

Attempt 2: Newton based iterative optimzation

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Could try to maximize $L(\Theta; \mathbf{X})$ iteratively using Newton's Method. After all $L(\Theta; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Could try to maximize $L(\Theta; \mathbf{X})$ iteratively using Newton's Method.

After all $L(\Theta; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

One iteration

• Have a current estimate $\Theta^{(t)}$.

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Could try to maximize $L(\Theta; \mathbf{X})$ iteratively using Newton's Method.

After all $L(\Theta; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

One iteration

- Have a current estimate $\Theta^{(t)}$.
- ► Approximate L(Θ; X) in neighbourhood of Θ^(t) with a paraboloid.

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Could try to maximize $L(\Theta; \mathbf{X})$ iteratively using Newton's Method.

After all $L(\Theta; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

One iteration

- Have a current estimate $\Theta^{(t)}$.
- ► Approximate L(Θ; X) in neighbourhood of Θ^(t) with a paraboloid.
- $\Theta^{(t+1)}$ is set to maximum of the paraboloid.

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Could try to maximize $L(\Theta; \mathbf{X})$ iteratively using Newton's Method.

After all $L(\Theta; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Could try to maximize $L(\Theta; \mathbf{X})$ iteratively using Newton's Method.

After all $L(\Theta; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

Comments

- Should find a local maximum.
- Convergence fast if $\Theta^{(t)}$ close to an optimum. \checkmark

$$L(\Theta; \mathbf{X}) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k N(x_i; \boldsymbol{\mu}_k, T_k^t T_k) \right)$$

Could try to maximize $L(\Theta; \mathbf{X})$ iteratively using Newton's Method.

After all $L(\Theta; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

Comments Should find a local maximum. √ Convergence fast if Θ^(t) close to an optimum. √

If Θ⁽⁰⁾ far away from a local maximum method can fail.
 Paraboloid approximation process can hit problems. X

What other options are there??

Now for, what may seem like, a slight diversion

Defintion of Majorization

A function $g(\Theta; \Theta^{(t)})$ majorizes a function $f(\Theta)$ at $\Theta^{(t)}$ if

 $f(\Theta^{(t)}) = g(\Theta^{(t)}; \Theta^{(t)})$ and $f(\Theta) \le g(\Theta; \Theta^{(t)})$ for all Θ

 $\leftarrow g(\Theta; \Theta^{(t)})$ majorizes $f(\Theta)$

The MM Algorithm

To **minimize** an objective function $f(\Theta)$:

 The MM algorithm is a prescription for constructing optimization algorithms.

Name coined by David R. Hunter and Kenneth Lange

The MM Algorithm

To **minimize** an objective function $f(\Theta)$:

- The MM algorithm is a prescription for constructing optimization algorithms.
- An MM algorithm creates a surrogate function that majorizes the objective function. When the surrogate function is minimized the objective function is decreased.

Name coined by David R. Hunter and Kenneth Lange

The MM Algorithm

To **minimize** an objective function $f(\Theta)$:

- The MM algorithm is a prescription for constructing optimization algorithms.
- An MM algorithm creates a surrogate function that majorizes the objective function. When the surrogate function is minimized the objective function is decreased.
- When minimizing $MM \equiv majorize/minimize$.

Name coined by David R. Hunter and Kenneth Lange

Some definitions

A function $g(\Theta; \Theta^{(t)})$ majorizes the function $f(\Theta)$ at $\Theta^{(t)}$ if

 $f(\Theta^{(t)}) = g(\Theta^{(t)}; \Theta^{(t)})$ and $f(\Theta) \le g(\Theta; \Theta^{(t)})$ for all Θ

 $\leftarrow g(\Theta; \Theta^{(t)})$ majorizes $f(\Theta)$

Some definitions Let

$$\Theta^{(t+1)} = \arg\min_{\Theta} g(\Theta; \Theta^{(t)})$$

Josephine Sullivan + the web,

Some definitions

Let

$$\Theta^{(t+1)} = \arg\min_{\Theta} g(\Theta; \Theta^{(t)})$$

(so should choose a $g(\Theta; \Theta^{(t)})$ which is easy to minimize)

Josephine Sullivan + the web,

Descent Properties

MM minimization algorithm satisfies the descent property as

$$egin{aligned} &f(\Theta^{(t+1)}) \leq g(\Theta^{(t+1)}; \, \Theta^{(t)}), & ext{ as } f(\Theta) \leq g(\Theta; \, \Theta^{(t)}) \, orall \Theta \ &\leq g(\Theta^{(t)}; \, \Theta^{(t)}), & ext{ as } \Theta^{(t+1)} ext{ minimizes } g(\Theta; \, \Theta^{(t)}) \ &= f(\Theta^{(t)}) \end{aligned}$$

In summary

$$f(\Theta^{(t+1)}) \leq f(\Theta^{(t)})$$

Descent Properties

MM minimization algorithm satisfies the descent property as

$$egin{aligned} &f(\Theta^{(t+1)}) \leq g(\Theta^{(t+1)}; \ \Theta^{(t)}), & ext{ as } f(\Theta) \leq g(\Theta; \ \Theta^{(t)}) \ orall \Theta \ &\leq g(\Theta^{(t)}; \ \Theta^{(t)}), & ext{ as } \Theta^{(t+1)} ext{ minimizes } g(\Theta; \ \Theta^{(t)}) \ &= f(\Theta^{(t)}) \end{aligned}$$

In summary

$$f(\Theta^{(t+1)}) \leq f(\Theta^{(t)})$$

The descent property makes the MM algorithm very stable. Algorithm converges to local minima or saddle point.

Maximizing a function

To **maximize** an objective function $f(\Theta)$:

MM algorithm creates a surrogate function that minorize the objective function. When the surrogate function is maximized the objective function is increased.

Red curve minorize the black curve

Maximizing a function

To **maximize** an objective function $f(\Theta)$:

MM algorithm creates a surrogate function that minorize the objective function. When the surrogate function is maximized the objective function is increased.

Red curve minorize the black curve

• When maximizing $MM \equiv minorize/maximize$.

How do you majorize or minorize a function??

How do you majorize or minorize a function??

Here are some generic tricks and tools

- Jensen's inequality
- Chord above the graph property of a convex function
- Supporting hyperplane property of a convex function
- Quadratic upper bound principle
- Arithmetic-geometric mean inequality
- The Cauchy-Schwartz inequality

How do you majorize or minorize a function??

Here are some generic tricks and tools

- Jensen's inequality
- Chord above the graph property of a convex function
- Supporting hyperplane property of a convex function
- Quadratic upper bound principle
- Arithmetic-geometric mean inequality
- The Cauchy-Schwartz inequality

Presume it would take some practice to use these tricks.

How do you majorize or minorize a function??

Here are some generic tricks and tools

- Jensen's inequality
- Chord above the graph property of a convex function
- Supporting hyperplane property of a convex function
- Quadratic upper bound principle
- Arithmetic-geometric mean inequality
- The Cauchy-Schwartz inequality

Presume it would take some practice to use these tricks.

But....

But wait...

You probably have minorized via Jensen's Inequality!

Remember Jensen's Inequality:

• $h(\cdot)$ be a concave function,

But wait ...

You probably have minorized via Jensen's Inequality!

Remember Jensen's Inequality:

- $h(\cdot)$ be a concave function,
- have K non-negative numbers π_1, \ldots, π_K with $\sum_k \pi_i = 1$,

But wait ...

You probably have minorized via Jensen's Inequality!

Remember Jensen's Inequality:

- $h(\cdot)$ be a concave function,
- have K non-negative numbers π_1, \ldots, π_K with $\sum_k \pi_i = 1$,
- *K* arbitrary numbers a_1, \ldots, a_K

But wait ...

You probably have minorized via Jensen's Inequality!

Remember Jensen's Inequality:

- $h(\cdot)$ be a concave function,
- have K non-negative numbers π_1, \ldots, π_K with $\sum_k \pi_i = 1$,
- *K* arbitrary numbers a_1, \ldots, a_K

then

$$h\left(\sum_{k=1}^{K}\pi_{k} a_{k}\right) \geq \sum_{k=1}^{K}\pi_{k} h(a_{k})$$

Finally we're getting to $E_{xpectation}M_{aximization}$

• The EM algorithm is a MM algorithm.

Finally we're getting to Expectation Maximization

- The EM algorithm is a MM algorithm.
- ► Use Jensen's inequality to minorize the log-likelihood.

Finally we're getting to Expectation Maximization

- The EM algorithm is a MM algorithm.
- Use Jensen's inequality to minorize the log-likelihood.

Here's how we minorize. Step 1:

$$L(\Theta; \mathbf{X}) = \log \left(p(\mathbf{X} \mid \Theta) = \log \left(\sum_{j=1}^{n_z} p\left(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta \right) \right) \leftarrow \text{introduce discrete variable } \mathbf{Z}$$
$$f^{(t)}(\mathbf{Z}) \text{ a pdf} \rightarrow = \log \left(\sum_{j=1}^{n_z} f^{(t)}(\mathbf{Z} = \mathbf{z}_j) \frac{p\left(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta \right)}{f^{(t)}(\mathbf{Z} = \mathbf{z}_j)} \right)$$
$$\text{Jensen's inequality} \rightarrow \geq \sum_{j=1}^{n_z} f^{(t)}(\mathbf{Z} = \mathbf{z}_j) \log \left(\frac{p\left(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta \right)}{f^{(t)}(\mathbf{Z} = \mathbf{z}_j)} \right)$$

Finally we're getting to Expectation Maximization

- The EM algorithm is a MM algorithm.
- Use Jensen's inequality to minorize the log-likelihood.

Here's how we minorize. Step 1:

$$L(\Theta; \mathbf{X}) = \log \left(p(\mathbf{X} \mid \Theta) = \log \left(\sum_{j=1}^{n_z} p\left(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta \right) \right) \leftarrow \text{introduce discrete variable Z}$$

$$f^{(t)}(\mathbf{Z}) \text{ a pdf} \rightarrow = \log \left(\sum_{j=1}^{n_z} f^{(t)}(\mathbf{Z} = \mathbf{z}_j) \frac{p\left(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta \right)}{f^{(t)}(\mathbf{Z} = \mathbf{z}_j)} \right)$$

$$\text{Jensen's inequality} \rightarrow \geq \sum_{j=1}^{n_z} f^{(t)}(\mathbf{Z} = \mathbf{z}_j) \log \left(\frac{p\left(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta \right)}{f^{(t)}(\mathbf{Z} = \mathbf{z}_j)} \right)$$

$$L(\Theta; \mathbf{X}) \geq \sum_{j=1}^{n_z} f^{(t)}(\mathbf{Z} = \mathbf{z}_j) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta)}{f^{(t)}(\mathbf{Z} = \mathbf{z}_j)} \right)$$

Find $f^{(t)}(\mathbf{Z})$

Here's how we minorize. Step 2:

The lower bound must touch the log-likelihood at $\Theta^{(t)}$

$$L(\Theta^{(t)}; \mathbf{X}) = \sum_{j=1}^{n_z} f^{(t)}(\mathbf{Z} = \mathbf{z}_j) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta^{(t)})}{f^{(t)}(\mathbf{Z} = \mathbf{z}_j)} \right)$$

Find $f^{(t)}(\mathbf{Z})$

Here's how we minorize. Step 2:

The lower bound must touch the log-likelihood at $\Theta^{(t)}$

$$L(\Theta^{(t)}; \mathbf{X}) = \sum_{j=1}^{n_z} f^{(t)}(\mathbf{Z} = \mathbf{z}_j) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \mid \Theta^{(t)})}{f^{(t)}(\mathbf{Z} = \mathbf{z}_j)} \right)$$

From this constraint can calculate $f^{(t)}(\mathbf{Z})$. It is:

$$f^{(t)}(\mathsf{Z}) = p(\mathsf{Z} \,|\, \mathsf{X}, \Theta^{(t)})$$

(Derivation is straight-forward)

EM as MM summary

The log-likelihood function $L(\Theta; \mathbf{X})$ at $\Theta^{(t)}$ is minorized by

$$g(\Theta; \Theta^{(t)}) = \sum_{j=1}^{n_z} p(\mathbf{Z} = \mathbf{z}_j \,|\, \mathbf{X}, \Theta^{(t)}) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \,|\, \Theta)}{p(\mathbf{Z} = \mathbf{z}_j \,|\, \mathbf{X}, \Theta^{(t)})} \right)$$

EM as MM summary

The log-likelihood function $L(\Theta; \mathbf{X})$ at $\Theta^{(t)}$ is minorized by

$$g(\Theta; \Theta^{(t)}) = \sum_{j=1}^{n_z} p(\mathbf{Z} = \mathbf{z}_j \,|\, \mathbf{X}, \Theta^{(t)}) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} = \mathbf{z}_j \,|\, \Theta)}{p(\mathbf{Z} = \mathbf{z}_j \,|\, \mathbf{X}, \Theta^{(t)})} \right)$$

Maximizing the surrogate function, $g(\Theta; \Theta^{(t)})$, involves:

The latent/hidden variables **Z**

There seemed to be some magic in this derivation!

What are the **Z**'s and where did they come from??

Answer:

The latent/hidden variables **Z**

There seemed to be some magic in this derivation!

What are the **Z**'s and where did they come from??

Answer:

 Z is a random variable whose pdf conditioned on X is completely determined by Θ.

The latent/hidden variables **Z**

There seemed to be some magic in this derivation!

What are the **Z**'s and where did they come from??

Answer:

- Z is a random variable whose pdf conditioned on X is completely determined by Θ.
- Choice of **Z** should make the maximization step **easy**.

Back to our GMM parameter estimation and EM

Attempt 3: Parameter estimation for a GMM

Let's look at a tutorial example using EM:

$$p(x \mid \Theta) = \alpha \, \mathcal{N}(x \mid \mu_1, \sigma_1^2) + (1 - \alpha) \, \mathcal{N}(x \mid \mu_2, \sigma_2^2)$$

Attempt 3: Parameter estimation for a GMM

Say all the parameters of Θ are known except α . Then we are given *n* samples $\mathbf{X} = (x_1, x_2, \dots, x_n)$ independently drawn from $p(x \mid \Theta)$. Using these samples and EM we can estimate α .

Attempt 3: Parameter estimation for a GMM

If we knew which samples were generated by which component, life would be so much simpler!

Introduce hidden/latent variables:

 $\mathbf{Z} = (z_1, \dots, z_n)$ is a vector of hidden variables. Each $z_i \in \{0, 1\}$ indicates component generating x_i .

Introduce hidden/latent variables:

 $\mathbf{Z} = (z_1, \ldots, z_n)$ is a vector of hidden variables. Each $z_i \in \{0, 1\}$ indicates component generating x_i .

E-step:

Update posteriors for the hidden variables:

$$p(z_{i} = 0 | x_{i}, \alpha^{(t)}) = \frac{p(x_{i} | \mu_{1}, \sigma_{1}) \alpha^{(t)}}{p(x_{i} | \mu_{1}, \sigma_{1}) \alpha^{(t)} + p(x_{i} | \mu_{2}, \sigma_{2}) (1 - \alpha^{(t)})}$$

Introduce hidden/latent variables:

 $\mathbf{Z} = (z_1, \ldots, z_n)$ is a vector of hidden variables. Each $z_i \in \{0, 1\}$ indicates component generating x_i .

E-step:

Update posteriors for the hidden variables:

$$p(z_{i} = 0 | x_{i}, \alpha^{(t)}) = \frac{p(x_{i} | \mu_{1}, \sigma_{1}) \alpha^{(t)}}{p(x_{i} | \mu_{1}, \sigma_{1}) \alpha^{(t)} + p(x_{i} | \mu_{2}, \sigma_{2}) (1 - \alpha^{(t)})}$$

Calculate the conditional expectation

$$g(\alpha; \alpha^{(t)}) = \sum_{\mathsf{all } \mathsf{Z}} p(\mathsf{Z} \,|\, \mathsf{X}, \alpha^{(t)}) \, \log\left(\frac{p(\mathsf{X}, \mathsf{Z} \,|\, \alpha)}{p(\mathsf{Z} \,|\, \mathsf{X}, \alpha^{(t)})}\right)$$

Introduce hidden/latent variables:

 $\mathbf{Z} = (z_1, \ldots, z_n)$ is a vector of hidden variables. Each $z_i \in \{0, 1\}$ indicates component generating x_i .

E-step:

Update posteriors for the hidden variables:

$$p(z_{i} = 0 | x_{i}, \alpha^{(t)}) = \frac{p(x_{i} | \mu_{1}, \sigma_{1}) \alpha^{(t)}}{p(x_{i} | \mu_{1}, \sigma_{1}) \alpha^{(t)} + p(x_{i} | \mu_{2}, \sigma_{2}) (1 - \alpha^{(t)})}$$

Calculate the conditional expectation

$$g(\alpha; \alpha^{(t)}) = \sum_{\mathsf{all } \mathbf{Z}} p(\mathbf{Z} \,|\, \mathbf{X}, \alpha^{(t)}) \, \log\left(\frac{p(\mathbf{X}, \mathbf{Z} \,|\, \alpha)}{p(\mathbf{Z} \,|\, \mathbf{X}, \alpha^{(t)})}\right)$$

M-step: Find $\arg \max_{\alpha} g(\alpha; \alpha^{(t)})$ which gives:

$$\alpha^{(t+1)} = \frac{\sum_{i} p(z_i=0 \mid \mathbf{x}_i, \alpha^{(t)})}{n}$$

Josephine Sullivan + the web,

Attempt 3: EM expectation calculation

$$\begin{split} &\sum_{\text{all } \mathbf{Z}} p(\mathbf{Z} \mid \mathbf{X}, \alpha^{(t)}) \log \left(p(\mathbf{X}, \mathbf{Z} \mid \alpha) \right) \\ &= \sum_{\text{all } \mathbf{Z}} \left[\prod_{s=1}^{n} p(z_s \mid x_s, \alpha^{(t)}) \sum_{i=1}^{n} \log \left(p(x_i \mid z_i, \alpha) p(z_i \mid \alpha) \right) \right] \\ &= \sum_{j_1=0}^{1} \cdots \sum_{j_n=0}^{1} \left[\prod_{s=1}^{n} p(z_s = j_s \mid x_s, \alpha^{(t)}) \sum_{i=1}^{n} \log \left(p(x_i \mid z_i = j_i, \alpha) p(z_i = j_i \mid \alpha) \right) \right] \\ &= \sum_{i=1}^{n} \left[\left(\prod_{s=1, s \neq i}^{n} \sum_{\substack{j_s = 0 \\ s=1}}^{1} p(z_s = j_s \mid x_s, \alpha^{(t)}) \sum_{i=1}^{n} p(z_i = j_i \mid x_i, \alpha^{(t)}) \log \left(p(x_i \mid z_i = j_i, \alpha) p(z_i = j_i \mid \alpha) \right) \right] \right] \\ &= \sum_{i=1}^{n} \sum_{j_i=0}^{1} p(z_i = j_i \mid x_i, \alpha^{(t)}) \log \left(p(x_i \mid z_i = j_i, \alpha) p(z_i = j_i \mid \alpha) \right) \\ &= \sum_{i=1}^{n} \sum_{j_i=0}^{1} p(z_i = j_i \mid x_i, \alpha^{(t)}) \log \left(N(x_i \mid \mu_{j_i}, \sigma_{j_i}) \alpha^{1-j_i} (1 - \alpha)^{j_i} \right) \end{split}$$

Attempt 3: EM maximization process

$$\frac{\partial \sum_{i=1}^{n} p(\mathbf{Z} \mid \mathbf{X}, \alpha^{(t)}) \log (p(\mathbf{X}, \mathbf{Z} \mid \alpha))}{\partial \alpha} = \sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p(z_{i} = j_{i} \mid x_{i}, \alpha^{(t)}) \frac{\partial \log \left(\alpha^{1-j_{i}}(1-\alpha)^{j_{i}}\right)}{\partial \alpha}$$
$$= \sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p(z_{i} = j_{i} \mid x_{i}, \alpha^{(t)}) \left(\frac{1-j_{i}}{\alpha} - \frac{j_{i}}{1-\alpha}\right)$$
$$= \sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p(z_{i} = j_{i} \mid x_{i}, \alpha^{(t)}) (1-j_{i} - \alpha)$$
$$= (1-\alpha) \sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p(z_{i} = j_{i} \mid x_{i}, \alpha^{(t)}) - \sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p(z_{i} = j_{i} \mid x_{i}, \alpha^{(t)}) j_{i}$$
$$= n(1-\alpha) - \sum_{i=1}^{n} p(z_{i} = 1 \mid x_{i}, \alpha^{(t)})$$
$$= -n\alpha + n - \sum_{i=1}^{n} (1-p(z_{i} = 0 \mid x_{i}, \alpha^{(t)}))$$
$$= \sum_{i=1}^{n} p(z_{i} = 0 \mid x_{i}, \alpha^{(t)}) - n\alpha = 0$$

Therefore
$$\alpha^{(t+1)} = \frac{\sum_{i=1}^{n} p(z_i=0 \mid x_i, \alpha^{(t)})}{n}$$

Josephine Sullivan + the web,

Attempt 3: EM Solution starting point

Remember $g(\alpha; \alpha^{(t)})$ minorizes log $(p(\mathbf{X} | \alpha))$ at $\alpha^{(t)}$. Let's plot what happens as EM update $\alpha^{(t)}$...

Josephine Sullivan + the web,

Compute posterior probabilities of the hidden variables

Compute the expectation minorizing the log-likelihood at $\alpha^{(0)}=.1$

$$g(\alpha; \alpha^{(t)}) = \sum_{\mathsf{all } \mathsf{Z}} p(\mathsf{Z} \,|\, \mathsf{X}, \alpha^{(t)}) \, \log\left(\frac{p(\mathsf{X}, \mathsf{Z} \,|\, \alpha)}{p(\mathsf{Z} \,|\, \mathsf{X}, \alpha^{(t)})}\right)$$

Calculate maximum of $g(\alpha; \alpha^{(0)})$

The estimate of the GMM with $\alpha^{(1)} = .3672$

Design Issues

The choice of hidden/latent variable Z is the most important issue for EM.

Design Issues

- The choice of hidden/latent variable Z is the most important issue for EM.
- Choice must be done so the maximization step is easy.

Design Issues

- The choice of hidden/latent variable Z is the most important issue for EM.
- Choice must be done so the maximization step is easy.
- Or at least easier than the maximization of the log-likelihood function.

Design Issues

- The choice of hidden/latent variable Z is the most important issue for EM.
- Choice must be done so the maximization step is easy.
- Or at least easier than the maximization of the log-likelihood function.

Implementation Issues

 Calculation of the conditional expectation may be taxing.

Design Issues

- The choice of hidden/latent variable Z is the most important issue for EM.
- Choice must be done so the maximization step is easy.
- Or at least easier than the maximization of the log-likelihood function.

- Calculation of the conditional expectation may be taxing.
- Convergence of EM can be slow near the local optimum.