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Some stuff you probably already know
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Parameter estimation

Have n independent draws x1, ..., X, from p(x|©).

4

A

e <+— 1D example

v

Each x; ~ N(x|p,X) where © = (pu,X)
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Each x; ~ N(x|p,X) where © = (pu, X)
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Parameter estimation

Have n independent draws x1, ..., X, from p(x|©).

P(x| ©) p(x| ©) P(x| ©)

Want to estimate the parameters © from the x;'s.

HOW??
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Maximum Likelihood Estimation (MLE)

Choose the © which maximizes the likelihood of your data:

O =arg max p(x1,X%2,...,X,|©)
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Maximum Likelihood Estimation (MLE)

Choose the © which maximizes the likelihood of your data:
/(@, X) = p(x17 X2, ..y Xp | e)

n
= H p(x;| ©) < assuming independent samples
i=1
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Maximum Likelihood Estimation (MLE)

Choose the © which maximizes the likelihood of your data:
/(@, X) = p(xlv X2, ..y Xp | e)

= H p(x;| ©) < assuming independent samples
Easier to work with the log-likelihood

L(©; X) = log (! GX))—ZIog (x;1©))
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Maximum Likelihood Estimation (MLE)

Choose the © which maximizes the likelihood of your data:

Note

©" =arg max I(©; X) = arg max L(©; X)
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An example Log-likelihood function

Our 1

A

o 0 @@IWO O

D example of points drawn from N(u, ¥)

h

v

Josephine Sullivan +

X =(x1,...,%p) Log-likelihood: L(©; X)
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An example Log-likelihood function

Our 1

A

o= 0 @@IWO O

D example of points drawn from N(u, ¥)

h

v

Want

X =(x1,...,%p) Log-likelihood: L(©; X)

to find the maximum of this function L(©; X).

Josephine Sullivan +

the web, Expectation Maximization without tears! 6/42



MLE for a Normal distribution

The formula for a normal distribution for x € R?:

p(x|©) = (27) 2 £ 72 exp (—5(x — )t T (x — p))
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MLE for a Normal distribution

The log-likelihood of our n data-points is

L(©;X) =) log (p(xi|©))

i=1
= |-G ostan) - Jog (1)~ 50— T - 1)
i=1
= " log(ar) — log (Z]) ~ 53 (xi — )T xi — )
i=1

= _n2_d log(27) — g log (|X]) — .5tr Z(x; — ) (% — y)]
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MLE for a Normal distribution

L(O:X) = —’de l0g(27) — 2 tog (1)) — 5tr | S x — )T s — )

_ _’de log(2n) — 3 log (1Z]) — 5tr | Y= (x; = p)(xi — o)’

_ _’de log(2r) — Zlog (1Z]) — 5tr [ Y (x; — ) — )’

Note ¥ is a symmetric positive definite matrix. Thus & = T*T therefore

L(©;X) = ——dlog(%)——log(\TtTD—5”( " Z("' )i = p)

i=1

n

= —%d log(2m) — nlog (| T|) — .5tr l( TtT) ! Z(x; — p)(xi — p)*

i=1
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Remember

How do we analytically solve for an optimum?

» Take derivative of function wrt each variable.
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Remember

How do we analytically solve for an optimum?

» Take derivative of function wrt each variable.
» Set each derivative to zero.

Josephine Sullivan + the web, Expectation Maximization without tears! 8/42



Remember

How do we analytically solve for an optimum?

» Take derivative of function wrt each variable.
» Set each derivative to zero.

» Solve the set of simultaneous equations if possible.
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MLE for a Normal distribution

For our Normal distribution

Take derivative of function wrt each variable:

aL(e X) ZZ L, —

dL(O; X .
—gT> nTC T(T T)lg(x, ) (x

Remember: The Matrix Cookbook is your friend.

)T
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MLE for a Normal distribution

For our Normal distribution

Set each derivative to zero:
n
0=5"1% (xi—n)
i=1

0=—nT * 4+ T(TT) [Z(x,- ) — ) [ (TET)

i=1

Remember: The Matrix Cookbook is your friend.

Josephine Sullivan + the web, Expectation Maximization without tears! 9/42



MLE for a Normal distribution

For our Normal distribution

Solve the set of simultaneous equations if possible:

1 n
H*:; X;
i=1
T = r = 13 (- ) — i)
=T = -k
i=1

Remember: The Matrix Cookbook is your friend.

9/42
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MLE for a Normal distribution

Back to our 1D example:

A P(X]©)

Red curve is the MLE pdf (n = 25)
Black curve is the ground truth

Josephine Sullivan + the web, Expectation Maximization without tears! 10/42



MLE for a Normal distribution

Estimate becomes better as n increases

A P(X]©)

Red curve is the MLE pdf (n = 200)
Black curve is the ground truth
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Some more stuff you probably already know
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Limitations of Normal distributions

Unfortunately Normal distributions are not very expressive.

They can only accurately represent distributions with one
mode.
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Limitations of Normal distributions

Unfortunately Normal distributions are not very expressive.

A PX|0©)
4
3 b
2
1
l | | | >@
-4 -2 0 2 4

What do we do in this situation 77
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Gaussian Mixture Models (GMM)

They can accurately represent any distribution.

Mathematical definition

p(x]©) =Y m N(xi: pae, L)

k=1
where

K
Zﬂkzl and 7w, >0fork=1,....K

k=1

and © = (Wq, -+ s gy X1y ooy LK, Ty e vy TK)
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Gaussian Mixture Models (GMM)

They can accurately represent any distribution.

A PX|0)
4
3
2
1+
| | | | >@
-4 -2 0 2 4

p(x|©) = aN(x|p,0%) + (1 — &) V(x| 2, 03)
= (a,ul,al,uz,oz) = (.6, —1, .5, 1.5, 1.3)
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Parameter estimation for a GMM

Given n independent samples xy, ..., X, from a GMM.

A PX|0©)

4 -

L L +— training data

-4 -2 0 2 4
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Parameter estimation for a GMM
Given n independent samples xi, ..., X, from a GMM.

A PX|0©)

4

2 +— training data

-4 -2 0 2 4

Can still use MLE to estimate © from the x;'s, but...
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Attempt 1: Analytic Solution
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Attempt 1: Parameter estimation for a GMM

The log-likelihood of the data is

n K
L(©;X) = Z log (Z TN (Xi5 g, Zk))
i—1 k=1

(Note: We'll assume K is known and fixed.)
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Attempt 1: Parameter estimation for a GMM

Let's try to maximize L(©; X) analytically subject to the constraint
>« 7k =1 and each X = T/ Tj. Construct the Lagrangian £(©, \; X).

n K K
£(@,/\; X) = Z Iog <Z 7I'kN(X,'; |18 Tlka)> + A (1 — Z’f(‘k)
i=1 k=1 k=1
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Attempt 1: Parameter estimation for a GMM

Let's try to maximize L(©; X) analytically subject to the constraint
>, Tk = 1 and each X = T/ Tj. Construct the Lagrangian £(©, X; X).

Take derivatives for k =1,... K:

DLO,NX)  In mN(xii s TETi)
dmy = GMM(x;;©)

8 L(, N X)
Ty

etc

(TET) ™ xi — )

= something complicated.....
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Attempt 1: Parameter estimation for a GMM

Let's try to maximize L(©; X) analytically subject to the constraint
>, Tk = 1 and each X = T/ Tj. Construct the Lagrangian £(©, X; X).

Set derivatives to zero:

= GMM(x; ©)

i T N(xj7 s Tg)

—1
):k

(xj — i) =0

etc

Josephine Sullivan + the web,

Expectation Maximization without tears!
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Attempt 1: Parameter estimation for a GMM

Let's try to maximize L(©; X) analytically subject to the constraint
> .7k =1 and each X, = T/ Tj. Construct the Lagrangian £(©, \; X).

Solve the set of simultaneous equations

NO ANALYTIC SOLUTION
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Attempt 2: Newton based iterative
optimzation
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Attempt 2: Parameter estimation for a GMM

Could try to maximize L(©; X) iteratively using Newton's Method.

After all L(©; X) is a scalar valued function of a vector © of
variables.
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Attempt 2: Parameter estimation for a GMM

Could try to maximize L(©; X) iteratively using Newton's Method.

After all L(©; X) is a scalar valued function of a vector © of
variables.

One iteration

» Have a current estimate @(t)
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Attempt 2: Parameter estimation for a GMM

Could try to maximize L(©; X) iteratively using Newton's Method.

After all L(©; X) is a scalar valued function of a vector © of
variables.

One iteration
» Have a current estimate ©(1).

» Approximate L(©; X) in neighbourhood of ©(*) with a
paraboloid.
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Attempt 2: Parameter estimation for a GMM

Could try to maximize L(©; X) iteratively using Newton's Method.

After all L(©; X) is a scalar valued function of a vector © of
variables.

One iteration
» Have a current estimate ©(1).

» Approximate L(©; X) in neighbourhood of ©(*) with a
paraboloid.

» Ot+1) s set to maximum of the paraboloid.
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Attempt 2: Parameter estimation for a GMM

Could try to maximize L(©; X) iteratively using Newton's Method.

After all L(©; X) is a scalar valued function of a vector © of
variables.

Comments

» Should find a local maximum. v
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Attempt 2: Parameter estimation for a GMM

Could try to maximize L(©; X) iteratively using Newton's Method.

After all L(©; X) is a scalar valued function of a vector © of
variables.

Comments
» Should find a local maximum. v

» Convergence fast if ©() close to an optimum. v
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Attempt 2: Parameter estimation for a GMM

Could try to maximize L(©; X) iteratively using Newton's Method.

After all L(©; X) is a scalar valued function of a vector © of
variables.

Comments
» Should find a local maximum.
» Convergence fast if ©(t) close to an optimum.

» 1f ©© far away from a local maximum method can fail.
Paraboloid approximation process can hit problems. X

Josephine Sullivan + the web, Expectation Maximization without tears!
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What other options are there??

Now for, what may seem like, a slight
diversion
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Defintion of Majorization
A function g(©; ©()) majorizes a function £(9) at O if

f(O0) =g(@®; 0®) and £(0) < g(©; ©W) for all ©

Af©

+—— g(6; ) majorizes f(O)

/e
>

o
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The MM Algorithm

To minimize an objective function f(©):

» The MM algorithm is a prescription for constructing
optimization algorithms.

Name coined by David R. Hunter and Kenneth Lange
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The MM Algorithm

To minimize an objective function f(©):

» The MM algorithm is a prescription for constructing
optimization algorithms.

» An MM algorithm creates a surrogate function that
majorizes the objective function. When the surrogate
function is minimized the objective function is decreased.

Name coined by David R. Hunter and Kenneth Lange
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The MM Algorithm

To minimize an objective function f(©):

» The MM algorithm is a prescription for constructing
optimization algorithms.

» An MM algorithm creates a surrogate function that
majorizes the objective function. When the surrogate
function is minimized the objective function is decreased.

» When minimizing MM = majorize/minimize.

Name coined by David R. Hunter and Kenneth Lange
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Some definitions
A function g(©; ©(*)) majorizes the function f(©) at ©() if

f(O1) = g(@®; ©1) and f(O) < g(©; ©W) for all ©

Af©

+—— g(0;01)) majorizes f(O)

/e
>

o
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Some definitions
Let

o+l — arg min g(0; o)

©) A f©)
A

/e
S >
>

@(H»l)

o0

.. . Find minimum of
Majorize function ! rnimu

majorizing function
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Some definitions
Let

o+l — arg min g(0; o)
(so should choose a g(©; ©(1)) which is easy to minimize)

©) A f©)
A

/e
o >
>

@(Hl)
oW

.. . Find minimum of
Majorize function ! rnimu

majorizing function
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Descent Properties

MM minimization algorithm satisfies the descent property as

fF(OUD) < g(@H, ©1) s r(0) < g(0: ©Y) Vo
< g(@(t); @(t)), as ©1) minimizes g(©; ©(1)
= (W)
In summary

f(@(t+1)) < f(@(t))
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Descent Properties

MM minimization algorithm satisfies the descent property as

f(OED) < g0+ 0)) s F(0) < g(6; 0) vO
< g(@(t); @(t)), as ©*1) minimizes g(©; ©(1)
= f(e)
In summary

f(@(t—i—l)) < f(@(t))

The descent property makes the MM algorithm very stable.

Algorithm converges to local minima or saddle point.
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Maximizing a function

To maximize an objective function f(©):

» MM algorithm creates a surrogate function that minorize
the objective function. When the surrogate function is

maximized the objective function is increased.
AT©

6]
L »
Edl v

Red curve minorize the black curve
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Maximizing a function

To maximize an objective function f(©):

» MM algorithm creates a surrogate function that minorize
the objective function. When the surrogate function is

maximized the objective function is increased.
AT©

6]
L »
Edl v

Red curve minorize the black curve

» When maximizing MM = minorize/maximize.
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Big Question?

How do you majorize or minorize a function??
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Big Question?
How do you majorize or minorize a function??

Here are some generic tricks and tools
» Jensen's inequality
» Chord above the graph property of a convex function
» Supporting hyperplane property of a convex function

v

Quadratic upper bound principle

v

Arithmetic-geometric mean inequality

v

The Cauchy-Schwartz inequality
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Big Question?
How do you majorize or minorize a function??

Here are some generic tricks and tools
» Jensen's inequality
» Chord above the graph property of a convex function
» Supporting hyperplane property of a convex function

v

Quadratic upper bound principle

v

Arithmetic-geometric mean inequality

v

The Cauchy-Schwartz inequality

Presume it would take some practice to use these
tricks.
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Big Question?
How do you majorize or minorize a function??

Here are some generic tricks and tools
» Jensen's inequality
» Chord above the graph property of a convex function
» Supporting hyperplane property of a convex function

v

Quadratic upper bound principle

v

Arithmetic-geometric mean inequality

v

The Cauchy-Schwartz inequality

Presume it would take some practice to use these
tricks.

But....
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But wait...

You probably have minorized via Jensen’s Inequality!

Remember Jensen’s Inequality:
» h(-) be a concave function,
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But wait...

You probably have minorized via Jensen’s Inequality!

Remember Jensen’s Inequality:
» h(-) be a concave function,

» have K non-negative numbers 7y, ..., mx with >, m; =1,
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But wait...

You probably have minorized via Jensen’s Inequality!

Remember Jensen’s Inequality:
» h(-) be a concave function,
» have K non-negative numbers 7y, ..., mx with >, m; =1,

» K arbitrary numbers ay, ..., ax
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But wait...

You probably have minorized via Jensen’s Inequality!

Remember Jensen’s Inequality:
» h(-) be a concave function,

» have K non-negative numbers 7y, ..., mx with >, m; =1,
» K arbitrary numbers ay, ..., ax
then

K K
E Tk dk E 3k)
k=1

Josephine Sullivan + the web, Expectation Maximization without tears! 27/42



Finally we're getting to ExpectationMaximization
» The EM algorithm is a MM algorithm.
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Flnally we're getting to ExpectationMaximization

» The EM algorithm is a MM algorithm.
» Use Jensen's inequality to minorize the log-likelihood.
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Flnally we're getting to ExpectationMaximization

» The EM algorithm is a MM algorithm.
» Use Jensen's inequality to minorize the log-likelihood.

Here's how we minorize. Step 1:

L(@, X) = |Og (p(X | @) = |Og (Z P (X, Z= Z; | @)) < introduce discrete variable Z

j=1

> X,Z =2;|0)
)z oy = (7 — 5. p(X, J
(Z) a pdf — =log (Zf (Z=2) FOZ = 2))

j=1

nz
Jensen's inequality — > Z fO(Z = z;) log (
j=1

p(X,Z:Zj|@))
FI(Z = 2))
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Flnally we're getting to ExpectationMaximization

» The EM algorithm is a MM algorithm.
» Use Jensen's inequality to minorize the log-likelihood.

Here’s how we minorize. Step 1:

L(@, X) = |0g (p(x | @) = |Og Z P (X, Z = Zj | @) < introduce discrete variable Z

j=1
(t) (t _ M
F(Z) a pdf — = log Zf =) F0(Z = z)
Jensen's inequality — > Z f(t) )|0g (W)

Jj=1
n (X,2=z;|©
L(©;X) > Y7, f(Z = z;) log (_f(t)(zzz‘J) ))
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Find £(t)(Z)

Here's how we minorize. Step 2:

The lower bound must touch the log-likelihood at ©(*)

: X,Z=z; @(t)
L(OW;X) = X7z, f(Z = z;) log (%)
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Find f(1)(Z)

Here’s how we minorize. Step 2:

The lower bound must touch the log-likelihood at ©(*)
ny (X,Z2=2;|©
L(OW; X) = X372, FO(Z = 2)log (P%Z217)
From this constraint can calculate f(!)(Z). It is:

F(Z) = p(Z|X,01)

(Derivation is straight-forward)
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EM as MM summary
The log-likelihood function L(©; X) at ©®) is minorized by

ny X,Z=z; | ©
g(8;00) = 77, p(Z = 7| X, 00) log (22255 5 )
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EM as MM summary
The log-likelihood function L(©; X) at ©®) is minorized by

z X,Z=z; | ©
g(8;00) = 77, p(Z = 7| X, 00) log (22255 5 )

Maximizing the surrogate function, g(©; ©(%), involves:

Ot — arg max g(0;01)

nz
= arg max Z;p(Z =2;|X,0W)log (p(X,Z = z;|©))
=
Maximization Step
= argmax Eyz|x 00) [log (p(X,Z]0))]

Expectation Step
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The latent/hidden variables Z

There seemed to be some magic in this derivation!

What are the Z's and where did they come from??

Answer:
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The latent/hidden variables Z

There seemed to be some magic in this derivation!

What are the Z's and where did they come from??
Answer:

» Z is a random variable whose pdf conditioned on X is
completely determined by ©.
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The latent/hidden variables Z

There seemed to be some magic in this derivation!

What are the Z's and where did they come from??
Answer:

» Z is a random variable whose pdf conditioned on X is
completely determined by ©.

» Choice of Z should make the maximization step easy.

Josephine Sullivan + the web, Expectation Maximization without tears! 31/42



Back to our GMM parameter estimation and EM
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Attempt 3: Parameter estimation for a GMM

Let's look at a tutorial example using EM:

p(x|©) = a N (x| u1,0%) + (1 = @) N(x| p2, 03)

A PXX|0©)

<— Ground truth
distribution

(€]
! ! ! ! >
-4 -2 0 2 4

where © = («, i1, 01, 12, 02) = (.6, —1,.5,1.5,1.3)
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Attempt 3: Parameter estimation for a GMM

Say all the parameters of © are known except . Then we are
given n samples X = (x, X2, . . ., X,) independently drawn from
p(x | ©). Using these samples and EM we can estimate «.

A PX|0©)

<— training data

-4 -2 0 2 4
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Attempt 3: Parameter estimation for a GMM

If we knew which samples were generated by which
component, life would be so much simpler!

A PX|0©)

4

3 -

-4

Component 1 samples

Josephine Sullivan + the web,

-2

0

2

4

A PX|0©)

4 =
3 -
2 =

1

-4 -2 0 2 4

Component 2 samples

Expectation Maximization without tears!
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Attempt 3: EM Solution
Introduce hidden/latent variables:
Z = (z,...,z,) is a vector of hidden variables.
Each z € {0,1} indicates component generating x;.
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Attempt 3: EM Solution

Introduce hidden/latent variables:
Z = (z,...,2,) is a vector of hidden variables.
Each z € {0, 1} indicates component generating x;.

E-step:
» Update posteriors for the hidden variables:

p(xi | p1,01) )

p(zi = 0|x;, ) =
e T O Tl o D )
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Attempt 3: EM Solution

Introduce hidden/latent variables:
Z = (z,...,2,) is a vector of hidden variables.
Each z € {0, 1} indicates component generating x;.

E-step:
» Update posteriors for the hidden variables:

p(xi | p1,01) )

p(zi = 0|x;, ) =
e T O Tl o D )

» Calculate the conditional expectation

g(a; o) = Z p(Z| X, ) log p(x,—zmz
G (p(ZIX,a( ))
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Attempt 3: EM Solution

Introduce hidden/latent variables:
Z = (z,...,2,) is a vector of hidden variables.
Each z € {0, 1} indicates component generating x;.

E-step:
» Update posteriors for the hidden variables:

p(xi | p1,01) o)

p(zi = 0|x;, ) =
e T O Tl o D )

» Calculate the conditional expectation

g(a; o) = Z p(Z| X, ) log p(x,—zmz
G (p(ZIX,a( ))

M-step: Find arg maxg(c; o(9)) which gives:
Q(t+1) — Zi P(Zizr?lxi,oc(t))
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Attempt 3: EM expectation calculation

S° (1%, oY) log (p(X, Z | a))

all Z

=3 [szsle, “)Zlog(p(x,u,, )p(Z.-Ia))]

all Z

= Z Z [H p(zs = Jjs | xs, a(t))zbg(l’(xf | zi = ji, &) p(z :jila)):l

J1=0  jn=0 |s=1 i=1

n n 1
=S TI 3 ples = ds | xe, ) | plzi = i |5, D) log (p(xi | 71 = ji, @) plz; = jile)
i=1 s=1,si js=0
=1
n 1
=373 bz =i | xi D) log (p(xi | 23 = Ji, @) plai = jil))
i=1j;=0
n

™=~

plzi = ji | xi, o) log (N(X, | ujl’o']l)a —i1 - a)i,-)
i=1j;=0
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Attempt 3: EM maximization process

8 3 p(z|X, alY) log (p(X, Z| ) . .
a%l (o), @ los (a1 — ayi)

p(zi = ji | xi, &™)

I
M-

da i=1j;=0 da
n 1 : :
1 —_ .
=33 plzi =i | xi, o) (71' -2 >
i=1 jj=0 o l-a
n

p(zi = ji 1, o) (1 = ji — a)

Il
.MH

i=1 j;=0
n 1 n 1
=1 =) 33 pz =i 1%, 0 = 323 p(z =i x5, M) i
i=1j;=0 i=1j;=0
n
=n(l—a)— ZP(ZI =1]|x, a(t))
i=1

=—na+n— Z(l —p(z; = 0|x,-,o¢(t)))
i=1
=> bz = 0lx,aM) —na=0
i=1

(t+1) _ X, p(z=0]x,a")
n

Therefore «
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Attempt 3: EM Solution

A PX|0©)

-4 -2 0 2 4

Ground truth distribution

starting point

A P(x| ©)
(€]
-4 -2 0 2 4
Initial guess of distribution
with a(® = 1

Remember g(a; a(*)) minorizes log (p(X | @) at al?),

Let’s plot what happens as EM update a(9...
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EM one iteration
Compute posterior probabilities of the hidden variables

- (t)
. p(z=01x, a)

1
ML 1) .

2 ‘»
10 20 30 40 50

Graph shows p(z = 0| x;, () of each hidden variable.

Red = sample really generated by component 1
Green = sample really generated by component 2
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EM one iteration

Compute the expectation minorizing the log-likelihood
at o9 =1

o) = o o p(X,Z|a)
g(a; ) a%:zp(ZIK ) log <—p(Z|X7a(f))

Alog(p(X [ @) g(a;a®)

80 |-
-100
-120
s
\
s
\
-140 B
a
! ! ! ! ! L p
0 2 4 6 8 1
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EM one iteration

Calculate maximum of g(a; (%)

 log(p(X | @) g(a;a®)

A
-100
-120 |~
140
f :
: kK
“ [0}
| | | | [
0 2 4 6 .8 1
) = 3672

Maximum of g(a; o)) gives a(*

Expectation Maximization without tears!

40/42
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EM one iteration

The estimate of the GMM with oY) = 3672

A PX|O)

4

-4 -2 0 2 4
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EM lterations

Iteration 2

pz=01x, a) p(x1©)
log(p(x| @) ga:a)
.
-100
3
-120
2
140
A1
) L L L L L L ‘c( " - e LG)
o 2 n 6 8 [ [ -4 =2 0 2 i
Posterior probabilities g(a; o) Current GMM estimate
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EM lterations

Iteration 3

pz=01x, a) p(x1©)
log(p(x| @) ga:a)
.
-100
3
-120
2
140
A1
) L L L L L L ‘c( " - e LG)
o 2 n 6 8 [ [ -4 =2 0 2 a0
Posterior probabilities gla; af?) Current GMM estimate
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EM lterations

Iteration 4

pz=01x, a) p(x1©)
log(p(x| @) ga:a)
.
-100
3
-120
2
140
A1
) L L L L L L ‘c( " - e LG)
o 2 n 6 8 [ [ -4 =2 0 2 i
Posterior probabilities gla; ) Current GMM estimate
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EM lterations

Iteration 5

pz=01x, a) p(x1©)
log(p(x| @) ga:a)
.
-100
3
-120
2
140
A1
) L L L L L L ‘c( " - e LG)
o 2 n 6 8 [ [ -4 =2 0 2 i
Posterior probabilities gla; o) Current GMM estimate
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Comments on EM

Design Issues

» The choice of hidden/latent variable Z is the
most important issue for EM.

Implementation Issues
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Comments on EM

Design Issues

» The choice of hidden/latent variable Z is the
most important issue for EM.

» Choice must be done so the maximization
step is easy.

» Or at least easier than the maximization of
the log-likelihood function.

Implementation Issues

» Calculation of the conditional expectation
may be taxing.

» Convergence of EM can be slow near the
local optimum.
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