Expectation Maximization without tears!

Josephine Sullivan + the web

Some stuff you probably already know

Parameter estimation

Have n independent draws $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ from $p(\mathbf{x} \mid \Theta)$.

\longleftarrow 1D example

Each $\mathbf{x}_{i} \sim N(\mathbf{x} \mid \boldsymbol{\mu}, \Sigma) \quad$ where $\Theta=(\boldsymbol{\mu}, \Sigma)$

Parameter estimation

Have n independent draws $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ from $p(\mathbf{x} \mid \Theta)$.

\longleftarrow 1D example

Each $\mathbf{x}_{i} \sim N(\mathbf{x} \mid \boldsymbol{\mu}, \Sigma) \quad$ where $\Theta=(\boldsymbol{\mu}, \Sigma)$

Want to estimate the parameters Θ from the \mathbf{x}_{i} 's

Parameter estimation

Have n independent draws $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ from $p(\mathbf{x} \mid \Theta)$.

$\Theta=(5.2, .8)$
$\Theta=(4.8,1.4)$
$\Theta=(4.9, .7)$

Want to estimate the parameters Θ from the \mathbf{x}_{i} 's.
HOW??

Maximum Likelihood Estimation (MLE)

Choose the Θ which maximizes the likelihood of your data:

$$
\Theta^{*}=\arg \max _{\Theta} p\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n} \mid \Theta\right)
$$

Maximum Likelihood Estimation (MLE)

Choose the Θ which maximizes the likelihood of your data:

$$
\begin{aligned}
I(\Theta ; \mathbf{X}) & \equiv p\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n} \mid \Theta\right) \\
& =\prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \Theta\right) \quad \leftarrow \text { assuming independent samples }
\end{aligned}
$$

Maximum Likelihood Estimation (MLE)

Choose the Θ which maximizes the likelihood of your data:

$$
\begin{aligned}
I(\Theta ; \mathbf{X}) & \equiv p\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n} \mid \Theta\right) \\
& =\prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \Theta\right) \quad \leftarrow \text { assuming independent samples }
\end{aligned}
$$

Easier to work with the log-likelihood

$$
L(\Theta ; \mathbf{X})=\log (I(\Theta ; \mathbf{X}))=\sum_{i=1}^{n} \log \left(p\left(\mathbf{x}_{i} \mid \Theta\right)\right)
$$

Maximum Likelihood Estimation (MLE)

Choose the Θ which maximizes the likelihood of your data:

Note

$$
\Theta^{*}=\arg \max _{\Theta} I(\Theta ; \mathbf{X})=\arg \max _{\Theta} L(\Theta ; \mathbf{X})
$$

An example Log-likelihood function

Our 1D example of points drawn from $N(\mu, \Sigma)$

Log-likelihood: $L(\Theta ; \mathbf{X})$

An example Log-likelihood function

Our 1D example of points drawn from $N(\mu, \Sigma)$

Log-likelihood: $L(\Theta ; \mathbf{X})$

Want to find the maximum of this function $L(\Theta ; \mathbf{X})$.

MLE for a Normal distribution

The formula for a normal distribution for $\mathbf{x} \in \mathcal{R}^{d}$:

$$
p(\mathbf{x} \mid \Theta)=(2 \pi)^{-\frac{d}{2}}|\Sigma|^{-\frac{1}{2}} \exp \left(-.5(\mathbf{x}-\boldsymbol{\mu})^{t} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

MLE for a Normal distribution

The formula for a normal distribution for $\mathrm{x} \in \mathcal{R}^{d}$:

$$
p(\mathbf{x} \mid \Theta)=(2 \pi)^{-\frac{d}{2}}|\Sigma|^{-\frac{1}{2}} \exp \left(-.5(\mathbf{x}-\boldsymbol{\mu})^{t} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

The log-likelihood of our n data-points is

$$
\begin{aligned}
L(\Theta ; \mathbf{X}) & =\sum_{i=1}^{n} \log \left(p\left(\mathbf{x}_{i} \mid \Theta\right)\right) \\
& =\sum_{i=1}^{n}\left[-\frac{d}{2} \log (2 \pi)-\frac{1}{2} \log (|\Sigma|)-.5\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{t} \Sigma^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\right] \\
& =-\frac{n d}{2} \log (2 \pi)-\frac{n}{2} \log (|\Sigma|)-.5 \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{t} \Sigma^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right) \\
& =-\frac{n d}{2} \log (2 \pi)-\frac{n}{2} \log (|\Sigma|)-.5 \operatorname{tr}\left[\sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{t} \Sigma^{-1}\left(\mathbf{x}_{i}-\mu\right)\right]
\end{aligned}
$$

MLE for a Normal distribution

$$
\begin{aligned}
L(\Theta ; \mathbf{X}) & =-\frac{n d}{2} \log (2 \pi)-\frac{n}{2} \log (|\Sigma|)-.5 \operatorname{tr}\left[\sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{t} \Sigma^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\right] \\
& =-\frac{n d}{2} \log (2 \pi)-\frac{n}{2} \log (|\Sigma|)-.5 \operatorname{tr}\left[\sum_{i=1}^{n} \Sigma^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{t}\right] \\
& =-\frac{n d}{2} \log (2 \pi)-\frac{n}{2} \log (|\Sigma|)-.5 \operatorname{tr}\left[\Sigma^{-1} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{t}\right]
\end{aligned}
$$

Note Σ is a symmetric positive definite matrix. Thus $\Sigma=T^{t} T$ therefore

$$
\begin{aligned}
L(\Theta ; \mathbf{X}) & =-\frac{n d}{2} \log (2 \pi)-\frac{n}{2} \log \left(\left|T^{t} T\right|\right)-.5 \operatorname{tr}\left[\left(T^{t} T\right)^{-1} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\mu\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{t}\right. \\
& =-\frac{n d}{2} \log (2 \pi)-n \log (|T|)-.5 \operatorname{tr}\left[\left(T^{t} T\right)^{-1} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{t}\right]
\end{aligned}
$$

Remember

How do we analytically solve for an optimum?

- Take derivative of function wrt each variable.

Remember

How do we analytically solve for an optimum?

- Take derivative of function wrt each variable.
- Set each derivative to zero.

Remember

How do we analytically solve for an optimum?

- Take derivative of function wrt each variable.
- Set each derivative to zero.
- Solve the set of simultaneous equations if possible.

MLE for a Normal distribution

For our Normal distribution

Take derivative of function wrt each variable:
$\frac{\partial L(\Theta ; \mathbf{X})}{\partial \boldsymbol{\mu}}=\sum_{i=1}^{n} \Sigma^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)$
$\frac{\partial L(\Theta ; \mathbf{X})}{\partial T}=-n T^{-t}+T\left(T^{t} T\right)^{-1} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\mu\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{t}\left(T^{t} T\right)^{-1}$
Remember: The Matrix Cookbook is your friend.

MLE for a Normal distribution

For our Normal distribution

Set each derivative to zero:

$$
\begin{aligned}
& \mathbf{0}=\Sigma^{-1} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right) \\
& \mathbf{0}=-n T^{-t}+T\left(T^{t} T\right)^{-1}\left[\sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{t}\right]\left(T^{t} T\right)^{-1}
\end{aligned}
$$

Remember: The Matrix Cookbook is your friend.

MLE for a Normal distribution

For our Normal distribution

Solve the set of simultaneous equations if possible:

$$
\begin{gathered}
\boldsymbol{\mu}^{*}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \\
T^{* t} T^{*}=\Sigma^{*}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}^{*}\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}^{*}\right)^{t}
\end{gathered}
$$

Remember: The Matrix Cookbook is your friend.

MLE for a Normal distribution

Back to our 1D example:

Red curve is the MLE pdf $(n=25)$
Black curve is the ground truth

MLE for a Normal distribution

Estimate becomes better as n increases

Red curve is the MLE pdf $(n=200)$
Black curve is the ground truth

Some more stuff you probably already know

Limitations of Normal distributions

Unfortunately Normal distributions are not very expressive.
They can only accurately represent distributions with one mode.

Limitations of Normal distributions

Unfortunately Normal distributions are not very expressive.

What do we do in this situation ??

Gaussian Mixture Models (GMM)

They can accurately represent any distribution.
Mathematical definition

$$
p(\mathbf{x} \mid \Theta)=\sum_{k=1}^{K} \pi_{k} N\left(\mathbf{x}_{k} ; \boldsymbol{\mu}_{k}, \Sigma_{k}\right)
$$

where

$$
\sum_{k=1}^{K} \pi_{k}=1 \quad \text { and } \quad \pi_{k} \geq 0 \text { for } k=1, \ldots, K
$$

$$
\text { and } \Theta=\left(\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}, \Sigma_{1}, \ldots, \Sigma_{K}, \pi_{1}, \ldots, \pi_{K}\right)
$$

Gaussian Mixture Models (GMM)

They can accurately represent any distribution.

$$
p(x \mid \Theta)=\alpha \mathcal{N}\left(x \mid \mu_{1}, \sigma_{1}^{2}\right)+(1-\alpha) \mathcal{N}\left(x \mid \mu_{2}, \sigma_{2}^{2}\right)
$$

$$
\Theta=\left(\alpha, \mu_{1}, \sigma_{1}, \mu_{2}, \sigma_{2}\right)=(.6,-1, .5,1.5,1.3)
$$

Parameter estimation for a GMM

Given n independent samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ from a GMM.

Parameter estimation for a GMM

Given n independent samples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ from a GMM.

\longleftarrow training data

Can still use MLE to estimate Θ from the \mathbf{x}_{i} 's, but...

Attempt 1: Analytic Solution

Attempt 1: Parameter estimation for a GMM

The log-likelihood of the data is

$$
L(\Theta ; \mathbf{X})=\sum_{i=1}^{n} \log \left(\sum_{k=1}^{k} \pi_{k} N\left(x_{i} ; \boldsymbol{\mu}_{k}, \Sigma_{k}\right)\right)
$$

(Note: We'll assume K is known and fixed.)

Attempt 1: Parameter estimation for a GMM

Let's try to maximize $L(\Theta ; \mathbf{X})$ analytically subject to the constraint $\sum_{k} \pi_{k}=1$ and each $\Sigma_{k}=T_{k}^{t} T_{k}$. Construct the Lagrangian $\mathcal{L}(\Theta, \lambda ; \mathbf{X})$.

$$
\mathcal{L}(\Theta, \lambda ; \mathbf{X})=\sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_{k} N\left(x_{i} ; \boldsymbol{\mu}_{k}, T_{k}^{t} T_{k}\right)\right)+\lambda\left(1-\sum_{k=1}^{K} \pi_{k}\right)
$$

Attempt 1: Parameter estimation for a GMM

Let's try to maximize $L(\Theta ; \mathbf{X})$ analytically subject to the constraint $\sum_{k} \pi_{k}=1$ and each $\Sigma_{k}=T_{k}^{t} T_{k}$. Construct the Lagrangian $\mathcal{L}(\Theta, \lambda ; \mathbf{X})$.

Take derivatives for $k=1, \ldots, K$:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}(\Theta, \lambda ; \mathbf{X})}{\partial \boldsymbol{\mu}_{k}}=\sum_{i=1}^{n} \frac{\pi_{k} N\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{k}, T_{k}^{t} T_{k}\right)}{G M M\left(\mathbf{x}_{i} ; \Theta\right)}\left(T_{k}^{t} T_{k}\right)^{-1}\left(\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right) \\
& \frac{\partial \mathcal{L}(\Theta, \lambda ; \mathbf{X})}{\partial T_{k}}=\text { something complicated..... } \\
& \quad \text { etc }
\end{aligned}
$$

Attempt 1: Parameter estimation for a GMM

Let's try to maximize $L(\Theta ; \mathbf{X})$ analytically subject to the constraint $\sum_{k} \pi_{k}=1$ and each $\Sigma_{k}=T_{k}^{t} T_{k}$. Construct the Lagrangian $\mathcal{L}(\Theta, \lambda ; \mathbf{X})$.

Set derivatives to zero:

$$
\sum_{i=1}^{n} \frac{\pi_{k} N\left(\mathbf{x}_{i} ; \boldsymbol{\mu}_{k}, \Sigma_{k}\right)}{G M M\left(\mathrm{x}_{i} ; \Theta\right)} \Sigma_{k}^{-1}\left(\mathrm{x}_{i}-\boldsymbol{\mu}_{k}\right)=\mathbf{0}
$$

etc

Attempt 1: Parameter estimation for a GMM

Let's try to maximize $L(\Theta ; \mathbf{X})$ analytically subject to the constraint $\sum_{k} \pi_{k}=1$ and each $\Sigma_{k}=T_{k}^{t} T_{k}$. Construct the Lagrangian $\mathcal{L}(\Theta, \lambda ; \mathbf{X})$.

Solve the set of simultaneous equations

NO ANALYTIC SOLUTION

Attempt 2: Newton based iterative optimzation

Attempt 2: Parameter estimation for a GMM

Could try to maximize $L(\Theta ; \mathbf{X})$ iteratively using Newton's Method. After all $L(\Theta ; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

Attempt 2: Parameter estimation for a GMM

Could try to maximize $L(\Theta ; \mathbf{X})$ iteratively using Newton's Method.
After all $L(\Theta ; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

One iteration

- Have a current estimate $\Theta^{(t)}$.

Attempt 2: Parameter estimation for a GMM

Could try to maximize $L(\Theta ; \mathbf{X})$ iteratively using Newton's Method.
After all $L(\Theta ; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

One iteration

- Have a current estimate $\Theta^{(t)}$.
- Approximate $L(\Theta ; \mathbf{X})$ in neighbourhood of $\Theta^{(t)}$ with a paraboloid.

Attempt 2: Parameter estimation for a GMM

Could try to maximize $L(\Theta ; \mathbf{X})$ iteratively using Newton's Method. After all $L(\Theta ; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

One iteration

- Have a current estimate $\Theta^{(t)}$.
- Approximate $L(\Theta ; \mathbf{X})$ in neighbourhood of $\Theta^{(t)}$ with a paraboloid.
- $\Theta^{(t+1)}$ is set to maximum of the paraboloid.

Attempt 2: Parameter estimation for a GMM

Could try to maximize $L(\Theta ; \mathbf{X})$ iteratively using Newton's Method. After all $L(\Theta ; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

Comments

- Should find a local maximum.

Attempt 2: Parameter estimation for a GMM

Could try to maximize $L(\Theta ; \mathbf{X})$ iteratively using Newton's Method. After all $L(\Theta ; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

Comments

- Should find a local maximum.
- Convergence fast if $\Theta^{(t)}$ close to an optimum.

Attempt 2: Parameter estimation for a GMM

Could try to maximize $L(\Theta ; \mathbf{X})$ iteratively using Newton's Method. After all $L(\Theta ; \mathbf{X})$ is a scalar valued function of a vector Θ of variables.

Comments

- Should find a local maximum.
- Convergence fast if $\Theta^{(t)}$ close to an optimum.
- If $\Theta^{(0)}$ far away from a local maximum method can fail. Paraboloid approximation process can hit problems. X

What other options are there??

Now for, what may seem like, a slight diversion

Defintion of Majorization

A function $g\left(\Theta ; \Theta^{(t)}\right)$ majorizes a function $f(\Theta)$ at $\Theta^{(t)}$ if

$$
f\left(\Theta^{(t)}\right)=g\left(\Theta^{(t)} ; \Theta^{(t)}\right) \quad \text { and } \quad f(\Theta) \leq g\left(\Theta ; \Theta^{(t)}\right) \text { for all } \Theta
$$

$$
\longleftarrow g\left(\Theta ; \Theta^{(t)}\right) \text { majorizes } f(\Theta)
$$

The MM Algorithm

To minimize an objective function $f(\Theta)$:

- The MM algorithm is a prescription for constructing optimization algorithms.

Name coined by David R. Hunter and Kenneth Lange

The MM Algorithm

To minimize an objective function $f(\Theta)$:

- The MM algorithm is a prescription for constructing optimization algorithms.
- An MM algorithm creates a surrogate function that majorizes the objective function. When the surrogate function is minimized the objective function is decreased.

Name coined by David R. Hunter and Kenneth Lange

The MM Algorithm

To minimize an objective function $f(\Theta)$:

- The MM algorithm is a prescription for constructing optimization algorithms.
- An MM algorithm creates a surrogate function that majorizes the objective function. When the surrogate function is minimized the objective function is decreased.
- When minimizing $\mathrm{MM} \equiv$ majorize/minimize.

Name coined by David R. Hunter and Kenneth Lange

Some definitions

A function $g\left(\Theta ; \Theta^{(t)}\right)$ majorizes the function $f(\Theta)$ at $\Theta^{(t)}$ if

$$
f\left(\Theta^{(t)}\right)=g\left(\Theta^{(t)} ; \Theta^{(t)}\right) \quad \text { and } \quad f(\Theta) \leq g\left(\Theta ; \Theta^{(t)}\right) \text { for all } \Theta
$$

$\longleftarrow g\left(\Theta ; \Theta^{(t)}\right)$ majorizes $f(\Theta)$

Some definitions

Let

$$
\Theta^{(t+1)}=\arg \min _{\Theta} g\left(\Theta ; \Theta^{(t)}\right)
$$

Majorize function

Find minimum of majorizing function

Some definitions

Let

$$
\Theta^{(t+1)}=\arg \min _{\Theta} g\left(\Theta ; \Theta^{(t)}\right)
$$

(so should choose a $g\left(\Theta ; \Theta^{(t)}\right)$ which is easy to minimize)

Majorize function

Find minimum of majorizing function

Descent Properties

MM minimization algorithm satisfies the descent property as

$$
\begin{aligned}
f\left(\Theta^{(t+1)}\right) & \leq g\left(\Theta^{(t+1)} ; \Theta^{(t)}\right), \quad \text { as } f(\Theta) \leq g\left(\Theta ; \Theta^{(t)}\right) \forall \Theta \\
& \leq g\left(\Theta^{(t)} ; \Theta^{(t)}\right), \quad \text { as } \Theta^{(t+1)} \text { minimizes } g\left(\Theta ; \Theta^{(t)}\right) \\
& =f\left(\Theta^{(t)}\right)
\end{aligned}
$$

In summary

$$
f\left(\Theta^{(t+1)}\right) \leq f\left(\Theta^{(t)}\right)
$$

Descent Properties

MM minimization algorithm satisfies the descent property as

$$
\begin{aligned}
f\left(\Theta^{(t+1)}\right) & \leq g\left(\Theta^{(t+1)} ; \Theta^{(t)}\right), \quad \text { as } f(\Theta) \leq g\left(\Theta ; \Theta^{(t)}\right) \forall \Theta \\
& \leq g\left(\Theta^{(t)} ; \Theta^{(t)}\right), \quad \text { as } \Theta^{(t+1)} \text { minimizes } g\left(\Theta ; \Theta^{(t)}\right) \\
& =f\left(\Theta^{(t)}\right)
\end{aligned}
$$

In summary

$$
f\left(\Theta^{(t+1)}\right) \leq f\left(\Theta^{(t)}\right)
$$

The descent property makes the MM algorithm very stable. Algorithm converges to local minima or saddle point.

Maximizing a function

To maximize an objective function $f(\Theta)$:

- MM algorithm creates a surrogate function that minorize the objective function. When the surrogate function is maximized the objective function is increased.

Red curve minorize the black curve

Maximizing a function

To maximize an objective function $f(\Theta)$:

- MM algorithm creates a surrogate function that minorize the objective function. When the surrogate function is maximized the objective function is increased.

Red curve minorize the black curve

- When maximizing $\mathrm{MM} \equiv$ minorize/maximize.

Big Question?

How do you majorize or minorize a function??

Big Question?

How do you majorize or minorize a function??
Here are some generic tricks and tools

- Jensen's inequality
- Chord above the graph property of a convex function
- Supporting hyperplane property of a convex function
- Quadratic upper bound principle
- Arithmetic-geometric mean inequality
- The Cauchy-Schwartz inequality

Big Question?

How do you majorize or minorize a function??
Here are some generic tricks and tools

- Jensen's inequality
- Chord above the graph property of a convex function
- Supporting hyperplane property of a convex function
- Quadratic upper bound principle
- Arithmetic-geometric mean inequality
- The Cauchy-Schwartz inequality

Presume it would take some practice to use these tricks.

Big Question?

How do you majorize or minorize a function??
Here are some generic tricks and tools

- Jensen's inequality
- Chord above the graph property of a convex function
- Supporting hyperplane property of a convex function
- Quadratic upper bound principle
- Arithmetic-geometric mean inequality
- The Cauchy-Schwartz inequality

Presume it would take some practice to use these tricks.

But....

But wait...

You probably have minorized via Jensen's Inequality!
Remember Jensen's Inequality:

- $h(\cdot)$ be a concave function,

But wait...

You probably have minorized via Jensen's Inequality!
Remember Jensen's Inequality:

- $h(\cdot)$ be a concave function,
- have K non-negative numbers π_{1}, \ldots, π_{K} with $\sum_{k} \pi_{i}=1$,

But wait...

You probably have minorized via Jensen's Inequality!
Remember Jensen's Inequality:

- $h(\cdot)$ be a concave function,
- have K non-negative numbers π_{1}, \ldots, π_{K} with $\sum_{k} \pi_{i}=1$,
- K arbitrary numbers a_{1}, \ldots, a_{K}

But wait...

You probably have minorized via Jensen's Inequality!
Remember Jensen's Inequality:

- $h(\cdot)$ be a concave function,
- have K non-negative numbers π_{1}, \ldots, π_{K} with $\sum_{k} \pi_{i}=1$,
- K arbitrary numbers a_{1}, \ldots, a_{K}
then

$$
h\left(\sum_{k=1}^{K} \pi_{k} a_{k}\right) \geq \sum_{k=1}^{K} \pi_{k} h\left(a_{k}\right)
$$

Finally we're getting to $\mathbf{E x p e c t a t i o n ~} \mathrm{Maximization}$

- The EM algorithm is a MM algorithm.

Finally we're getting to $\mathbf{E x p e c t a t i o n ~} \mathrm{Maximization}$

- The EM algorithm is a MM algorithm.
- Use Jensen's inequality to minorize the log-likelihood.

Finally we're getting to $\mathbf{E x p e c t a t i o n ~} \mathrm{Maximization}$

- The EM algorithm is a MM algorithm.
- Use Jensen's inequality to minorize the log-likelihood. Here's how we minorize. Step 1:

$$
\begin{aligned}
& L(\Theta ; \mathbf{X})=\log (p(\mathbf{X} \mid \Theta)=\log \left(\sum_{j=1}^{n_{z}} p\left(\mathbf{X}, \mathbf{Z}=\mathbf{z}_{j} \mid \Theta\right)\right) \\
& f^{(t)}(\mathbf{Z}) \text { a patroduce discrete variable } z \\
&=\log \left(\sum_{j=1}^{n_{z}} f^{(t)}\left(\mathbf{Z}=\mathbf{z}_{j}\right) \frac{p\left(\mathbf{X}, \mathbf{Z}=\mathbf{z}_{j} \mid \Theta\right)}{f^{(t)}\left(\mathbf{Z}=\mathbf{z}_{j}\right)}\right) \\
& \text { Jensen's inequality } \rightarrow \geq \sum_{j=1}^{n_{z}} f^{(t)}\left(\mathbf{Z}=\mathbf{z}_{j}\right) \log \left(\frac{p\left(\mathbf{X}, \mathbf{Z}=\mathbf{z}_{j} \mid \Theta\right)}{f^{(t)}\left(\mathbf{Z}=\mathbf{z}_{j}\right)}\right)
\end{aligned}
$$

Finally we're getting to $\mathbf{E x p e c t a t i o n ~} \mathrm{Maximization}$

- The EM algorithm is a MM algorithm.
- Use Jensen's inequality to minorize the log-likelihood. Here's how we minorize. Step 1:

$$
\begin{aligned}
& L(\Theta ; \mathbf{X})=\log \left(p(\mathbf{X} \mid \Theta)=\log \left(\sum_{j=1}^{n_{z}} p\left(\mathbf{X}, \mathbf{Z}=\mathbf{z}_{j} \mid \Theta\right)\right) \leftarrow \text { introduce discrete variable } z\right. \\
& \qquad f^{(t)}(\mathbf{Z}) \text { a pdf } \rightarrow=\log \left(\sum_{j=1}^{n_{z}} f^{(t)}\left(\mathbf{Z}=\mathbf{z}_{j}\right) \frac{p\left(\mathbf{X}, \mathbf{Z}=\mathbf{z}_{j} \mid \Theta\right)}{f^{(t)}\left(\mathbf{Z}=\mathbf{z}_{j}\right)}\right) \\
& \text { Jensen's inequality } \rightarrow \geq \sum_{j=1}^{n_{z}} f^{(t)}\left(\mathbf{Z}=\mathbf{z}_{j}\right) \log \left(\frac{p\left(\mathbf{X}, \mathbf{Z}=\mathbf{z}_{j} \mid \Theta\right)}{f^{(t)}\left(\mathbf{Z}=\mathbf{z}_{j}\right)}\right) \\
& L(\Theta ; \mathbf{X}) \geq \sum_{j=1}^{n_{\mathbf{z}}} f^{(t)}\left(\mathbf{Z}=\mathbf{z}_{j}\right) \log \left(\frac{p\left(\mathbf{X}, \mathbf{Z}=\mathbf{z}_{j} \mid \Theta\right)}{f^{(t)}\left(\mathbf{Z}=\mathbf{z}_{j}\right)}\right)
\end{aligned}
$$

Find $f^{(t)}(\mathbf{Z})$

Here's how we minorize. Step 2:
The lower bound must touch the log-likelihood at $\Theta^{(t)}$

$$
L\left(\Theta^{(t)} ; \mathbf{X}\right)=\sum_{j=1}^{n_{\mathbf{z}}} f^{(t)}\left(\mathbf{Z}=\mathbf{z}_{j}\right) \log \left(\frac{p\left(\mathbf{X}, \mathbf{Z}=\mathbf{z}_{j} \mid \Theta^{(t)}\right)}{f^{(t)}\left(\mathbf{Z}=\mathbf{z}_{j}\right)}\right)
$$

Find $f^{(t)}(\mathbf{Z})$

Here's how we minorize. Step 2:
The lower bound must touch the log-likelihood at $\Theta^{(t)}$

$$
L\left(\Theta^{(t)} ; \mathbf{X}\right)=\sum_{j=1}^{n_{\mathbf{z}}} f^{(t)}\left(\mathbf{Z}=\mathbf{z}_{j}\right) \log \left(\frac{p\left(\mathbf{X}, \mathbf{Z}=\mathbf{z}_{j} \mid \Theta^{(t)}\right)}{f^{(t)}\left(\mathbf{Z}=\mathbf{z}_{j}\right)}\right)
$$

From this constraint can calculate $f^{(t)}(\mathbf{Z})$. It is:

$$
f^{(t)}(\mathbf{Z})=p\left(\mathbf{Z} \mid \mathbf{X}, \Theta^{(t)}\right)
$$

(Derivation is straight-forward)

EM as MM summary

The log-likelihood function $L(\Theta ; \mathbf{X})$ at $\Theta^{(t)}$ is minorized by

$$
g\left(\Theta ; \Theta^{(t)}\right)=\sum_{j=1}^{n_{z}} p\left(\mathbf{Z}=\mathbf{z}_{j} \mid \mathbf{X}, \Theta^{(t)}\right) \log \left(\frac{p\left(\mathbf{X}, \mathbf{Z}=\mathbf{z}_{j} \mid \Theta\right)}{p\left(\mathbf{Z}=\mathbf{z}_{j} \mid \mathbf{X}, \Theta^{(t)}\right)}\right)
$$

EM as MM summary

The log-likelihood function $L(\Theta ; \mathbf{X})$ at $\Theta^{(t)}$ is minorized by

$$
g\left(\Theta ; \Theta^{(t)}\right)=\sum_{j=1}^{n_{\mathbf{z}}} p\left(\mathbf{Z}=\mathbf{z}_{j} \mid \mathbf{X}, \Theta^{(t)}\right) \log \left(\frac{p\left(\mathbf{X}, \mathbf{Z}=\mathbf{z}_{j} \mid \Theta\right)}{p\left(\mathbf{Z}=\mathbf{z}_{j} \mid \mathbf{X}, \Theta^{(t)}\right)}\right)
$$

Maximizing the surrogate function, $g\left(\Theta ; \Theta^{(t)}\right)$, involves:

$$
\begin{aligned}
\Theta^{(t+1)} & =\arg \max _{\Theta} g\left(\Theta ; \Theta^{(t)}\right) \\
& =\arg \max _{\Theta} \sum_{j=1}^{n_{\mathbf{z}}} p\left(\mathbf{Z}=\mathbf{z}_{j} \mid \mathbf{X}, \Theta^{(t)}\right) \log \left(p\left(\mathbf{X}, \mathbf{Z}=\mathbf{z}_{j} \mid \Theta\right)\right) \\
& =\overbrace{\arg \max _{\Theta} \underbrace{E_{p\left(\mathbf{Z} \mid \mathbf{X}, \Theta^{(t)}\right)}[\log (p(\mathbf{X}, \mathbf{Z} \mid \Theta))]}_{\text {Expectation Step }}}^{\text {Maximization Step }}
\end{aligned}
$$

The latent/hidden variables \mathbf{Z}

There seemed to be some magic in this derivation!
What are the \mathbf{Z} 's and where did they come from??

Answer:

The latent/hidden variables \mathbf{Z}

There seemed to be some magic in this derivation!
What are the \mathbf{Z} 's and where did they come from??
Answer:

- \mathbf{Z} is a random variable whose pdf conditioned on \mathbf{X} is completely determined by Θ.

The latent/hidden variables \mathbf{Z}

There seemed to be some magic in this derivation!
What are the \mathbf{Z} 's and where did they come from??

Answer:

- \mathbf{Z} is a random variable whose pdf conditioned on \mathbf{X} is completely determined by Θ.
- Choice of \mathbf{Z} should make the maximization step easy.

Back to our GMM parameter estimation and EM

Attempt 3: Parameter estimation for a GMM

Let's look at a tutorial example using EM:

$$
p(x \mid \Theta)=\alpha \mathcal{N}\left(x \mid \mu_{1}, \sigma_{1}^{2}\right)+(1-\alpha) \mathcal{N}\left(x \mid \mu_{2}, \sigma_{2}^{2}\right)
$$

where $\Theta=\left(\alpha, \mu_{1}, \sigma_{1}, \mu_{2}, \sigma_{2}\right)=(.6,-1, .5,1.5,1.3)$

Attempt 3: Parameter estimation for a GMM

Say all the parameters of Θ are known except α. Then we are given n samples $\mathbf{X}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ independently drawn from $p(x \mid \Theta)$. Using these samples and EM we can estimate α.

\longleftarrow training data

Attempt 3: Parameter estimation for a GMM

If we knew which samples were generated by which component, life would be so much simpler!

Component 1 samples

Component 2 samples

Attempt 3: EM Solution

Introduce hidden/latent variables:
$\mathbf{Z}=\left(z_{1}, \ldots, z_{n}\right)$ is a vector of hidden variables.
Each $z_{i} \in\{0,1\}$ indicates component generating x_{i}.

Attempt 3: EM Solution

Introduce hidden/latent variables:
$\mathbf{Z}=\left(z_{1}, \ldots, z_{n}\right)$ is a vector of hidden variables.
Each $z_{i} \in\{0,1\}$ indicates component generating x_{i}.

E-step:

- Update posteriors for the hidden variables:

$$
p\left(z_{i}=0 \mid x_{i}, \alpha^{(t)}\right)=\frac{p\left(x_{i} \mid \mu_{1}, \sigma_{1}\right) \alpha^{(t)}}{p\left(x_{i} \mid \mu_{1}, \sigma_{1}\right) \alpha^{(t)}+p\left(x_{i} \mid \mu_{2}, \sigma_{2}\right)\left(1-\alpha^{(t)}\right)}
$$

Attempt 3: EM Solution

Introduce hidden/latent variables:
$\mathbf{Z}=\left(z_{1}, \ldots, z_{n}\right)$ is a vector of hidden variables.
Each $z_{i} \in\{0,1\}$ indicates component generating x_{i}.

E-step:

- Update posteriors for the hidden variables:

$$
p\left(z_{i}=0 \mid x_{i}, \alpha^{(t)}\right)=\frac{p\left(x_{i} \mid \mu_{1}, \sigma_{1}\right) \alpha^{(t)}}{p\left(x_{i} \mid \mu_{1}, \sigma_{1}\right) \alpha^{(t)}+p\left(x_{i} \mid \mu_{2}, \sigma_{2}\right)\left(1-\alpha^{(t)}\right)}
$$

- Calculate the conditional expectation

$$
g\left(\alpha ; \alpha^{(t)}\right)=\sum_{\text {all } \mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \alpha^{(t)}\right) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} \mid \alpha)}{p\left(\mathbf{Z} \mid \mathbf{X}, \alpha^{(t)}\right)}\right)
$$

Attempt 3: EM Solution

Introduce hidden/latent variables:

$\mathbf{Z}=\left(z_{1}, \ldots, z_{n}\right)$ is a vector of hidden variables.
Each $z_{i} \in\{0,1\}$ indicates component generating x_{i}.

E-step:

- Update posteriors for the hidden variables:

$$
p\left(z_{i}=0 \mid x_{i}, \alpha^{(t)}\right)=\frac{p\left(x_{i} \mid \mu_{1}, \sigma_{1}\right) \alpha^{(t)}}{p\left(x_{i} \mid \mu_{1}, \sigma_{1}\right) \alpha^{(t)}+p\left(x_{i} \mid \mu_{2}, \sigma_{2}\right)\left(1-\alpha^{(t)}\right)}
$$

- Calculate the conditional expectation

$$
g\left(\alpha ; \alpha^{(t)}\right)=\sum_{\text {all } \mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \alpha^{(t)}\right) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} \mid \alpha)}{p\left(\mathbf{Z} \mid \mathbf{X}, \alpha^{(t)}\right)}\right)
$$

M-step: Find $\arg \max _{\alpha} g\left(\alpha ; \alpha^{(t)}\right)$ which gives:

$$
\alpha^{(t+1)}=\frac{\sum_{i} p\left(z_{i}=0 \mid x_{i}, \alpha^{(t)}\right)}{n}
$$

Attempt 3: EM expectation calculation

$$
\begin{aligned}
& \sum_{\text {all } \mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \alpha^{(t)}\right) \log (p(\mathbf{X}, \mathbf{Z} \mid \alpha)) \\
& =\sum_{\text {all } \mathbf{Z}}\left[\prod_{s=1}^{n} p\left(z_{s} \mid x_{s}, \alpha^{(t)}\right) \sum_{i=1}^{n} \log \left(p\left(x_{i} \mid z_{i}, \alpha\right) p\left(z_{i} \mid \alpha\right)\right)\right] \\
& =\sum_{j_{1}=0}^{1} \cdots \sum_{j_{n}=0}^{1}\left[\prod_{s=1}^{n} p\left(z_{s}=j_{s} \mid x_{s}, \alpha^{(t)}\right) \sum_{i=1}^{n} \log \left(p\left(x_{i} \mid z_{i}=j_{i}, \alpha\right) p\left(z_{i}=j_{i} \mid \alpha\right)\right)\right] \\
& =\sum_{i=1}^{n}[(\prod_{s=1, s \neq i}^{n} \underbrace{\sum_{j_{s}=0}^{1} p\left(z_{s}=j_{s} \mid x_{s}, \alpha^{(t)}\right)}_{=1} \underbrace{n} p\left(z_{i}=j_{i} \mid x_{i}, \alpha^{(t)}\right) \log \left(p\left(x_{i} \mid z_{i}=j_{i}, \alpha\right) p\left(z_{i}=j_{i} \mid \alpha\right)\right)] \\
& =\sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p\left(z_{i}=j_{i} \mid x_{i}, \alpha^{(t)}\right) \log \left(p\left(x_{i} \mid z_{i}=j_{i}, \alpha\right) p\left(z_{i}=j_{i} \mid \alpha\right)\right) \\
& =\sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p\left(z_{i}=j_{i} \mid x_{i}, \alpha^{(t)}\right) \log \left(N\left(x_{i} \mid \mu_{j_{i}}, \sigma_{j_{i}}\right) \alpha^{1-j_{i}}(1-\alpha)^{j_{i}}\right)
\end{aligned}
$$

Attempt 3: EM maximization process

$$
\begin{aligned}
\frac{\partial \sum_{\text {all } \mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \alpha^{(t)}\right) \log (p(\mathbf{X}, \mathbf{Z} \mid \alpha))}{\partial \alpha} & =\sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p\left(z_{i}=j_{i} \mid x_{i}, \alpha^{(t)}\right) \frac{\partial \log \left(\alpha^{1-j_{i}}(1-\alpha)^{j_{i}}\right)}{\partial \alpha} \\
& =\sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p\left(z_{i}=j_{i} \mid x_{i}, \alpha^{(t)}\right)\left(\frac{1-j_{i}}{\alpha}-\frac{j_{i}}{1-\alpha}\right) \\
& =\sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p\left(z_{i}=j_{i} \mid x_{i}, \alpha^{(t)}\right)\left(1-j_{i}-\alpha\right) \\
& =(1-\alpha) \sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p\left(z_{i}=j_{i} \mid x_{i}, \alpha^{(t)}\right)-\sum_{i=1}^{n} \sum_{j_{i}=0}^{1} p\left(z_{i}=j_{i} \mid x_{i}, \alpha^{(t)}\right) j_{i} \\
& =n(1-\alpha)-\sum_{i=1}^{n} p\left(z_{i}=1 \mid x_{i}, \alpha^{(t)}\right) \\
& =-n \alpha+n-\sum_{i=1}^{n}\left(1-p\left(z_{i}=0 \mid x_{i}, \alpha^{(t)}\right)\right) \\
& =\sum_{i=1}^{n} p\left(z_{i}=0 \mid x_{i}, \alpha^{(t)}\right)-n \alpha=0
\end{aligned}
$$

Therefore $\alpha^{(t+1)}=\frac{\sum_{i=1}^{n} p\left(z_{i}=0 \mid x_{i}, \alpha^{(t)}\right)}{n}$

Attempt 3: EM Solution starting point

Ground truth distribution

Initial guess of distribution with $\alpha^{(0)}=.1$

Remember $g\left(\alpha ; \alpha^{(t)}\right)$ minorizes $\log (p(\mathbf{X} \mid \alpha))$ at $\alpha^{(t)}$.
Let's plot what happens as EM update $\alpha^{(t)}$...

EM one iteration

Compute posterior probabilities of the hidden variables

Graph shows $p\left(z_{i}=0 \mid x_{i}, \alpha^{(0)}\right)$ of each hidden variable.
Red \Longrightarrow sample really generated by component 1
Green \Longrightarrow sample really generated by component 2

EM one iteration

Compute the expectation minorizing the log-likelihood at $\alpha^{(0)}=.1$

$$
g\left(\alpha ; \alpha^{(t)}\right)=\sum_{\text {all } \mathbf{Z}} p\left(\mathbf{Z} \mid \mathbf{X}, \alpha^{(t)}\right) \log \left(\frac{p(\mathbf{X}, \mathbf{Z} \mid \alpha)}{p\left(\mathbf{Z} \mid \mathbf{X}, \alpha^{(t)}\right)}\right)
$$

EM one iteration

Calculate maximum of $g\left(\alpha ; \alpha^{(0)}\right)$

Maximum of $g\left(\alpha ; \alpha^{(0)}\right)$ gives $\alpha^{(1)}=.3672$

EM one iteration

The estimate of the GMM with $\alpha^{(1)}=.3672$

EM Iterations

Iteration 2

Posterior probabilities

$$
g\left(\alpha ; \alpha^{(1)}\right)
$$

$$
\alpha^{(2)}=.5287
$$

Current GMM estimate

EM Iterations

Iteration 3

Posterior probabilities

$$
g\left(\alpha ; \alpha^{(2)}\right)
$$

$$
\alpha^{(3)}=.5748
$$

Current GMM estimate

EM Iterations

Iteration 4

Posterior probabilities

$$
g\left(\alpha ; \alpha^{(3)}\right)
$$

$$
\alpha^{(4)}=.5859
$$

Current GMM estimate

EM Iterations

Iteration 5

Posterior probabilities

$$
g\left(\alpha ; \alpha^{(4)}\right)
$$

$$
\alpha^{(5)}=.5885
$$

Current GMM estimate

Comments on EM

Design Issues

- The choice of hidden/latent variable \mathbf{Z} is the most important issue for EM.

Implementation Issues

Comments on EM

Design Issues

- The choice of hidden/latent variable \mathbf{Z} is the most important issue for EM.
- Choice must be done so the maximization step is easy.

Implementation Issues

Comments on EM

Design Issues

- The choice of hidden/latent variable \mathbf{Z} is the most important issue for EM.
- Choice must be done so the maximization step is easy.
- Or at least easier than the maximization of the log-likelihood function.

Implementation Issues

Comments on EM

Design Issues

- The choice of hidden/latent variable \mathbf{Z} is the most important issue for EM.
- Choice must be done so the maximization step is easy.
- Or at least easier than the maximization of the log-likelihood function.

Implementation Issues

- Calculation of the conditional expectation may be taxing.

Comments on EM

Design Issues

- The choice of hidden/latent variable \mathbf{Z} is the most important issue for EM.
- Choice must be done so the maximization step is easy.
- Or at least easier than the maximization of the log-likelihood function.

Implementation Issues

- Calculation of the conditional expectation may be taxing.
- Convergence of EM can be slow near the local optimum.

