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Some stuff you probably already know

Josephine Sullivan + the web, Expectation Maximization without tears! 2/42



Parameter estimation

Have n independent draws x1, . . . , xn from p(x |Θ).
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←− 1D example

Each xi ∼ N(x |µ,Σ) where Θ = (µ,Σ)
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Θ = (5.2, .8) Θ = (4.8, 1.4) Θ = (4.9, .7)

Want to estimate the parameters Θ from the xi ’s.

HOW??
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Maximum Likelihood Estimation (MLE)

Choose the Θ which maximizes the likelihood of your data:

Θ∗ = arg max
Θ

p(x1, x2, . . . , xn |Θ)
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Maximum Likelihood Estimation (MLE)

Choose the Θ which maximizes the likelihood of your data:

l(Θ; X) ≡ p(x1, x2, . . . , xn |Θ)

=
n∏

i=1

p(xi |Θ) ← assuming independent samples

Easier to work with the log-likelihood

L(Θ; X) = log (l(Θ; X)) =
n∑

i=1

log (p(xi |Θ))
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Maximum Likelihood Estimation (MLE)

Choose the Θ which maximizes the likelihood of your data:

Note

Θ∗ = arg max
Θ

l(Θ; X) = arg max
Θ

L(Θ; X)
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An example Log-likelihood function

Our 1D example of points drawn from N(µ,Σ)
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X = (x1, . . . , xn) Log-likelihood: L(Θ; X)

Want to find the maximum of this function L(Θ; X).

Josephine Sullivan + the web, Expectation Maximization without tears! 6/42



An example Log-likelihood function

Our 1D example of points drawn from N(µ,Σ)

2 4 6 8

0

x

µ

σ

  3 3.5   4 4.5   5 5.5   6 6.5   7

 0.5

0.75

   1

1.25

 1.5

1.75

   2

2.25

 2.5

2.75

   3

X = (x1, . . . , xn) Log-likelihood: L(Θ; X)

Want to find the maximum of this function L(Θ; X).

Josephine Sullivan + the web, Expectation Maximization without tears! 6/42



MLE for a Normal distribution

The formula for a normal distribution for x ∈ Rd :

p(x |Θ) = (2π)−
d
2 |Σ|−

1
2 exp

(
−.5(x− µ)t Σ−1(x− µ)

)
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MLE for a Normal distribution
The formula for a normal distribution for x ∈ Rd :

p(x |Θ) = (2π)−
d
2 |Σ|−

1
2 exp

(
−.5(x− µ)t Σ−1(x− µ)

)
The log-likelihood of our n data-points is

L(Θ; X) =
n∑

i=1

log (p(xi |Θ))

=
n∑

i=1

[
−d

2
log(2π)− 1

2
log (|Σ|)− .5(xi − µ)tΣ−1(xi − µ)

]

= −nd

2
log(2π)− n

2
log (|Σ|)− .5

n∑
i=1

(xi − µ)tΣ−1(xi − µ)

= −nd

2
log(2π)− n

2
log (|Σ|)− .5 tr

[
n∑

i=1

(xi − µ)tΣ−1(xi − µ)

]
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MLE for a Normal distribution

L(Θ; X) = −nd

2
log(2π)− n

2
log (|Σ|)− .5 tr

[
n∑

i=1

(xi − µ)tΣ−1(xi − µ)

]

= −nd

2
log(2π)− n

2
log (|Σ|)− .5 tr

[
n∑

i=1

Σ−1(xi − µ)(xi − µ)t

]

= −nd

2
log(2π)− n

2
log (|Σ|)− .5 tr

[
Σ−1

n∑
i=1

(xi − µ)(xi − µ)t

]

Note Σ is a symmetric positive definite matrix. Thus Σ = T tT therefore

L(Θ; X) = −nd

2
log(2π)− n

2
log
(∣∣T tT

∣∣)− .5 tr

[
(T tT )−1

n∑
i=1

(xi − µ)(xi − µ)t

]

= −nd

2
log(2π)− n log (|T |)− .5 tr

[
(T tT )−1

n∑
i=1

(xi − µ)(xi − µ)t

]
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Remember

How do we analytically solve for an optimum?

I Take derivative of function wrt each variable.

I Set each derivative to zero.

I Solve the set of simultaneous equations if possible.
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MLE for a Normal distribution

For our Normal distribution

L(Θ; X) = −nd

2
log(2π)− n log (|T |)− .5 tr

[
(T tT )−1

n∑
i=1

(xi − µ)(xi − µ)t

]

Take derivative of function wrt each variable:

∂ L(Θ; X)

∂ µ
=

n∑
i=1

Σ−1(xi − µ)

∂ L(Θ; X)

∂ T
= −nT−t + T (T tT )−1

n∑
i=1

(xi − µ)(xi − µ)t(T tT )−1

Remember: The Matrix Cookbook is your friend.

Josephine Sullivan + the web, Expectation Maximization without tears! 9/42
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For our Normal distribution

L(Θ; X) = −nd

2
log(2π)− n log (|T |)− .5 tr

[
(T tT )−1

n∑
i=1

(xi − µ)(xi − µ)t

]

Set each derivative to zero:

0 = Σ−1
n∑

i=1

(xi − µ)

0 = −nT−t + T (T tT )−1

[
n∑

i=1

(xi − µ)(xi − µ)t

]
(T tT )−1

Remember: The Matrix Cookbook is your friend.
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MLE for a Normal distribution

For our Normal distribution

L(Θ; X) = −nd

2
log(2π)− n log (|T |)− .5 tr

[
(T tT )−1

n∑
i=1

(xi − µ)(xi − µ)t

]

Solve the set of simultaneous equations if possible:

µ∗ =
1

n

n∑
i=1

xi

T ∗tT ∗ = Σ∗ =
1

n

n∑
i=1

(xi − µ∗)(xi − µ∗)t

Remember: The Matrix Cookbook is your friend.
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MLE for a Normal distribution

Back to our 1D example:
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p(x|Θ)

Red curve is the MLE pdf (n = 25)
Black curve is the ground truth
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MLE for a Normal distribution

Estimate becomes better as n increases

2 4 6 8
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x

p(x|Θ)

Red curve is the MLE pdf (n = 200)
Black curve is the ground truth
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Some more stuff you probably already know
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Limitations of Normal distributions

Unfortunately Normal distributions are not very expressive.

They can only accurately represent distributions with one
mode.
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Limitations of Normal distributions

Unfortunately Normal distributions are not very expressive.

−4 −2 0 2 4

.1
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.4

Θ

p(x | Θ)

What do we do in this situation ??
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Gaussian Mixture Models (GMM)

They can accurately represent any distribution.

Mathematical definition

p(x |Θ) =
K∑

k=1

πk N(xk ;µk ,Σk)

where

K∑
k=1

πk = 1 and πk ≥ 0 for k = 1, . . . ,K

and Θ = (µ1, . . . ,µK ,Σ1, . . . ,ΣK , π1, . . . , πK )
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Gaussian Mixture Models (GMM)
They can accurately represent any distribution.
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.4

Θ

p(x | Θ)

p(x |Θ) = αN (x |µ1, σ
2
1) + (1− α)N (x |µ2, σ

2
2)

Θ = (α, µ1, σ1, µ2, σ2) = (.6,−1, .5, 1.5, 1.3)
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Parameter estimation for a GMM

Given n independent samples x1, . . . , xn from a GMM.
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p(x | Θ)

←− training data
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Parameter estimation for a GMM

Given n independent samples x1, . . . , xn from a GMM.

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

←− training data

Can still use MLE to estimate Θ from the xi ’s, but...
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Attempt 1: Analytic Solution
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Attempt 1: Parameter estimation for a GMM

The log-likelihood of the data is

L(Θ; X) =
n∑

i=1

log

(
K∑

k=1

πkN(xi ;µk ,Σk)

)

(Note: We’ll assume K is known and fixed.)
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Attempt 1: Parameter estimation for a GMM

L(Θ; X) =
n∑

i=1

log

(
K∑

k=1

πkN(xi ;µk ,T
t
kTk)

)

Let’s try to maximize L(Θ; X) analytically subject to the constraint∑
k πk = 1 and each Σk = T t

kTk . Construct the Lagrangian L(Θ, λ; X).

L(Θ, λ; X) =
n∑

i=1

log

(
K∑

k=1

πkN(xi ;µk ,T
t
kTk)

)
+ λ

(
1−

K∑
k=1

πk

)
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Attempt 1: Parameter estimation for a GMM

L(Θ; X) =
n∑

i=1

log

(
K∑

k=1

πkN(xi ;µk ,T
t
kTk)

)

Let’s try to maximize L(Θ; X) analytically subject to the constraint∑
k πk = 1 and each Σk = T t

kTk . Construct the Lagrangian L(Θ, λ; X).

Take derivatives for k = 1, . . . ,K :

∂ L(Θ, λ; X)

∂ µk

=
n∑

i=1

πkN(xi ; µk ,T
t
kTk )

GMM(xi ; Θ)
(T t

kTk )−1(xi − µk )

∂ L(Θ, λ; X)

∂ Tk

= something complicated.....

etc
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Attempt 1: Parameter estimation for a GMM

L(Θ; X) =
n∑

i=1

log

(
K∑

k=1

πkN(xi ;µk ,T
t
kTk)

)

Let’s try to maximize L(Θ; X) analytically subject to the constraint∑
k πk = 1 and each Σk = T t

kTk . Construct the Lagrangian L(Θ, λ; X).

Set derivatives to zero:

n∑
i=1

πkN(xi ; µk ,Σk )

GMM(xi ; Θ)
Σ−1
k (xi − µk ) = 0

etc
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Attempt 1: Parameter estimation for a GMM

L(Θ; X) =
n∑

i=1

log

(
K∑

k=1

πkN(xi ;µk ,T
t
kTk)

)

Let’s try to maximize L(Θ; X) analytically subject to the constraint∑
k πk = 1 and each Σk = T t

kTk . Construct the Lagrangian L(Θ, λ; X).

Solve the set of simultaneous equations

NO ANALYTIC SOLUTION
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Attempt 2: Newton based iterative
optimzation
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Attempt 2: Parameter estimation for a GMM

L(Θ; X) =
n∑

i=1

log

(
K∑

k=1

πkN(xi ;µk ,T
t
kTk)

)

Could try to maximize L(Θ; X) iteratively using Newton’s Method.

After all L(Θ; X) is a scalar valued function of a vector Θ of

variables.
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variables.

One iteration

I Have a current estimate Θ(t).

I Approximate L(Θ; X) in neighbourhood of Θ(t) with a
paraboloid.

I Θ(t+1) is set to maximum of the paraboloid.
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Attempt 2: Parameter estimation for a GMM
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i=1

log
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t
kTk)

)

Could try to maximize L(Θ; X) iteratively using Newton’s Method.

After all L(Θ; X) is a scalar valued function of a vector Θ of

variables.

Comments

I Should find a local maximum. X

I Convergence fast if Θ(t) close to an optimum. X

I If Θ(0) far away from a local maximum method can fail.
Paraboloid approximation process can hit problems. 7
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What other options are there??

Now for, what may seem like, a slight
diversion
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Defintion of Majorization

A function g(Θ ; Θ(t)) majorizes a function f (Θ) at Θ(t) if

f (Θ(t)) = g(Θ(t) ; Θ(t)) and f (Θ) ≤ g(Θ ; Θ(t)) for all Θ

Θ(t)

Θ

f(Θ)

←− g(Θ; Θ(t)) majorizes f (Θ)
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The MM Algorithm

To minimize an objective function f (Θ):

I The MM algorithm is a prescription for constructing
optimization algorithms.

I An MM algorithm creates a surrogate function that
majorizes the objective function. When the surrogate
function is minimized the objective function is decreased.

I When minimizing MM ≡ majorize/minimize.

Name coined by David R. Hunter and Kenneth Lange
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Some definitions

A function g(Θ; Θ(t)) majorizes the function f (Θ) at Θ(t) if

f (Θ(t)) = g(Θ(t); Θ(t)) and f (Θ) ≤ g(Θ; Θ(t)) for all Θ

Θ(t)

Θ

f(Θ)

←− g(Θ; Θ(t)) majorizes f (Θ)
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Some definitions
Let

Θ(t+1) = arg min
Θ

g(Θ; Θ(t))

(so should choose a g(Θ; Θ(t)) which is easy to minimize)

Θ(t)

Θ

f(Θ)

Majorize function

Θ(t+1)

Θ

f(Θ)

Find minimum of
majorizing function
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Descent Properties

MM minimization algorithm satisfies the descent property as

f (Θ(t+1)) ≤ g(Θ(t+1); Θ(t)), as f (Θ) ≤ g(Θ; Θ(t)) ∀Θ

≤ g(Θ(t); Θ(t)), as Θ(t+1) minimizes g(Θ; Θ(t))

= f (Θ(t))

In summary

f (Θ(t+1)) ≤ f (Θ(t))
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Descent Properties

MM minimization algorithm satisfies the descent property as

f (Θ(t+1)) ≤ g(Θ(t+1); Θ(t)), as f (Θ) ≤ g(Θ; Θ(t)) ∀Θ

≤ g(Θ(t); Θ(t)), as Θ(t+1) minimizes g(Θ; Θ(t))

= f (Θ(t))

In summary

f (Θ(t+1)) ≤ f (Θ(t))

The descent property makes the MM algorithm very stable.
Algorithm converges to local minima or saddle point.
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Maximizing a function

To maximize an objective function f (Θ):

I MM algorithm creates a surrogate function that minorize
the objective function. When the surrogate function is
maximized the objective function is increased.

Θ(t)

Θ

f(Θ)

Red curve minorize the black curve

I When maximizing MM ≡ minorize/maximize.
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Big Question?

How do you majorize or minorize a function??

Here are some generic tricks and tools

I Jensen’s inequality

I Chord above the graph property of a convex function

I Supporting hyperplane property of a convex function

I Quadratic upper bound principle

I Arithmetic-geometric mean inequality

I The Cauchy-Schwartz inequality

Presume it would take some practice to use these
tricks.

But....
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But wait...

You probably have minorized via Jensen’s Inequality!

Remember Jensen’s Inequality:

I h(·) be a concave function,

I have K non-negative numbers π1, . . . , πK with
∑

k πi = 1,

I K arbitrary numbers a1, . . . , aK

then

h

(
K∑

k=1

πk ak

)
≥

K∑
k=1

πk h(ak)
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Finally we’re getting to ExpectationMaximization

I The EM algorithm is a MM algorithm.

I Use Jensen’s inequality to minorize the log-likelihood.

Here’s how we minorize. Step 1:

L(Θ; X) = log (p(X |Θ) = log

 nz∑
j=1

p (X,Z = zj |Θ)

 ← introduce discrete variable Z

f (t)(Z) a pdf → = log

 nz∑
j=1

f (t)(Z = zj)
p (X,Z = zj |Θ)

f (t)(Z = zj)


Jensen’s inequality → ≥

nz∑
j=1

f (t)(Z = zj) log

(
p (X,Z = zj |Θ)

f (t)(Z = zj)

)

L(Θ; X) ≥
∑nz

j=1 f
(t)(Z = zj) log

(
p(X,Z=zj |Θ)

f (t)(Z=zj )

)
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Find f (t)(Z)

Here’s how we minorize. Step 2:

The lower bound must touch the log-likelihood at Θ(t)

L(Θ(t); X) =
∑nz

j=1 f
(t)(Z = zj) log

(
p(X,Z=zj |Θ(t))

f (t)(Z=zj )

)

From this constraint can calculate f (t)(Z). It is:

f (t)(Z) = p(Z |X,Θ(t))

(Derivation is straight-forward)
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EM as MM summary
The log-likelihood function L(Θ; X) at Θ(t) is minorized by

g(Θ; Θ(t)) =
∑nz

j=1 p(Z = zj |X,Θ(t)) log
(

p(X,Z=zj |Θ)

p(Z=zj |X,Θ(t))

)

Maximizing the surrogate function, g(Θ; Θ(t)), involves:

Θ(t+1) = arg max
Θ

g(Θ; Θ(t))

= arg max
Θ

nz∑
j=1

p(Z = zj |X,Θ(t)) log (p(X,Z = zj |Θ))

=

Maximization Step︷ ︸︸ ︷
arg max

Θ
Ep(Z |X,Θ(t)) [ log (p(X,Z |Θ)) ]︸ ︷︷ ︸

Expectation Step
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The latent/hidden variables Z

There seemed to be some magic in this derivation!

What are the Z’s and where did they come from??

Answer:

I Z is a random variable whose pdf conditioned on X is
completely determined by Θ.

I Choice of Z should make the maximization step easy.
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Back to our GMM parameter estimation and EM
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Attempt 3: Parameter estimation for a GMM

Let’s look at a tutorial example using EM:

p(x |Θ) = αN (x |µ1, σ
2
1) + (1− α)N (x |µ2, σ

2
2)

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

←− Ground truth
distribution

where Θ = (α, µ1, σ1, µ2, σ2) = (.6,−1, .5, 1.5, 1.3)
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Attempt 3: Parameter estimation for a GMM

Say all the parameters of Θ are known except α. Then we are
given n samples X = (x1, x2, . . . , xn) independently drawn from
p(x |Θ). Using these samples and EM we can estimate α.

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

←− training data

Josephine Sullivan + the web, Expectation Maximization without tears! 34/42



Attempt 3: Parameter estimation for a GMM

If we knew which samples were generated by which
component, life would be so much simpler!

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

Component 1 samples Component 2 samples
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Attempt 3: EM Solution
Introduce hidden/latent variables:
Z = (z1, . . . , zn) is a vector of hidden variables.
Each zi ∈ {0, 1} indicates component generating xi .

E-step:

I Update posteriors for the hidden variables:

p(zi = 0 | xi , α(t)) = p(xi |µ1,σ1)α(t)

p(xi |µ1, σ1)α(t) + p(xi |µ2, σ2) (1− α(t))

I Calculate the conditional expectation

g(α;α(t)) =
∑

all Z

p(Z |X, α(t)) log

(
p(X,Z |α)

p(Z |X, α(t)

)

M-step: Find arg max
α

g(α;α(t)) which gives:

α(t+1) =
∑

i p(zi=0 | xi ,α(t))
n
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Attempt 3: EM expectation calculation

∑
all Z

p(Z |X, α(t)) log (p(X, Z |α))

=
∑
all Z

 n∏
s=1

p(zs | xs , α(t))
n∑

i=1

log (p(xi | zi , α) p(zi |α))


=

1∑
j1=0

· · ·
1∑

jn=0

 n∏
s=1

p(zs = js | xs , α(t))
n∑

i=1

log (p(xi | zi = ji , α) p(zi = ji |α))



=
n∑

i=1




n∏

s=1,s 6=i

1∑
js=0

p(zs = js | xs , α(t))

︸ ︷︷ ︸
=1

 p(zi = ji | xi , α
(t)) log (p(xi | zi = ji , α) p(zi = ji |α))


=

n∑
i=1

1∑
ji =0

p(zi = ji | xi , α
(t)) log (p(xi | zi = ji , α) p(zi = ji |α))

=
n∑

i=1

1∑
ji =0

p(zi = ji | xi , α
(t)) log

(
N(xi |µji

, σji
)α1−ji (1− α)ji

)
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Attempt 3: EM maximization process

∂
∑
all Z

p(Z |X, α(t)) log (p(X, Z |α))

∂ α
=

n∑
i=1

1∑
ji =0

p(zi = ji | xi , α
(t))

∂ log
(
α1−ji (1− α)ji

)
∂ α

=
n∑

i=1

1∑
ji =0

p(zi = ji | xi , α
(t))

(
1− ji

α
−

ji

1− α

)

=
n∑

i=1

1∑
ji =0

p(zi = ji | xi , α
(t)) (1− ji − α)

= (1− α)
n∑

i=1

1∑
ji =0

p(zi = ji | xi , α
(t))−

n∑
i=1

1∑
ji =0

p(zi = ji | xi , α
(t)) ji

= n(1− α)−
n∑

i=1

p(zi = 1 | xi , α
(t))

= −nα + n −
n∑

i=1

(1− p(zi = 0 | xi , α
(t)))

=
n∑

i=1

p(zi = 0 | xi , α
(t))− nα = 0

Therefore α(t+1) =
∑n

i=1 p(zi=0 | xi ,α(t))
n
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Attempt 3: EM Solution starting point

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

Ground truth distribution

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

Initial guess of distribution
with α(0) = .1

Remember g(α;α(t)) minorizes log (p(X |α)) at α(t).

Let’s plot what happens as EM update α(t)...
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EM one iteration
Compute posterior probabilities of the hidden variables

10 20 30 40 50

.2

.4

.6

.8

1

i

p(z
i
=0 | x

i
, α(t))

Graph shows p(zi = 0 | xi , α(0)) of each hidden variable.

Red =⇒ sample really generated by component 1

Green =⇒ sample really generated by component 2
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EM one iteration
Compute the expectation minorizing the log-likelihood
at α(0) = .1

g(α;α(t)) =
∑

all Z

p(Z |X, α(t)) log

(
p(X,Z |α)

p(Z |X, α(t)

)

0 .2 .4 .6 .8 1

−140

−120

−100

−80

α

log( p(X | α) )   g(α ; α(t))

Josephine Sullivan + the web, Expectation Maximization without tears! 40/42



EM one iteration

Calculate maximum of g(α;α(0))

0 .2 .4 .6 .8 1

−

 140

−120

−100

α

log( p(X | α) )   g(α ; α(t))

Maximum of g(α;α(0)) gives α(1) = .3672
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EM one iteration

The estimate of the GMM with α(1) = .3672

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)
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EM Iterations

Iteration 2

10 20 30 40 50

.2

.4

.6

.8

1

i

p(z
i
=0 | x

i
, α(t))

0 .2 .4 .6 .8 1

−

 140

−120

−100

α

log( p(X | α) )   g(α ; α(t))

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

Posterior probabilities g(α;α(1)) Current GMM estimate

α(2) = .5287
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EM Iterations

Iteration 3

10 20 30 40 50
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i
, α(t))

0 .2 .4 .6 .8 1

−

 140

−120

−100

α

log( p(X | α) )   g(α ; α(t))

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

Posterior probabilities g(α;α(2)) Current GMM estimate

α(3) = .5748
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EM Iterations

Iteration 4

10 20 30 40 50
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.4

.6

.8

1

i

p(z
i
=0 | x

i
, α(t))

0 .2 .4 .6 .8 1

−

 140

−120

−100

α

log( p(X | α) )   g(α ; α(t))

−4 −2 0 2 4

.1

.2

.3

.4

Θ

p(x | Θ)

Posterior probabilities g(α;α(3)) Current GMM estimate

α(4) = .5859
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EM Iterations

Iteration 5

10 20 30 40 50

.2

.4

.6

.8

1

i

p(z
i
=0 | x

i
, α(t))

0 .2 .4 .6 .8 1

−

 140

−120

−100

α

log( p(X | α) )   g(α ; α(t))

−4 −2 0 2 4

.1

.2
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.4

Θ

p(x | Θ)

Posterior probabilities g(α;α(4)) Current GMM estimate

α(5) = .5885
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Comments on EM

Design Issues

I The choice of hidden/latent variable Z is the
most important issue for EM.

I Choice must be done so the maximization
step is easy.

I Or at least easier than the maximization of
the log-likelihood function.

Implementation Issues

I Calculation of the conditional expectation
may be taxing.

I Convergence of EM can be slow near the
local optimum.
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