
Lagrange Multipliers and the
Karush-Kuhn-Tucker conditions

March 20, 2012



Optimization

Goal:

Want to find the maximum or minimum of a function subject to
some constraints.

Formal Statement of Problem:

Given functions f , g1, . . . , gm and h1, . . . , hl defined on some
domain Ω ⊂ Rn the optimization problem has the form

min
x∈Ω

f(x) subject to gi(x) ≤ 0 ∀i and hj(x) = 0 ∀j



In these notes..

We will derive/state sufficient and necessary for (local) optimality
when there are

1 no constraints,

2 only equality constraints,

3 only inequality constraints,

4 equality and inequality constraints.



Unconstrained Optimization



Unconstrained Minimization

Assume:

Let f : Ω→ R be a continuously differentiable function.

Necessary and sufficient conditions for a local minimum:

x∗ is a local minimum of f(x) if and only if

1 f has zero gradient at x∗:

∇xf(x∗) = 0

2 and the Hessian of f at w∗ is positive semi-definite:

vt (∇2f(x∗))v ≥ 0, ∀v ∈ Rn

where

∇2f(x) =


∂2f(x)

∂x2
1

· · · ∂2f(x)
∂x1∂xn

...
. . .

...
∂2f(x)
∂xn∂x1

· · · ∂2f(x)

∂x2
n





Unconstrained Maximization

Assume:

Let f : Ω→ R be a continuously differentiable function.

Necessary and sufficient conditions for local maximum:

x∗ is a local maximum of f(x) if and only if

1 f has zero gradient at x∗:

∇f(x∗) = 0

2 and the Hessian of f at x∗ is negative semi-definite:

vt (∇2f(x∗))v ≤ 0, ∀v ∈ Rn

where

∇2f(x) =


∂2f(x)

∂x2
1

· · · ∂2f(x)
∂x1∂xn

...
. . .

...
∂2f(x)
∂xn∂x1

· · · ∂2f(x)

∂x2
n





Constrained Optimization:

Equality Constraints



Tutorial Example

Problem:

This is the constrained optimization problem we want to solve

min
x∈R2

f(x) subject to h(x) = 0

where

f(x) = x1 + x2 and h(x) = x2
1 + x2

2 − 2



Tutorial example - Cost function

x1

x2

x1 + x2 = −2

x1 + x2 = −1

x1 + x2 = 0

x1 + x2 = 1

x1 + x2 = 2

iso-contours of f(x)

f(x) = x1 + x2



Tutorial example - Feasible region

x1

x2

x1 + x2 = −2

x1 + x2 = −1

x1 + x2 = 0

x1 + x2 = 1

x1 + x2 = 2

iso-contours of f(x)

feasible region: h(x) = 0

h(x) = x2
1 + x2

2 − 2



Given a point xF on the constraint surface

x1

x2

feasible point xF



Given a point xF on the constraint surface

x1

x2

δx

Find δx s.t. h(xF + α δx) = 0 and f(xF + α δx) < f(xF)?



Condition to decrease the cost function

x1

x2

−∇x f(xF)

At any point x̃ the direction of steepest descent of the cost
function f(x) is given by −∇x f(x̃).



Condition to decrease the cost function

x1

x2

δx

Here f(xF + αδx) < f(xF)

To move δx from x such that f(x + δx) < f(x) must have

δx · (−∇x f(x)) > 0



Condition to remain on the constraint surface

x1

x2

∇x h(xF)

Normals to the constraint surface are given by ∇x h(x)



Condition to remain on the constraint surface

x1

x2

∇x h(xF)

Note the direction of the normal is arbitrary as the constraint be
imposed as either h(x) = 0 or −h(x) = 0



Condition to remain on the constraint surface

x1

x2

Direction orthogonal to ∇x h(xF)

To move a small δx from x and remain on the constraint surface
we have to move in a direction orthogonal to ∇x h(x).



To summarize...

If xF lies on the constraint surface:

• setting δx orthogonal to ∇x h(xF) ensures h(xF + δx) = 0.

• And f(xF + δx) < f(xF) only if

δx · (−∇x f(xF)) > 0



Condition for a local optimum

Consider the case when

∇x f(xF) = µ∇xh(xF)

where µ is a scalar.

When this occurs

• If δx is orthogonal to ∇xh(xF) then

δx · (−∇xF
f(x)) = −δx · µ∇xh(xF) = 0

• Cannot move from xF to remain on the constraint surface and
decrease (or increase) the cost function.

This case corresponds to a constrained local optimum!



Condition for a local optimum

Consider the case when

∇x f(xF) = µ∇xh(xF)

where µ is a scalar.

When this occurs

• If δx is orthogonal to ∇xh(xF) then

δx · (−∇xF
f(x)) = −δx · µ∇xh(xF) = 0

• Cannot move from xF to remain on the constraint surface and
decrease (or increase) the cost function.

This case corresponds to a constrained local optimum!



Condition for a local optimum

x1

x2

critical point

critical point

A constrained local optimum occurs at x∗ when ∇xf(x∗) and
∇x h(x∗) are parallel that is

∇x f(x∗) = µ∇x h(x∗)



From this fact Lagrange Multipliers make sense

Remember our constrained optimization problem is

min
x∈R2

f(x) subject to h(x) = 0

Define the Lagrangian as

L(x, µ) = f(x) + µh(x)

Then x∗ a local minimum ⇐⇒ there exists a unique µ∗ s.t.

1 ∇xL(x∗, µ∗) = 0

2 ∇µL(x∗, µ∗) = 0

3 yt(∇2
xxL(x∗, µ∗))y ≥ 0 ∀y s.t. ∇xh(x∗)ty = 0



From this fact Lagrange Multipliers make sense

Remember our constrained optimization problem is

min
x∈R2

f(x) subject to h(x) = 0

Define the Lagrangian as note L(x∗, µ∗) = f(x∗)
↓

L(x, µ) = f(x) + µh(x)

Then x∗ a local minimum ⇐⇒ there exists a unique µ∗ s.t.

1 ∇xL(x∗, µ∗) = 0 ← encodes ∇x f(x
∗) = µ∗∇x h(x

∗)

2 ∇µL(x∗, µ∗) = 0 ← encodes the equality constraint h(x∗) = 0

3 yt(∇2
xxL(x∗, µ∗))y ≥ 0 ∀y s.t. ∇xh(x∗)ty = 0

↑
Positive definite Hessian tells us we have a local minimum



The case of multiple equality constraints

The constrained optimization problem is

min
x∈R2

f(x) subject to hi(x) = 0 for i = 1, . . . , l

Construct the Lagrangian (introduce a multiplier for each constraint)

L(x,µ) = f(x) +
∑l

i=1 µi hi(x) = f(x) + µt h(x)

Then x∗ a local minimum ⇐⇒ there exists a unique µ∗ s.t.

1 ∇xL(x∗,µ∗) = 0

2 ∇µL(x∗,µ∗) = 0

3 yt(∇2
xxL(x∗, µ∗))y ≥ 0 ∀y s.t. ∇xh(x∗)ty = 0



Constrained Optimization:

Inequality Constraints



Tutorial Example - Case 1

Problem:

Consider this constrained optimization problem

min
x∈R2

f(x) subject to g(x) ≤ 0

where

f(x) = x2
1 + x2

2 and g(x) = x2
1 + x2

2 − 1



Tutorial example - Cost function

x1

x2

iso-contours of f(x)

minimum of f(x)

f(x) = x2
1 + x2

2



Tutorial example - Feasible region

x1

x2

feasible region: g(x) ≤ 0

iso-contours of f(x)

g(x) = x2
1 + x2

2 − 1



How do we recognize if xF is at a local optimum?

x1

x2

How can we recognize xF

is at a local minimum?

Remember xF denotes a feasible point.



Easy in this case

x1

x2

How can we recognize xF

is at a local minimum?

Unconstrained minimum
of f(x) lies within
the feasible region.

∴ Necessary and sufficient conditions for a constrained local
minimum are the same as for an unconstrained local minimum.

∇xf(xF) = 0 and ∇xxf(xF) is positive definite



This Tutorial Example has an inactive constraint

Problem:

Our constrained optimization problem

min
x∈R2

f(x) subject to g(x) ≤ 0

where

f(x) = x2
1 + x2

2 and g(x) = x2
1 + x2

2 − 1

Constraint is not active at the local minimum (g(x∗) < 0):

Therefore the local minimum is identified by the same conditions
as in the unconstrained case.



Tutorial Example - Case 2

Problem:

This is the constrained optimization problem we want to solve

min
x∈R2

f(x) subject to g(x) ≤ 0

where

f(x) = (x1 − 1.1)2 + (x2 − 1.1)2 and g(x) = x2
1 + x2

2 − 1



Tutorial example - Cost function

x1

x2

iso-contours of f(x)

minimum of f(x)

f(x) = (x1 − 1.1)2 + (x2 − 1.1)2



Tutorial example - Feasible region

x1

x2

iso-contours of f(x)

feasible region: g(x) ≤ 0

g(x) = x2
1 + x2

2 − 1



How do we recognize if xF is at a local optimum?

x1

x2

Is xF at a local minimum?

Remember xF denotes a feasible point.



How do we recognize if xF is at a local optimum?

x1

x2

How can we tell if xF

is at a local minimum?

Unconstrained local
minimum of f(x)
lies outside of the

feasible region.

∴ the constrained local minimum occurs on the surface of the
constraint surface.



How do we recognize if xF is at a local optimum?

x1

x2

How can we tell if xF

is at a local minimum?

Unconstrained local
minimum of f(x)
lies outside of the

feasible region.

∴ Effectively have an optimization problem with an equality
constraint: g(x) = 0.



Given an equality constraint

x1

x2

A local optimum occurs when ∇x f(x) and ∇x g(x) are parallel:

-∇x f(x) = λ∇x g(x)



Want a constrained local minimum...

x1

x2

7 Not a constrained
local minimum as
−∇x f(xF) points

in towards the
feasible region

∴ Constrained local minimum occurs when −∇x f(x) and ∇x g(x)
point in the same direction:

−∇x f(x) = λ∇x g(x) and λ > 0



Want a constrained local minimum...

x1

x2

X Is a constrained
local minimum as
−∇x f(xF) points

away from the
feasible region

∴ Constrained local minimum occurs when −∇x f(x) and ∇x g(x)
point in the same direction:

−∇x f(x) = λ∇x g(x) and λ > 0



Summary of optimization with one inequality constraint

Given

min
x∈R2

f(x) subject to g(x) ≤ 0

If x∗ corresponds to a constrained local minimum then

Case 1:
Unconstrained local minimum
occurs in the feasible region.

1 g(x∗) < 0

2 ∇x f(x∗) = 0

3 ∇xx f(x∗) is a positive
semi-definite matrix.

Case 2:
Unconstrained local minimum
lies outside the feasible region.

1 g(x∗) = 0

2 −∇x f(x∗) = λ∇x g(x∗)
with λ > 0

3 yt∇xx L(x∗)y ≥ 0 for all
y orthogonal to ∇x g(x∗).



Karush-Kuhn-Tucker conditions encode these conditions

Given the optimization problem

min
x∈R2

f(x) subject to g(x) ≤ 0

Define the Lagrangian as

L(x, λ) = f(x) + λ g(x)

Then x∗ a local minimum ⇐⇒ there exists a unique λ∗ s.t.

1 ∇xL(x∗, λ∗) = 0

2 λ∗ ≥ 0

3 λ∗ g(x∗) = 0

4 g(x∗) ≤ 0

5 Plus positive definite constraints on ∇xx L(x∗, λ∗).

These are the KKT conditions.



Let’s check what the KKT conditions imply

Case 1 - Inactive constraint:

• When λ∗ = 0 then have L(x∗, λ∗) = f(x∗).

• Condition KKT 1 =⇒ ∇xf(x∗) = 0.

• Condition KKT 4 =⇒ x∗ is a feasible point.

Case 2 - Active constraint:

• When λ∗ > 0 then have L(x∗, λ∗) = f(x∗) + λ∗ g(x∗).

• Condition KKT 1 =⇒ ∇xf(x∗) = −λ∗∇xg(x∗).

• Condition KKT 3 =⇒ g(x∗) = 0.

• Condition KKT 3 also =⇒ L(x∗, λ∗) = f(x∗).



KKT conditions for multiple inequality constraints

Given the optimization problem

min
x∈R2

f(x) subject to gj(x) ≤ 0 for j = 1, . . . ,m

Define the Lagrangian as

L(x,λ) = f(x) +
∑m

j=1 λj gj(x) = f(x) + λt g(x)

Then x∗ a local minimum ⇐⇒ there exists a unique λ∗ s.t.

1 ∇xL(x∗,λ∗) = 0

2 λ∗j ≥ 0 for j = 1, . . . ,m

3 λ∗j g(x∗) = 0 for j = 1, . . . ,m

4 gj(x
∗) ≤ 0 for j = 1, . . . ,m

5 Plus positive definite constraints on ∇xx L(x∗,λ∗).



KKT for multiple equality & inequality constraints

Given the constrained optimization problem

min
x∈R2

f(x)

subject to

hi(x) = 0 for i = 1, . . . , l and gj(x) ≤ 0 for j = 1, . . . ,m

Define the Lagrangian as

L(x,µ,λ) = f(x) + µt h(x) + λt g(x)

Then x∗ a local minimum ⇐⇒ there exists a unique λ∗ s.t.

1 ∇xL(x∗,µ∗,λ∗) = 0

2 λ∗j ≥ 0 for j = 1, . . . ,m

3 λ∗j gj(x
∗) = 0 for j = 1, . . . ,m

4 gj(x
∗) ≤ 0 for j = 1, . . . ,m

5 h(x∗) = 0

6 Plus positive definite constraints on ∇xx L(x∗,λ∗).


