Lagrange Multipliers and the Karush-Kuhn-Tucker conditions

March 20, 2012

Goal:

Want to find the maximum or minimum of a function subject to some constraints.

Formal Statement of Problem:

Given functions f, g_1, \ldots, g_m and h_1, \ldots, h_l defined on some domain $\Omega \subset \mathbf{R}^n$ the optimization problem has the form

 $\min_{\mathbf{x}\in\Omega}\,f(\mathbf{x}) \;\; \text{subject to} \;\; g_i(\mathbf{x}) \leq 0 \;\; \forall i \;\; \text{and} \; h_j(\mathbf{x}) = 0 \;\; \forall j$

We will derive/state sufficient and necessary for (local) optimality when there are

- 1 no constraints,
- 2 only equality constraints,
- 3 only inequality constraints,
- **4** equality and inequality constraints.

Unconstrained Optimization

Assume:

Let $f: \Omega \to \mathbb{R}$ be a continuously differentiable function.

Necessary and sufficient conditions for a local minimum: ${\bf x}^*$ is a local minimum of $f({\bf x})$ if and only if

1 f has zero gradient at \mathbf{x}^* :

$$\nabla_{\mathbf{x}} f(\mathbf{x}^*) = \mathbf{0}$$

2 and the Hessian of f at \mathbf{w}^* is positive semi-definite:

$$\mathbf{v}^t \left(
abla^2 f(\mathbf{x}^*)
ight) \mathbf{v} \geq \mathbf{0}, \; orall \mathbf{v} \in \mathbb{R}^n$$

where

$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_n^2} \end{pmatrix}$$

Assume:

Let $f: \Omega \to \mathbb{R}$ be a continuously differentiable function.

Necessary and sufficient conditions for local maximum: ${\bf x}^*$ is a local maximum of $f({\bf x})$ if and only if

1 f has zero gradient at \mathbf{x}^* :

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$

2 and the Hessian of f at \mathbf{x}^* is negative semi-definite:

$$\mathbf{v}^t \left(
abla^2 f(\mathbf{x}^*)
ight) \mathbf{v} \leq \mathbf{0}, \; orall \mathbf{v} \in \mathbb{R}^n$$

where

$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} \frac{\partial^2 f(\mathbf{x})}{\partial x_1^2} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\mathbf{x})}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(\mathbf{x})}{\partial x_n^2} \end{pmatrix}$$

Constrained Optimization: Equality Constraints

Problem:

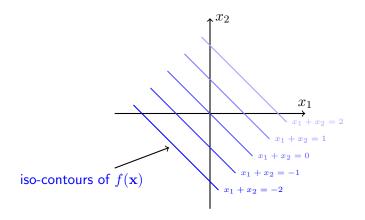
This is the constrained optimization problem we want to solve

$$\min_{\mathbf{x}\in\mathbb{R}^2}f(\mathbf{x})$$
 subject to $h(\mathbf{x})=0$

where

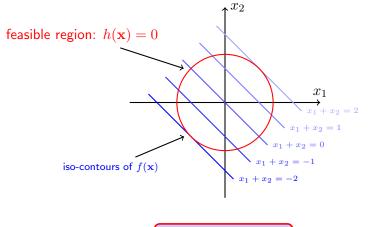
$$f(\mathbf{x}) = x_1 + x_2$$
 and $h(\mathbf{x}) = x_1^2 + x_2^2 - 2$

Tutorial example - Cost function



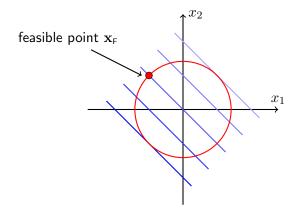
$$f(\mathbf{x}) = x_1 + x_2$$

Tutorial example - Feasible region

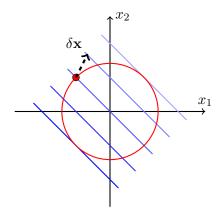


$$h(\mathbf{x}) = x_1^2 + x_2^2 - 2$$

Given a point $\mathbf{x}_{\scriptscriptstyle{\mathsf{F}}}$ on the constraint surface

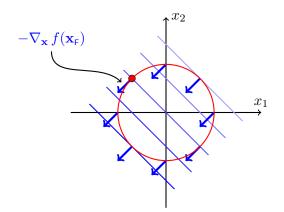


Given a point $\mathbf{x}_{\scriptscriptstyle \mathsf{F}}$ on the constraint surface



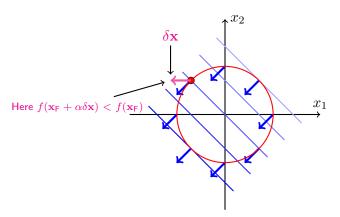
Find $\delta \mathbf{x}$ s.t. $h(\mathbf{x}_{\mathsf{F}} + \alpha \, \delta \mathbf{x}) = 0$ and $f(\mathbf{x}_{\mathsf{F}} + \alpha \, \delta \mathbf{x}) < f(\mathbf{x}_{\mathsf{F}})$?

Condition to decrease the cost function



At any point $\tilde{\mathbf{x}}$ the direction of steepest descent of the cost function $f(\mathbf{x})$ is given by $-\nabla_{\mathbf{x}} f(\tilde{\mathbf{x}})$.

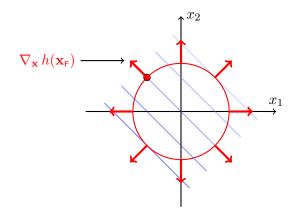
Condition to decrease the cost function



To move $\delta {\bf x}$ from ${\bf x}$ such that $f({\bf x}+\delta {\bf x}) < f({\bf x})$ must have

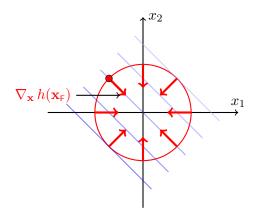
$$\delta \mathbf{x} \cdot (-\nabla_{\mathbf{x}} f(\mathbf{x})) > 0$$

Condition to remain on the constraint surface



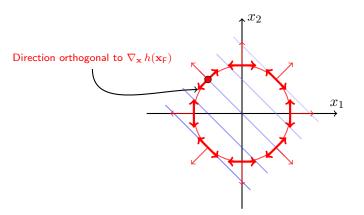
Normals to the constraint surface are given by $\nabla_{\mathbf{x}} h(\mathbf{x})$

Condition to remain on the constraint surface



Note the direction of the normal is arbitrary as the constraint be imposed as either $h(\mathbf{x}) = 0$ or $-h(\mathbf{x}) = 0$

Condition to remain on the constraint surface



To move a small $\delta \mathbf{x}$ from \mathbf{x} and remain on the constraint surface we have to move in a direction orthogonal to $\nabla_{\mathbf{x}} h(\mathbf{x})$. If \mathbf{x}_{F} lies on the constraint surface:

- setting $\delta \mathbf{x}$ orthogonal to $\nabla_{\mathbf{x}} h(\mathbf{x}_{\mathsf{F}})$ ensures $h(\mathbf{x}_{\mathsf{F}} + \delta \mathbf{x}) = 0$.
- And $f(\mathbf{x}_{\mathrm{F}} + \delta \mathbf{x}) < f(\mathbf{x}_{\mathrm{F}})$ only if

$$\delta \mathbf{x} \cdot \left(-\nabla_{\mathbf{x}} f(\mathbf{x}_{\mathsf{F}}) \right) > 0$$

Condition for a local optimum

Consider the case when

$$\nabla_{\mathbf{x}} f(\mathbf{x}_{\mathsf{F}}) = \mu \nabla_{\mathbf{x}} h(\mathbf{x}_{\mathsf{F}})$$

where μ is a scalar.

When this occurs

• If $\delta \mathbf{x}$ is orthogonal to $\nabla_{\mathbf{x}} h(\mathbf{x}_{\mathsf{F}})$ then

$$\delta \mathbf{x} \cdot (-\nabla_{\mathbf{x}_{\mathsf{F}}} f(\mathbf{x})) = -\delta \mathbf{x} \cdot \mu \nabla_{\mathbf{x}} h(\mathbf{x}_{\mathsf{F}}) = 0$$

• Cannot move from \mathbf{x}_F to remain on the constraint surface and decrease (or increase) the cost function.

This case corresponds to a constrained local optimum!

Condition for a local optimum

Consider the case when

$$\nabla_{\mathbf{x}} f(\mathbf{x}_{\mathsf{F}}) = \mu \nabla_{\mathbf{x}} h(\mathbf{x}_{\mathsf{F}})$$

where μ is a scalar.

When this occurs

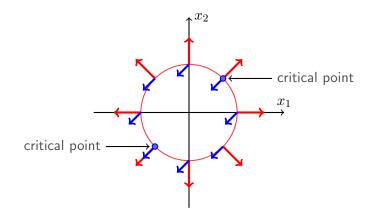
• If $\delta \mathbf{x}$ is orthogonal to $\nabla_{\mathbf{x}} h(\mathbf{x}_{\mathsf{F}})$ then

$$\delta \mathbf{x} \cdot (-\nabla_{\mathbf{x}_{\mathsf{F}}} f(\mathbf{x})) = -\delta \mathbf{x} \cdot \mu \nabla_{\mathbf{x}} h(\mathbf{x}_{\mathsf{F}}) = 0$$

 Cannot move from x_F to remain on the constraint surface and decrease (or increase) the cost function.

This case corresponds to a constrained local optimum!

Condition for a local optimum



A constrained local optimum occurs at ${\bf x}^*$ when $\nabla_{\bf x} f({\bf x}^*)$ and $\nabla_{\bf x} h({\bf x}^*)$ are parallel that is

$$\nabla_{\mathbf{x}} f(\mathbf{x}^*) = \mu \, \nabla_{\mathbf{x}} \, h(\mathbf{x}^*)$$

Remember our constrained optimization problem is

$$\min_{\mathbf{x}\in\mathbb{R}^2} f(\mathbf{x})$$
 subject to $h(\mathbf{x})=0$

Define the Lagrangian as

$$\mathcal{L}(\mathbf{x}, \mu) = f(\mathbf{x}) + \mu h(\mathbf{x})$$

Then \mathbf{x}^* a local minimum \iff there exists a unique μ^* s.t.

$$\mathbf{0} \ \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \mu^*) = \mathbf{0}$$

$$\mathbf{2} \ \nabla_{\mu} \mathcal{L}(\mathbf{x}^*, \mu^*) = 0$$

$$\mathbf{3} \ \mathbf{y}^t (\nabla_{\mathbf{x}\mathbf{x}}^2 \mathcal{L}(\mathbf{x}^*, \mu^*)) \mathbf{y} \ge 0 \quad \forall \mathbf{y} \text{ s.t. } \nabla_{\mathbf{x}} h(\mathbf{x}^*)^t \mathbf{y} = 0$$

From this fact Lagrange Multipliers make sense

Remember our constrained optimization problem is

$$\min_{\mathbf{x}\in\mathbb{R}^2}\,f(\mathbf{x})\;\;\text{subject to}\;\;h(\mathbf{x})=0$$

Define the Lagrangian as note $\mathcal{L}(\mathbf{x}^*, \mu^*) = f(\mathbf{x}^*)$

$$\mathcal{L}(\mathbf{x},\mu) = f(\mathbf{x}) + \mu h(\mathbf{x})$$

Then \mathbf{x}^* a local minimum \iff there exists a unique μ^* s.t.

$$\mathbf{0} \ \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \mu^*) = \mathbf{0} \quad \leftarrow \text{ encodes } \nabla_{\mathbf{x}} f(\mathbf{x}^*) = \mu^* \nabla_{\mathbf{x}} h(\mathbf{x}^*)$$

2
$$\nabla_{\mu} \mathcal{L}(\mathbf{x}^*, \mu^*) = 0 \quad \leftarrow \text{ encodes the equality constraint } h(\mathbf{x}^*) = 0$$

$$3 \mathbf{y}^t (\nabla^2_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \mu^*)) \mathbf{y} \ge 0 \quad \forall \mathbf{y} \text{ s.t. } \nabla_{\mathbf{x}} h(\mathbf{x}^*)^t \mathbf{y} = 0$$

Positive definite Hessian tells us we have a local minimum

The constrained optimization problem is

$$\min_{\mathbf{x}\in\mathbb{R}^2} f(\mathbf{x}) \text{ subject to } h_i(\mathbf{x}) = 0 \text{ for } i = 1,\ldots,l$$

Construct the Lagrangian (introduce a multiplier for each constraint)

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^{l} \mu_i h_i(\mathbf{x}) = f(\mathbf{x}) + \boldsymbol{\mu}^t \mathbf{h}(\mathbf{x})$$

Then \mathbf{x}^* a local minimum \iff there exists a unique μ^* s.t.

$$\mathbf{0} \ \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\mu}^*) = \mathbf{0}$$

$$\mathbf{2} \ \nabla_{\boldsymbol{\mu}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\mu}^*) = \mathbf{0}$$

 $\textbf{3} \ \mathbf{y}^t (\nabla^2_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \mu^*)) \mathbf{y} \geq 0 \quad \forall \mathbf{y} \text{ s.t. } \nabla_{\mathbf{x}} h(\mathbf{x}^*)^t \mathbf{y} = 0$

Constrained Optimization: Inequality Constraints

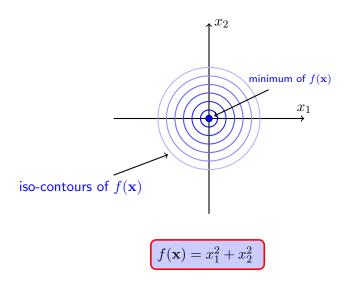
Problem:

Consider this constrained optimization problem

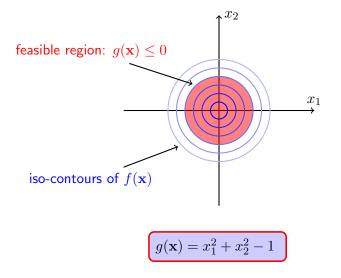
$$\min_{\mathbf{x}\in\mathbb{R}^2} f(\mathbf{x})$$
 subject to $g(\mathbf{x})\leq 0$

where

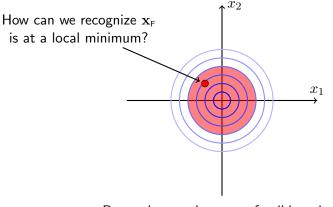
$$f(\mathbf{x}) = x_1^2 + x_2^2$$
 and $g(\mathbf{x}) = x_1^2 + x_2^2 - 1$



Tutorial example - Feasible region

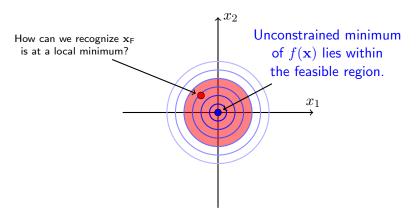


How do we recognize if $\mathbf{x}_{\scriptscriptstyle \mathsf{F}}$ is at a local optimum?



Remember \mathbf{x}_{F} denotes a feasible point.

Easy in this case



 \therefore Necessary and sufficient conditions for a constrained local minimum are the same as for an unconstrained local minimum.

 $\nabla_{\mathbf{x}} f(\mathbf{x}_{\rm F}) = \mathbf{0} \quad {\rm and} \quad \nabla_{\mathbf{x}\mathbf{x}} f(\mathbf{x}_{\rm F}) \text{ is positive definite}$

This Tutorial Example has an inactive constraint

Problem:

Our constrained optimization problem

$$\min_{\mathbf{x}\in\mathbb{R}^2} f(\mathbf{x})$$
 subject to $g(\mathbf{x})\leq 0$

where

$$f(\mathbf{x}) = x_1^2 + x_2^2$$
 and $g(\mathbf{x}) = x_1^2 + x_2^2 - 1$

Constraint is not active at the local minimum ($g(\mathbf{x}^*) < 0$):

Therefore the local minimum is identified by the same conditions as in the unconstrained case.

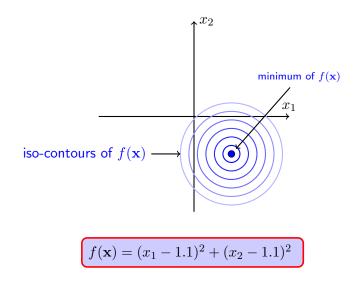
Problem:

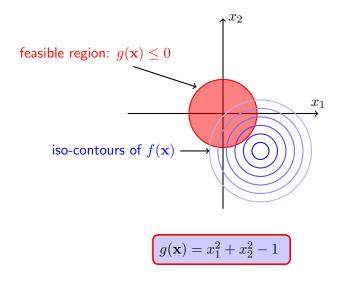
This is the constrained optimization problem we want to solve

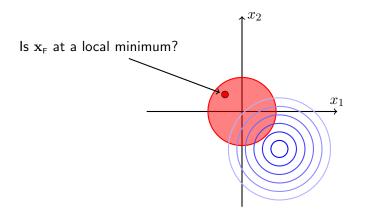
$$\min_{\mathbf{x}\in\mathbb{R}^2} f(\mathbf{x})$$
 subject to $g(\mathbf{x})\leq 0$

where

$$f(\mathbf{x}) = (x_1 - 1.1)^2 + (x_2 - 1.1)^2$$
 and $g(\mathbf{x}) = x_1^2 + x_2^2 - 1$

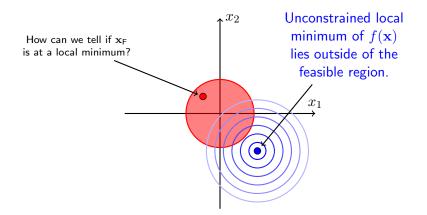






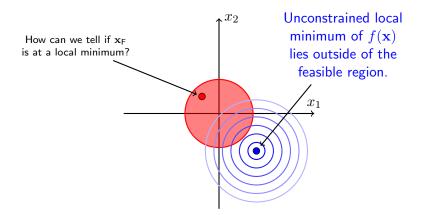
Remember \mathbf{x}_{F} denotes a feasible point.

How do we recognize if $\mathbf{x}_{\scriptscriptstyle \mathsf{F}}$ is at a local optimum?



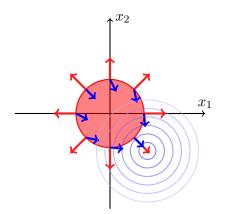
... the constrained local minimum occurs on the surface of the constraint surface.

How do we recognize if $\mathbf{x}_{\scriptscriptstyle \mathsf{F}}$ is at a local optimum?



: Effectively have an optimization problem with an equality constraint: $g(\mathbf{x}) = 0$.

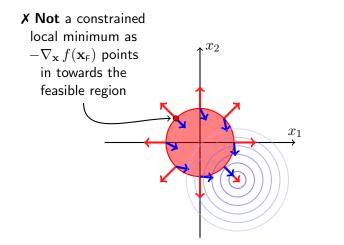
Given an equality constraint



A local optimum occurs when $\nabla_{\mathbf{x}} f(\mathbf{x})$ and $\nabla_{\mathbf{x}} g(\mathbf{x})$ are parallel:

$$-\nabla_{\mathbf{x}} f(\mathbf{x}) = \lambda \nabla_{\mathbf{x}} g(\mathbf{x})$$

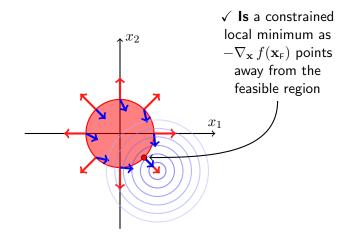
Want a constrained local minimum...



 \therefore Constrained local minimum occurs when $-\nabla_{\mathbf{x}} f(\mathbf{x})$ and $\nabla_{\mathbf{x}} g(\mathbf{x})$ point in the same direction:

$$-
abla_{\mathbf{x}} f(\mathbf{x}) = \lambda
abla_{\mathbf{x}} g(\mathbf{x}) \quad \text{and} \quad \lambda > 0$$

Want a constrained local minimum...



 \therefore Constrained local minimum occurs when $-\nabla_{\mathbf{x}} f(\mathbf{x})$ and $\nabla_{\mathbf{x}} g(\mathbf{x})$ point in the same direction:

$$-
abla_{\mathbf{x}} f(\mathbf{x}) = \lambda
abla_{\mathbf{x}} g(\mathbf{x}) \quad \text{and} \quad \lambda > 0$$

Summary of optimization with one inequality constraint

Given

$$\min_{\mathbf{x} \in \mathbb{R}^2} \, f(\mathbf{x}) \; \text{ subject to } \; g(\mathbf{x}) \leq 0$$

If \mathbf{x}^* corresponds to a constrained local minimum then

Case 1:

Unconstrained local minimum occurs **in** the feasible region.

- $\mathbf{2} \ \nabla_{\mathbf{x}} f(\mathbf{x}^*) = \mathbf{0}$
- **3** $\nabla_{\mathbf{x}\mathbf{x}} f(\mathbf{x}^*)$ is a positive semi-definite matrix.

Case 2:

Unconstrained local minimum lies **outside** the feasible region.

$$f(\mathbf{x}^*) = 0$$

- $\begin{array}{l} \label{eq:powerserv} \mathbf{2} & -\nabla_{\mathbf{x}}\,f(\mathbf{x}^*) = \lambda \nabla_{\mathbf{x}}\,g(\mathbf{x}^*) \\ & \text{with } \lambda > 0 \end{array}$
- 3 $\mathbf{y}^t \nabla_{\mathbf{x}\mathbf{x}} L(\mathbf{x}^*) \mathbf{y} \ge 0$ for all \mathbf{y} orthogonal to $\nabla_{\mathbf{x}} g(\mathbf{x}^*)$.

Karush-Kuhn-Tucker conditions encode these conditions

Given the optimization problem

$$\min_{\mathbf{x}\in\mathbb{R}^2} f(\mathbf{x})$$
 subject to $g(\mathbf{x})\leq 0$

Define the Lagrangian as

$$\mathcal{L}(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda g(\mathbf{x})$$

Then \mathbf{x}^* a local minimum \iff there exists a unique λ^* s.t.

$$\mathbf{0} \ \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \lambda^*) = \mathbf{0}$$

- 2 $\lambda^* \ge 0$
- $3 \lambda^* g(\mathbf{x}^*) = 0$
- $g(\mathbf{x}^*) \le 0$

5 Plus positive definite constraints on $\nabla_{\mathbf{xx}} \mathcal{L}(\mathbf{x}^*, \lambda^*)$.

These are the KKT conditions.

Let's check what the KKT conditions imply

Case 1 - Inactive constraint:

- When $\lambda^* = 0$ then have $\mathcal{L}(\mathbf{x}^*, \lambda^*) = f(\mathbf{x}^*)$.
- Condition KKT 1 $\implies \nabla_{\mathbf{x}} f(\mathbf{x}^*) = \mathbf{0}.$
- Condition KKT 4 \implies \mathbf{x}^* is a feasible point.

Case 2 - Active constraint:

- When $\lambda^* > 0$ then have $\mathcal{L}(\mathbf{x}^*, \lambda^*) = f(\mathbf{x}^*) + \lambda^* g(\mathbf{x}^*)$.
- Condition KKT 1 $\implies \nabla_{\mathbf{x}} f(\mathbf{x}^*) = -\lambda^* \nabla_{\mathbf{x}} g(\mathbf{x}^*).$
- Condition KKT 3 $\implies g(\mathbf{x}^*) = 0.$
- Condition KKT 3 also $\implies \mathcal{L}(\mathbf{x}^*, \lambda^*) = f(\mathbf{x}^*).$

KKT conditions for multiple inequality constraints

Given the optimization problem

$$\min_{\mathbf{x}\in\mathbb{R}^2} f(\mathbf{x})$$
 subject to $g_j(\mathbf{x})\leq 0$ for $j=1,\ldots,m$

Define the Lagrangian as

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = f(\mathbf{x}) + \sum_{j=1}^{m} \lambda_j g_j(\mathbf{x}) = f(\mathbf{x}) + \boldsymbol{\lambda}^t \mathbf{g}(\mathbf{x})$$

Then \mathbf{x}^* a local minimum \iff there exists a unique $\boldsymbol{\lambda}^*$ s.t.

1
$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \lambda^*) = \mathbf{0}$$

2 $\lambda_j^* \ge 0$ for $j = 1, ..., m$
3 $\lambda_j^* g(\mathbf{x}^*) = 0$ for $j = 1, ..., m$
4 $g_j(\mathbf{x}^*) \le 0$ for $j = 1, ..., m$

6 Plus positive definite constraints on $\nabla_{\mathbf{xx}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*)$.

KKT for multiple equality & inequality constraints

Given the constrained optimization problem

subject to

$$h_i(\mathbf{x}) = 0 \text{ for } i = 1, \dots, l \text{ and } g_j(\mathbf{x}) \leq 0 \text{ for } j = 1, \dots, m$$

Define the Lagrangian as

$$\mathcal{L}(\mathbf{x}, oldsymbol{\mu}, oldsymbol{\lambda}) = f(\mathbf{x}) + oldsymbol{\mu}^t \, \mathbf{h}(\mathbf{x}) + oldsymbol{\lambda}^t \, \mathbf{g}(\mathbf{x})$$

Then \mathbf{x}^* a local minimum \iff there exists a unique $\boldsymbol{\lambda}^*$ s.t.

1
$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\mu}^*, \boldsymbol{\lambda}^*) = \mathbf{0}$$

2 $\lambda_j^* \ge 0 \text{ for } j = 1, \dots, m$
3 $\lambda_j^* g_j(\mathbf{x}^*) = 0 \text{ for } j = 1, \dots, m$
4 $g_j(\mathbf{x}^*) \le 0 \text{ for } j = 1, \dots, m$
5 $\mathbf{h}(\mathbf{x}^*) = \mathbf{0}$
6 Plus positive definite constraints on $\nabla_{\mathbf{xx}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*)$.