
Lecture 10

SVMs for non-separable data

• Review of SVM for separable data
• Trade-off between maximizing margin & classifying data correctly

Non-linear SVMs

• Tutorial example
• Kernel Methods



Recap: SVM for linearly separable data
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Optimal separating hyperplanes (1)
! Consider the problem of finding a separating hyperplane for a linearly 

separable dataset {(x1,y1),(x2,y2),…,(xN,yN)}, x!RD, y!{-1,+1}
" Which of the infinite hyperplanes should we choose? 

! Intuitively, a hyperplane that passes too close to the training examples will be sensitive 
to noise and, therefore, less likely to generalize well for data outside the training set

! Instead, it seems reasonable to expect that a hyperplane that is farthest from all 
training examples will have better generalization capabilities

" Therefore, the optimal separating hyperplane will be the one with the largest 
margin, which is defined as the minimum distance of an example to the decision 
surface

From [Cherkassky and Mulier, 1998]
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For linearly separable data the separating hyperplane with the largest margin,
which is defined as the minimum distance of an example to the decision
surface, has very good generalization properties.

SVMs is a technique for learning such a hyper-plane from training data.
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Optimal separating hyperplanes (4)
! Since we want to maximize the margin, let’s express it as a function of 

the weight vector and bias of the separating hyperplane
" From basic trigonometry, the distance between a point x and a plane (w,b) is

" Noticing that the optimal hyperplane has infinite solutions by simply scaling the 
weight vector and bias, we choose the solution for which the discriminant 
function becomes one for the training examples closest to the boundary

! This is known as the canonical hyperplane
" Therefore, the distance from the closest 

example to the boundary is

" And the margin becomes

w
bxwT !

1bxw i
T "!

w
1

w
bxwT

"
!

w
2m "

x1

x2

w
bxwT !

w
b

w
2

x1

x2

w
bxwT !

w
b

w
2

The distance between a point x and a hyper-plane (w, b) is |w
tx+b|
‖w‖



For the separating hyperplane (w, b) with maximum margin it is enforced that

wtx + b =

{
1 for examples closest to the boundary from class ω1

−1 for examples closest to the boundary from class ω2

The margin of (w, b) is equal 2
‖w‖.

Goal

Assume we are given linearly separable training examples from two classes, the
goal is to calculate the separating hyper-plane with maximum margin.

How is this done

Set up a constrained optimization problem whose solution it the max-margin
separating hyperplane.



Recap: SVM for linearly separable data

Objective function

Want to maximize 2
‖w‖, this is equivalent to minimizing 1

2 ‖w‖ which in turn is

equivalent to minimizing 1
2 ‖w‖2 (get rid of nasty square roots).

Constraints

For the separating hyperplane want all points from class ω1 to be on the
positive side of the hyper-plane and all all points from class ω2 to be on the
negative side. That is

yi(w
t
xi + b) ≥ 0 ∀i

However, we also want no points to lie within the margin. Thus actually have
a more restrictive constraints:

yi(w
txi + b) ≥ 1 ∀i



Recap: SVM for linearly separable data

SVM solves this optimization problem

min
w,b

1

2
‖w‖2 subject to yj(w

txj + b) ≥ 1, j = 1, . . . , n

and is often solved using the dual formulation of the above optimization:

max
λ


n∑
i=1

λi −
1

2

∑
i

∑
j

λi λj yi yj x
t
ixj


subject to λj ≥ 0 for i = 1, . . . , n and

∑
j

λj yj = 0.

Why?



Recap: SVM for linearly separable data

1. Get a convenient and very useful expression for the max-margin hyperplane

w =

n∑
i=1

λi yi xi

2. The objective function of the dual formulation also has a more efficient
representation than the original formulation.

All of this will become apparent in this lecture.

Also remember many of λi’s are zero due to the KKT conditions.



We have a problem

Data is not Linearly Separable

There is no feasible solution for the constrained optimization problem we solved
in the previous lecture.



What should we do?

Data is not Linearly Separable

Idea 1: Find minimum wtw while minimizing number of training set errors.

Two things to minimize makes for an ill-defined optimization.



What should we do?

Data is not Linearly Separable

Idea 1.1: Minimize → wtw + C(#training errors)

There are practical problems to this approach. What are they?



What should we do?

Data is not Linearly Separable

Idea 1.1: Minimize → wtw + C(#training errors)

• This cost function can’t be written as a convex function

• Solving it may be too slow

• It doesn’t distinguish between disastrous errors and near misses

Any other ideas...



What should we do?

Data is not Linearly Separable

Idea 2: Minimize

wtw + C(distance of error points to their correct zone)



Learning maximum margin with non-separable data
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Given guess of w, b we can

• Compute sum of distances of points to their correct zones

• Compute the margin width m = 2
‖w‖



Learning maximum margin with non-separable data
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• How should we adapt our quadratic optimization criterion ?

• How many constraints will we have?

• What should they be?



Learning maximum margin with non-separable data
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Quadratic optimization criterion should be:

1
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The constraints:

w
t
xi + b ≥ 1− ξi if yi = 1 and w

t
xi + b ≤ −1 + ξi if yi = −1

These two types of constraints can be expressed more succinctly as:

yi (w
txi + b) ≥ 1− ξi



Learning maximum margin with non-separable data

Separable case: Have to estimate d+ 1 parameters

w1, w2, . . . , wd and b

and have n constraints

yi (w
t
xi + b) ≥ 1 for i = 1 . . . , n

Non-separable case: have to estimate n+ d+ 1 parameters

w1, w2, . . . , wd; b; ξ1, ξ2, . . . , ξn

and have so far mentioned n constraints

yi (w
t
xi + b) ≥ 1− ξi for i = 1 . . . , n

But wait we have missed a set of constraints. Can the ξi’s be negative?



Learning maximum margin with non-separable data

Quadratic cost function is:

1

2
w
t
w + C

n∑
i=1

ξi

The constraints are:

yi (w
txi + b) ≥ 1− ξi ∀i and ξi ≥ 0 ∀i



Learning maximum margin with non-separable data

Formally the SVM constrained optimization problem has become:

min
w,b

1

2
w
t
w + C

n∑
i=1

ξi

subject to

yi(w
txi + b) ≥ 1− ξi and ξi ≥ 0 for i = 1, . . . , n.

The parameter C defines the trade-off between misclassification error and
margin width:

• Large values of C favour solutions with few misclassification errors and smaller margin

• Small values of C denote a preference towards a larger margin.



Effect of C on width of margin
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Effect of C on width of margin
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Effect of C on optimal hyperplane found

For the example on the previous slide:
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The dual formulation of the optimization problem

Its Lagrangian is:

L(w, b, ξ,λ, r) =
1

2
w
t
w + C

n∑
i=1

ξi +

n∑
i=1

λi
[
1− ξi − yi (wt

xi + b)
]
−

n∑
i=1

riξi

The Dual formulation of the problem

Take the derivatives of L w.r.t. w, b and ξ and get

∂L
∂w

= w −
n∑
i=1

λiyixi,
∂L
∂b

= −
n∑
i=1

λiyi,
∂L
∂ξj

= C − λj − rj

Setting these derivatives to zero gives

w =
n∑
i=1

λiyixi,
n∑
i=1

λiyi = 0, λj + rj = C for j = 1, . . . , n



Plugging these back into the Lagrangian and after some algebra get:

Θ(λ, r) = Θ(λ) =

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λi λj yi yj x
t
i xj

Thus the dual formulation of the problem is then:

max
λ


n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λi λj yi yj x
t
i xj


subject to

rj ≥ 0, λj ≥ 0 and C = rj + λj for j = 1, . . . , n and
n∑
i=1

λiyi = 0



These constraints are equivalent to

0 ≤ λj ≤ C for j = 1, . . . , n and
n∑
i=1

λiyi = 0

This constrained optimization problem is a QP and can be easily solved by QP
packages (for instance MATLAB).

Note in the above constrained optimization it is assumed C is known/fixed. However, for most practical

problems a good value of C is not known beforehand. Usually one is found through a combination of exhaustive

search and cross-validation.



Alternative formulation of the SVM optimization

SVM solves this constrained optimization problem:

min
w,b

(
1

2
w
t
w + C

n∑
i=1

ξi

)
subject to

yi(w
t
xi + b) ≥ 1− ξi for i = 1, . . . , n and

ξi ≥ 0 for i = 1, . . . , n.

Let’s look at the constraints:

yi(w
t
xi + b) ≥ 1− ξi =⇒ ξi ≥ 1− yi(wt

xi + b)

but also ξi ≥ 0, therefore

ξi ≥ max(0, 1− yi(wtxi + b))



Thus the original constrained optimization problem can be restated as an
unconstrained optimization problem:

min
w,b

 1

2
‖w‖2︸ ︷︷ ︸

Regularization term

+ C

n∑
i=1

max(0, 1− yi(wtxi + b))︸ ︷︷ ︸
Hinge loss



The above cost function looks similarish to the cost functions we have
optimized before in the pursuit of a separating hyperplane!



THE KERNEL TRICK



Suppose we’re in one dimension

What would an SVM learn from this data?



Suppose we’re in one dimension

Unsurprisingly it learns this.

Separating "plane"
with max margin

Support "vectors"



Harder 1-dimensional data-set

What about this case?



Harder 1-dimensional data-set

Remember how permitting non-linear basis functions allowed logistic
regression’s decision boundary be more expressive?

Let’s permit them here too

zk = (xk, x
2
k)



Harder 1-dimensional data-set

Remember how permitting non-linear basis functions made logistic regression
much more expressive?

Support "vectors"

Support "vectors"

Let’s permit them here too

zk = (xk, x
2
k)



Example 2: transform data to a higher dimensional space

Φ : R2 → R3 Φ(x) = (z1, z2, z3) =
(
x2

1,
√

2x1x2, x
2
2

)
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Ricardo Gutierrez-Osuna
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Non-linear SVMs (2)

From [Schölkopf, 2002 @; http://kernel-machines.org/]
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Non-linear SVM: Motivation

Cover’s theorem

A complex pattern-classification problem cast in a high-dimensional space
nonlinearly is more likely to be linearly separable than in a low-dimensional
space.

The power of SVMs resides in the fact that they represent a robust and
efficient implementation of the principle in Cover’s theorem on the separability
of patterns.

Shall now run through a tutorial example by looking at a specific mapping...



Quadratic basis function

Φ(x) =



1√
2 x1√
2 x2
...√

2 xd
x2

1
x2

2
...

x2
d√

2 x1 x2√
2 x1 x3

...√
2 x1 xd√
2 x2 x3

...√
2 x2 xd

...√
2 xd−1 xd



Number of terms = 1
2(d+ 2)(d+ 1) ≈ 1

2d
2



Constrained optimization problem with basis functions

max
λ


n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λi λj yi yj Φ(xi)
t
Φ(xj)


subject to

0 ≤ λj ≤ C for j = 1, . . . , n and
n∑
i=1

λiyi = 0

where

w =
n∑
k=1

λk yk Φ(xk) and b = yK − w
t
Φ(xK) with any K s.t. 0 < λK < C

Then predict a label with: f(x;w, b) = sgn (wtΦ(x) + b)



Optimization problem with basis functions

Let’s examine the cost function:

Θ(λ) =

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λi λj yi yj Φ(xi)
t
Φ(xj)

=

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λi λj yi yjQi,j

where Qi,j = Φ(xi)
tΦ(xj).

Problem: Assume Φ : Rd → RD

• Must do n2

2 dot products to compute all Qi,j.

• Each dot product requires d2

2 additions and multiplications.

• The whole thing requires n2 d2

4 operations....

or does it really....



Quadratic dot products

Φ(a) · Φ(b) =



1√
2 a1√
2 a2
...√

2 ad
a2
1
a2
2
...

a2
d√

2 a1 a2√
2 a1 a3

...√
2 a1 ad√
2 a2 a3

...√
2 a2 ad

...√
2 ad−1 ad



·



1√
2 b1√
2 b2
...√

2 bd
b21
b22
...

b2d√
2 b1 b2√
2 b1 b3

...√
2 b1 bd√
2 b2 b3

...√
2 b2 bd

...√
2 bd−1 bd



= 1 + 2
d∑
i=1

aibi +
d∑
i=1

a
2
i b

2
i + 2

d∑
i=1

d∑
j=i+1

ai aj bi bj



Quadratic dot products

Φ(a) · Φ(b) = 1 + 2
d∑
i=1

ai bi +
d∑
i=1

a
2
i b

2
i + 2

d∑
i=1

d∑
j=i+1

ai aj bi bj

Now consider out of interest:

(a · b + 1)
2

= (a · b)
2

+ 2 a · b + 1

=

 d∑
i=1

ai bi

2

+ 2
d∑
i=1

ai bi + 1

=
d∑
i=1

d∑
j=1

ai aj bi bj + 2
d∑
i=1

ai bi + 1

=

d∑
i=1

(ai bi)
2

+ 2

d∑
i=1

d∑
j=i+1

ai aj bi bj + 2

d∑
i=1

ai bi + 1



Quadratic dot products

This dot product requires d2

2 additions and multiplications to compute:

Φ(a) · Φ(b) = 1 + 2
d∑
i=1

ai bi +
d∑
i=1

a
2
i b

2
i + 2

d∑
i=1

d∑
j=i+1

ai aj bi bj

Have shown: Φ(a) · Φ(b) = (a · b + 1)2

(a · b + 1)
2

= (a · b)
2

+ 2 a · b + 1 =

 d∑
i=1

ai bi

2

+ 2
d∑
i=1

ai bi + 1

=
d∑
i=1

d∑
j=1

ai aj bi bj + 2
d∑
i=1

ai bi + 1

=
d∑
i=1

(ai bi)
2

+ 2
d∑
i=1

d∑
j=i+1

ai aj bi bj + 2
d∑
i=1

ai bi + 1 = Φ(a) · Φ(b)

How many operations does it take to compute (a · b + 1)2 ?



Quadratic dot products

This dot product requires d2

2 additions and multiplications to compute:

Φ(a) · Φ(b) = 1 + 2
d∑
i=1

ai bi +
d∑
i=1

a
2
i b

2
i + 2

d∑
i=1

d∑
j=i+1

ai aj bi bj

Have shown: Φ(a) · Φ(b) = (a · b + 1)2

(a · b + 1)
2

= (a · b)
2

+ 2 a · b + 1 =

 d∑
i=1

ai bi

2

+ 2
d∑
i=1

ai bi + 1 =
d∑
i=1

d∑
j=1

ai aj bi bj + 2
d∑
i=1

ai bi + 1

=
d∑
i=1

(ai bi)
2

+ 2
d∑
i=1

d∑
j=i+1

ai aj bi bj + 2
d∑
i=1

ai bi + 1 = Φ(a) · Φ(b)

How many operations does it take to compute (a · b + 1)2 ?

O(d) multiplications and additions



Optimization problem with basis functions

Back to the cost function:

Θ(λ) =

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λi λj yi yj Φ(xi)
t
Φ(xj)

=

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λi λj yi yjQi,j

where Qi,j = Φ(xi)
t Φ(xj).

To compute all Qi,j must do n2

2 dot products.

Each dot product now only requires (d+ 1) additions and multiplications.



Higher order polynomials

Polynomial Φ(x) Cost to naively build Qi,j’s Cost if d = 100

Quadratic d2

2 terms up to degree 2 d2 n2

4 2, 500n2

Cubic d3

6 terms up to degree 3 d3 n2

12 83, 000n2

Quartic d4

24 terms up to degree 4 d4 n2

48 1, 960, 000n2

Polynomial Φ(x) Φ(a) · Φ(b) Cost to smartly build Qi,j’s Cost if d = 100

Quadratic d2

2 terms up to degree 2 (a · b + 1)2 dn2

2 50n2

Cubic d3

6 terms up to degree 3 (a · b + 1)3 dn2

2 50n2

Quartic d4

24 terms up to degree 4 (a · b + 1)4 dn2

2 50n2

Do you see a couple of trends?



Optimization problem with Quintic basis functions

Let’s examine the cost function:

Θ(λ) =

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λi λj yi yj Φ(xi)
t
Φ(xj)

=

n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λi λj yi yjQi,j

where Qi,j = Φ(xi)
tΦ(xj) and Φ(x) has all terms up to degree 5.

Required computations:

• Must do n2

2 dot products to get this matrix compute all Qi,j.

• In 100 dimensions, each dot product now needs 103 operations instead of 75 million.

But are there still things to worry about???



Optimization problem with Quintic basis functions

Worry 1:

There is a fear of over-fitting with this enormous number of terms

Not a problem:

The use of Maximum Margin magically makes this not a problem.

Worry 2:

The evaluation phase (doing a set of predictions on a test set) will be very
expensive. Why?

Because each w · Φ(x) needs 75 million operations. What can be done?



Optimization problem with Quintic basis functions

The evaluation phase (doing a set of predictions on a test set) will be very
expensive.Why?

Because each w · Φ(x) need 75 million operations. What can be done?

w · Φ(x) =

n∑
k=1

λk yk Φ(xk) · Φ(x)

=

n∑
k=1

λk yk (xk · x + 1)5

=
∑

k s.t. λk > 0

λk yk (xk · x + 1)5

Therefore, only S d operations where S =# support vectors.



SVM kernel functions

Have shown

• SVM learning requires only on the dot product Φ(xi) · Φ(xj) between
training examples as opposed to the individual Φ(xi)

• application of an SVM to a novel feature vector x depends only on the dot
product Φ(xi) · Φ(x) between x and the support vectors

Therefore, operations in high dimensional space Φ(x) do not have to be
performed explicitly if we find a function K(a,b) such that

K(a,b) = Φ(a) · Φ(b)

K(a,b) is called a kernel function in SVM terminology.



SVM kernel functions

From our tutorial example

K(a,b) = (a · b + 1)l is an example of an SVM Kernel Function.

It is referred to as the Polynomial kernel.

To generalize the results of the tutorial example with K(a,b) = (a ·b+ 1)l....



Kernel functions + SVM learning

The constrained optimization problem is

max
λ


n∑
i=1

λi −
1

2

n∑
i=1

n∑
j=1

λi λj yi yj Φ(xi)
t
Φ(xj)


subject to

0 ≤ λj ≤ C for j = 1, . . . , n and
n∑
i=1

λiyi = 0

Solving requires computation of Φ(xi) ·Φ(xj) for every pair of training points.

This is prohibitively computationally expensive if Φ(x) is very high
dimensional space.



However, if we have a kernel function such that

K(xi, xj) = Φ(xi) · Φ(xj)

which is relatively inexpensive to compute then we side-step the problem.



Kernel mapping + applying SVMs

Optimal separating hyper-plane computed by the SVM has the form

w =
∑

k s.t. λk > 0

λk yk Φ(xk) and b = yK − w
t
Φ(xK) with any K s.t. 0 < λK < C

The prediction of a new point x’s class is computed from the sign of:

wtΦ(x) + b =
∑

k s.t. λk > 0

λk yk Φ(xk) · Φ(x)︸ ︷︷ ︸
expensive to compute

+ b

=
∑

k s.t. λk > 0

λk yk K(xk,x)︸ ︷︷ ︸
cheap to compute

+ b



Where do these Kernel functions come from?

Choice:

Option 1: First define a mapping

Φ : Rd → RD
(with D > d)

and then try and define a kernel function K : Rd ×Rd → R such that

K(a, b) = Φ(a) · Φ(b)

or Option 2: First define a function K : Rd × Rd → R and then check if
there exists a mapping Φ : Rd → RD such that

K(a, b) = Φ(a) · Φ(b)

Answer: Generally Option 2 is taken.



When does K(·, ·) define a valid Kernel function?

Remember:

A kernel function K is valid if there is some feature mapping Φ such that
K(x, z) = Φ(x) · Φ(z).

Properties of a valid Kernel Function:

Initial definitions Consider some finite set of p points (not necessarily the
training set) {x1, . . . ,xp}. Let a square p× p matrix K be defined as follows:

K =

K(x1, x1) . . . K(x1, xp)
... ... ...

K(xp, x1) . . . K(xp, xp)


K is called the Kernel or Gram matrix and its (i, j)-entry is Kij = K(xi,xj).

If K is a valid kernel then



1. K is symmetric as

Kij = K(xi, xj) = Φ(xi) · Φ(xj) = Φ(xj) · Φ(xi) = K(xj, xi) = Kji.

2. For any vector z ∈ Rp

z
T
Kz =

∑
i

∑
j

ziKijzj

=
∑
i

∑
j

zi Φ(xi) · Φ(xj) zj

=
∑
i

∑
j

zi
∑
k

φk(xi)φk(xj)zj, if Φ(xi) = (φ1(xi), φ2(xi), . . . , φD(xi))

=
∑
k

∑
i

∑
j

ziφk(xi)φk(xj)zj

=
∑
k

(∑
i

ziφk(xi)

)2

≥ 0

Since z was arbitrary, this shows that K is positive semi-definite.



Thus if K is a valid kernel, then the corresponding Kernel matrix K ∈ Rp×p
is symmetric positive definite.

More generally it turns out to be not only a necessary, but also a sufficient,
condition for K to be a valid kernel. The following result is due to Mercer.

Theorem (Mercer)

Let K : Rd ×Rd → R be given. If for all {x1, . . . ,xp}, with p <∞ and the
xi’s distinct, K produces a symmetric positive semi-definite Gram matrix then
K is a valid kernel.



Valid kernel functions

Polynomial kernels

K(x, z) =
(
x
T
z + 1

)l
The degree of the polynomial is a user-specified parameter.

Radial basis function kernels

K(x, z) = exp

(
−
‖x− z‖2

2σ2

)

The width σ is a user-specified parameter. This kernel corresponds to an
infinite dimensional feature mapping Φ.

Sigmoid Kernel
K(x, z) = tanh

(
β0 x

T
z + β1

)
This kernel only meets Mercer’s condition for certain values of β0 and β1.



Building valid kernel functions

If k1(·, ·) and k2(·, ·) are valid kernel functions then k(·, ·) is a valid kernel
function if

1. k(x, z) = k1(x, z) + k2(x, z)

2. k(x, z) = α k1(x, z) where α > 0

3. k(x, z) = k1(x, z) k2(x, z)

4. k(x, z) = k1(x,z)√
k1(x,z)

√
k1(x,z)



Building valid kernel functions

If

k1(x, z) = Φ1(x) · Φ1(z) and k2(x, z) = Φ2(x) · Φ2(z)

where

Φ1(x) =
(
φ1

1(x), φ2
1(x), . . . , φ

D1
1 (x)

)t
,

Φ2(x) =
(
φ1

2(x), φ2
2(x), . . . , φ

D2
2 (x)

)t
and

k(x, z) = Φ(x) · Φ(z)

then (we will assume for simplicity that D1 and D2 are finite)



1. k(x, z) = k1(x, z) + k2(x, z) =⇒ Φ(x) =

(
Φ1(x)

Φ2(x)

)
2. k(x, z) = α k1(x, z) where α > 0 =⇒ Φ(x) =

√
α Φ1(x)

3. k(x, z) = k1(x, z) k2(x, z) =⇒ Φ(x) =



φ1
1(x) φ1

2(x)

φ1
1(x) φ2

2(x)
...

φ1
1(x) φ

D2
2 (x)

φ2
1(x) φ1

2(x)
...

φ2
1(x) φ

D2
2 (x)

...

...

φ
D1
1 (x) φ1

2(x)
...

φ
D1
1 (x) φ

D2
2 (x)


4. k(x, z) =

k1(x,z)√
k1(x,x)

√
k1(z,z)

=⇒ Φ(x) =
Φ1(x)

‖Φ1(x)‖



Example decision boundaries for this data
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Example decision boundaries: Polynomial kernel
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Example decision boundaries: Polynomial kernel
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Example decision boundaries: RBF kernel
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Example decision boundaries: RBF kernel
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Some more examples



Vary C, Linear kernel example

Kernel Methods and SVMs 10

Dataset A, c = 10, k(x,v) = x · v.

−0.5 0 0.5−0.5

0

0.5

x1

x 2

predictions

−0.5 0 0.5−0.5

0

0.5

x1

x 2

support vectors

0 20 40 60 80 10010−10

10−5

100

105
!

sorted indices

Dataset A, c = 103, k(x,v) = x · v.

−0.5 0 0.5−0.5

0

0.5

x1

x 2

predictions

−0.5 0 0.5−0.5

0

0.5

x1

x 2

support vectors

0 20 40 60 80 10010−10

10−5

100

105
!

sorted indices

Dataset A, c = 105, k(x,v) = x · v.

−0.5 0 0.5−0.5

0

0.5

x1

x 2

predictions

−0.5 0 0.5−0.5

0

0.5

x1

x 2

support vectors

0 20 40 60 80 10010−5

100

105
!

sorted indices

C = 10, k(x,v) = x · v

Remember: f(x) =
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iαi yi k(xi,x) + b



Linear kernel example

Kernel Methods and SVMs 10

Dataset A, c = 10, k(x,v) = x · v.
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Linear kernel example

Kernel Methods and SVMs 10

Dataset A, c = 10, k(x,v) = x · v.
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Remember: f(x) =
∑
iαi yi k(xi,x) + b



Vary C, Polynomial kernel: l = 1

Kernel Methods and SVMs 11

Dataset A, c = 10, k(x,v) = 1 + x · v.
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Remember: f(x) =
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iαi yi k(xi,x) + b



Vary C, Polynomial kernel: l = 1

Kernel Methods and SVMs 11

Dataset A, c = 10, k(x,v) = 1 + x · v.
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Remember: f(x) =
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iαi yi k(xi,x) + b



Vary C, Polynomial kernel: l = 1

Kernel Methods and SVMs 11

Dataset A, c = 10, k(x,v) = 1 + x · v.
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Remember: f(x) =
∑
iαi yi k(xi,x) + b



Vary l, Polynomial kernel: l = 1

Kernel Methods and SVMs 12

Dataset B, c = 105, k(x,v) = 1 + x · v.

−0.5 0 0.5−0.5

0

0.5

x1

x 2

predictions

−0.5 0 0.5−0.5

0

0.5

x1

x 2

support vectors

0 100 200 300 400 50010−5

100

105
!

sorted indices

Dataset B, c = 105, k(x,v) = (1 + x · v)5.

−0.5 0 0.5−0.5

0

0.5

x1

x 2

predictions

−0.5 0 0.5−0.5

0

0.5

x1

x 2

support vectors

0 100 200 300 400 50010−5

100

105
!

sorted indices

Dataset B, c = 105, k(x,v) = (1 + x · v)10.

−0.5 0 0.5−0.5

0

0.5

x1

x 2

predictions

−0.5 0 0.5−0.5

0

0.5

x1

x 2

support vectors

0 100 200 300 400 50010−10

10−5

100

105
!

sorted indices

C = 105, k(x,v) = 1 + x · v

Remember: f(x) =
∑
iαi yi k(xi,x) + b



Vary l, Polynomial kernel: l = 5
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Dataset B, c = 105, k(x,v) = 1 + x · v.
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Remember: f(x) =
∑
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Vary l, Polynomial kernel: l = 10
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Dataset B, c = 105, k(x,v) = 1 + x · v.
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Remember: f(x) =
∑
iαi yi k(xi,x) + b



Discussion

Advantages of SVMs

• There are no problems with local minima, because the solution is a QP problem.

• The optimal solution can be found in polynomial time.

• There are few model parameters to select: the penalty term C, the kernel function and

parameters.

• The final results are stable and repeatable.

• The SVM solution is sparse; it only involves the support vectors.

• SVMs rely on elegant and principled learning methods.

• SVMs provide a method to control complexity independently of dimensionality.

• SVMs have been shown (theoretically and empirically) to have excellent generalization

capabilities.



Discussion

Disadvantages of SVMs

• No real principled way to choose the kernel function.

• Also the selection of the values of the parameters controlling the kernel function is not

entirely solved.

• Optimal design for multiclass SVM classifiers is not yet a solved problem.

• Predictions from a SVM are not probabilistic.

• ”from a practical point of view perhaps the most serious problem with SVMs is the

high algorithmic complexity and extensive memory requirements of the required quadratic

programming in large-scale tasks.” [Horváth (2003)]



Pen & Paper (and Programming) assignment

• Details available on the course website.

• The compulsory assignment is a simple non-linear SVM problem. There is
also an optional programming exercise which introduces you to the package
libsvm. With this you can learn a separating hyperplane for the digit
images.

• Mail me about any errors you spot in the Exercise notes.

• I will notify the class about errors spotted and corrections via the course
website and mailing list.


