Lecture 10

SVMs for non-separable data

- Review of SVM for separable data
- Trade-off between maximizing margin \& classifying data correctly

Non-linear SVMs

- Tutorial example
- Kernel Methods

Recap: SVM for linearly separable data

For linearly separable data the separating hyperplane with the largest margin, which is defined as the minimum distance of an example to the decision surface, has very good generalization properties.

SVMs is a technique for learning such a hyper-plane from training data.

Recap: SVM for linearly separable data

The distance between a point \mathbf{x} and a hyper-plane (\mathbf{w}, b) is $\frac{\left|\mathbf{w}^{t} \mathbf{x}+b\right|}{\|\mathbf{w}\|}$

For the separating hyperplane (\mathbf{w}, b) with maximum margin it is enforced that

$$
\mathbf{w}^{t} \mathbf{x}+b= \begin{cases}1 & \text { for examples closest to the boundary from class } \omega_{1} \\ -1 & \text { for examples closest to the boundary from class } \omega_{2}\end{cases}
$$

The margin of (\mathbf{w}, b) is equal $\frac{2}{\|\mathbf{w}\|}$.

Goal

Assume we are given linearly separable training examples from two classes, the goal is to calculate the separating hyper-plane with maximum margin.

How is this done

Set up a constrained optimization problem whose solution it the max-margin separating hyperplane.

Recap: SVM for linearly separable data

Objective function

Want to maximize $\frac{2}{\|\mathbf{w}\|}$, this is equivalent to minimizing $\frac{1}{2}\|\mathbf{w}\|$ which in turn is equivalent to minimizing $\frac{1}{2}\|\mathbf{w}\|^{2}$ (get rid of nasty square roots).

Constraints

For the separating hyperplane want all points from class ω_{1} to be on the positive side of the hyper-plane and all all points from class ω_{2} to be on the negative side. That is

$$
y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right) \geq 0 \quad \forall i
$$

However, we also want no points to lie within the margin. Thus actually have a more restrictive constraints:

$$
y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right) \geq 1 \quad \forall i
$$

Recap: SVM for linearly separable data

SVM solves this optimization problem

$$
\min _{\mathbf{w}, b} \frac{1}{2}\|\mathbf{w}\|^{2} \text { subject to } y_{j}\left(\mathbf{w}^{t} \mathbf{x}_{j}+b\right) \geq 1, j=1, \ldots, n
$$

and is often solved using the dual formulation of the above optimization:

$$
\begin{aligned}
& \max _{\boldsymbol{\lambda}}\left\{\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i} \sum_{j} \lambda_{i} \lambda_{j} y_{i} y_{j} \mathbf{x}_{i}^{t} \mathbf{x}_{j}\right\} \\
& \text { subject to } \lambda_{j} \geq 0 \text { for } i=1, \ldots, n \text { and } \sum_{j} \lambda_{j} y_{j}=0 .
\end{aligned}
$$

Why?

Recap: SVM for linearly separable data

1. Get a convenient and very useful expression for the max-margin hyperplane

$$
\mathbf{w}=\sum_{i=1}^{n} \lambda_{i} y_{i} \mathbf{x}_{i}
$$

2. The objective function of the dual formulation also has a more efficient representation than the original formulation.

All of this will become apparent in this lecture.
Also remember many of λ_{i} 's are zero due to the KKT conditions.

We have a problem

Data is not Linearly Separable
There is no feasible solution for the constrained optimization problem we solved in the previous lecture.

What should we do?

Data is not Linearly Separable

Idea 1: Find minimum $\mathbf{w}^{t} \mathbf{w}$ while minimizing number of training set errors.
Two things to minimize makes for an ill-defined optimization.

What should we do?

Data is not Linearly Separable

Idea 1.1: Minimize $\rightarrow \mathbf{w}^{t} \mathbf{w}+C$ (\#training errors)
There are practical problems to this approach. What are they?

What should we do?

Data is not Linearly Separable

Idea 1.1: Minimize $\rightarrow \mathbf{w}^{t} \mathbf{w}+C$ (\#training errors)

- This cost function can't be written as a convex function
- Solving it may be too slow
- It doesn't distinguish between disastrous errors and near misses

Any other ideas...

What should we do?

Data is not Linearly Separable

Idea 2: Minimize

$$
\mathbf{w}^{t} \mathbf{w}+C \text { (distance of error points to their correct zone) }
$$

Learning maximum margin with non-separable data

Given guess of \mathbf{w}, b we can

- Compute sum of distances of points to their correct zones
- Compute the margin width $m=\frac{2}{\|\mathrm{w}\|}$

Learning maximum margin with non-separable data

- How should we adapt our quadratic optimization criterion ?
- How many constraints will we have?
- What should they be?

Learning maximum margin with non-separable data

Quadratic optimization criterion should be:

$$
\frac{1}{2} \mathbf{w}^{t} \mathbf{w}+C \sum_{i=1}^{n} \xi_{i}
$$

The constraints:

$$
\mathbf{w}^{t} \mathbf{x}_{i}+b \geq 1-\xi_{i} \text { if } y_{i}=1 \quad \text { and } \quad \mathbf{w}^{t} \mathbf{x}_{i}+b \leq-1+\xi_{i} \text { if } y_{i}=-1
$$

These two types of constraints can be expressed more succinctly as:

$$
y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}
$$

Learning maximum margin with non-separable data

Separable case: Have to estimate $d+1$ parameters

$$
w_{1}, w_{2}, \ldots, w_{d} \quad \text { and } \quad b
$$

and have n constraints

$$
y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right) \geq 1 \text { for } i=1 \ldots, n
$$

Non-separable case: have to estimate $n+d+1$ parameters

$$
w_{1}, w_{2}, \ldots, w_{d} ; b ; \xi_{1}, \xi_{2}, \ldots, \xi_{n}
$$

and have so far mentioned n constraints

$$
y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \text { for } i=1 \ldots, n
$$

But wait we have missed a set of constraints. Can the ξ_{i} 's be negative?

Learning maximum margin with non-separable data

Quadratic cost function is:

$$
\frac{1}{2} \mathbf{w}^{t} \mathbf{w}+C \sum_{i=1}^{n} \xi_{i}
$$

The constraints are:

$$
y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \quad \forall i \quad \text { and } \quad \xi_{i} \geq 0 \quad \forall i
$$

Learning maximum margin with non-separable data

Formally the SVM constrained optimization problem has become:

$$
\min _{\mathbf{w}, b} \frac{1}{2} \mathbf{w}^{t} \mathbf{w}+C \sum_{i=1}^{n} \xi_{i}
$$

subject to

$$
y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \quad \text { and } \quad \xi_{i} \geq 0 \quad \text { for } i=1, \ldots, n
$$

The parameter C defines the trade-off between misclassification error and margin width:

- Large values of C favour solutions with few misclassification errors and smaller margin
- Small values of C denote a preference towards a larger margin.

Effect of C on width of margin

Noise free data

(Noisy) training data

Effect of C on width of margin

Effect of C on optimal hyperplane found

For the example on the previous slide:

Width of margin decreases as C increases

Value of C affects the separating hyperplane found by the SVM. This effect is data-dependent.

The dual formulation of the optimization problem

Its Lagrangian is:

$$
\mathcal{L}(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\lambda}, \mathbf{r})=\frac{1}{2} \mathbf{w}^{t} \mathbf{w}+C \sum_{i=1}^{n} \xi_{i}+\sum_{i=1}^{n} \lambda_{i}\left[1-\xi_{i}-y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right)\right]-\sum_{i=1}^{n} r_{i} \xi_{i}
$$

The Dual formulation of the problem
Take the derivatives of \mathcal{L} w.r.t. \mathbf{w}, b and $\boldsymbol{\xi}$ and get

$$
\frac{\partial \mathcal{L}}{\partial \mathrm{w}}=\mathrm{w}-\sum_{i=1}^{n} \lambda_{i} y_{i} \mathbf{x}_{i}, \quad \frac{\partial \mathcal{L}}{\partial b}=-\sum_{i=1}^{n} \lambda_{i} y_{i}, \quad \frac{\partial \mathcal{L}}{\partial \xi_{j}}=C-\lambda_{j}-r_{j}
$$

Setting these derivatives to zero gives

$$
\mathrm{w}=\sum_{i=1}^{n} \lambda_{i} y_{i} \mathbf{x}_{i}, \quad \sum_{i=1}^{n} \lambda_{i} y_{i}=0, \quad \lambda_{j}+r_{j}=C \text { for } j=1, \ldots, n
$$

Plugging these back into the Lagrangian and after some algebra get:

$$
\Theta(\boldsymbol{\lambda}, \mathbf{r})=\Theta(\boldsymbol{\lambda})=\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} \mathbf{x}_{i}^{t} \mathbf{x}_{j}
$$

Thus the dual formulation of the problem is then:

$$
\max _{\boldsymbol{\lambda}}\left\{\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} \mathbf{x}_{i}^{t} \mathbf{x}_{j}\right\}
$$

subject to

$$
r_{j} \geq 0, \quad \lambda_{j} \geq 0 \text { and } C=r_{j}+\lambda_{j} \text { for } j=1, \ldots, n \quad \text { and } \quad \sum_{i=1}^{n} \lambda_{i} y_{i}=0
$$

These constraints are equivalent to

$$
0 \leq \lambda_{j} \leq C \quad \text { for } j=1, \ldots, n \quad \text { and } \quad \sum_{i=1}^{n} \lambda_{i} y_{i}=0
$$

This constrained optimization problem is a QP and can be easily solved by QP packages (for instance MATLAB).

Note in the above constrained optimization it is assumed C is known/fixed. However, for most practical problems a good value of C is not known beforehand. Usually one is found through a combination of exhaustive search and cross-validation.

Alternative formulation of the SVM optimization

SVM solves this constrained optimization problem:

$$
\begin{aligned}
\min _{\mathbf{w}, b}\left(\frac{1}{2} \mathbf{w}^{t} \mathbf{w}+C \sum_{i=1}^{n} \xi_{i}\right) \quad & \text { subject to } \\
& y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \text { for } i=1, \ldots, n \text { and } \\
& \xi_{i} \geq 0 \text { for } i=1, \ldots, n
\end{aligned}
$$

Let's look at the constraints:

$$
y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \quad \Longrightarrow \quad \xi_{i} \geq 1-y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right)
$$

but also $\xi_{i} \geq 0$, therefore

$$
\xi_{i} \geq \max \left(0,1-y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right)\right)
$$

Thus the original constrained optimization problem can be restated as an unconstrained optimization problem:

$$
\min _{\mathbf{w}, b}(\underbrace{\frac{1}{2}\|\mathbf{w}\|^{2}}_{\text {Regularization term }}+C \sum_{i=1}^{n} \underbrace{\max \left(0,1-y_{i}\left(\mathbf{w}^{t} \mathbf{x}_{i}+b\right)\right)}_{\text {Hinge loss }})
$$

The above cost function looks similarish to the cost functions we have optimized before in the pursuit of a separating hyperplane!

THE KERNEL TRICK

Suppose we're in one dimension

What would an SVM learn from this data?

Suppose we're in one dimension

Unsurprisingly it learns this.

Harder 1-dimensional data-set

What about this case?

Harder 1-dimensional data-set

Remember how permitting non-linear basis functions allowed logistic regression's decision boundary be more expressive?

Harder 1-dimensional data-set

Remember how permitting non-linear basis functions made logistic regression much more expressive?

Let's permit them here too

$$
\mathbf{z}_{k}=\left(x_{k}, x_{k}^{2}\right)
$$

Example 2: transform data to a higher dimensional space

$$
\begin{aligned}
& \Phi: R^{2} \rightarrow R^{3} \quad \Phi(\mathbf{x})=\left(z_{1}, z_{2}, z_{3}\right)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)
\end{aligned}
$$

Non-linear SVM: Motivation

Cover's theorem

A complex pattern-classification problem cast in a high-dimensional space nonlinearly is more likely to be linearly separable than in a low-dimensional space.

The power of SVMs resides in the fact that they represent a robust and efficient implementation of the principle in Cover's theorem on the separability of patterns.

Shall now run through a tutorial example by looking at a specific mapping...

Quadratic basis function

$$
\Phi(\mathbf{x})=\left(\begin{array}{c}
1 \\
\sqrt{2} x_{1} \\
\sqrt{2} x_{2} \\
\vdots \\
\sqrt{2} x_{d} \\
x_{1}^{2} \\
x_{2}^{2} \\
\vdots \\
x_{d}^{2} \\
\sqrt{2} x_{1} x_{2} \\
\sqrt{2} x_{1} x_{3} \\
\vdots \\
\sqrt{2} x_{1} x_{d} \\
\sqrt{2} x_{2} x_{3} \\
\vdots \\
\sqrt{2} x_{2} x_{d} \\
\vdots \\
\sqrt{2} x_{d-1} x_{d}
\end{array}\right)
$$

Number of terms $=\frac{1}{2}(d+2)(d+1) \approx \frac{1}{2} d^{2}$

Constrained optimization problem with basis functions

$$
\max _{\boldsymbol{\lambda}}\left\{\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} \Phi\left(\mathbf{x}_{i}\right)^{t} \Phi\left(\mathbf{x}_{j}\right)\right\}
$$

subject to

$$
0 \leq \lambda_{j} \leq C \text { for } j=1, \ldots, n \quad \text { and } \quad \sum_{i=1}^{n} \lambda_{i} y_{i}=0
$$

where

$$
\mathbf{w}=\sum_{k=1}^{n} \lambda_{k} y_{k} \Phi\left(\mathbf{x}_{k}\right) \quad \text { and } \quad b=y_{K}-\mathbf{w}^{t} \Phi\left(\mathbf{x}_{K}\right) \text { with any } K \text { s.t. } 0<\lambda_{K}<C
$$

Then predict a label with: $f(\mathbf{x} ; \mathbf{w}, b)=\operatorname{sgn}\left(\mathbf{w}^{t} \Phi(\mathbf{x})+b\right)$

Optimization problem with basis functions

Let's examine the cost function:

$$
\begin{aligned}
\Theta(\boldsymbol{\lambda}) & =\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} \Phi\left(\mathbf{x}_{i}\right)^{t} \Phi\left(\mathbf{x}_{j}\right) \\
& =\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} Q_{i, j}
\end{aligned}
$$

where $Q_{i, j}=\Phi\left(\mathbf{x}_{i}\right)^{t} \Phi\left(\mathbf{x}_{j}\right)$.
Problem: Assume $\Phi: \mathcal{R}^{d} \rightarrow \mathcal{R}^{D}$

- Must do $\frac{n^{2}}{2}$ dot products to compute all $Q_{i, j}$.
- Each dot product requires $\frac{d^{2}}{2}$ additions and multiplications.
- The whole thing requires $\frac{n^{2} d^{2}}{4}$ operations....
or does it really....

Quadratic dot products

$$
\Phi(\mathbf{a}) \cdot \Phi(\mathbf{b})=\left(\begin{array}{c}
1 \\
\sqrt{2} a_{1} \\
\sqrt{2} a_{2} \\
\vdots \\
\sqrt{2} a_{d} \\
a_{1}^{2} \\
a_{2}^{2} \\
\vdots \\
a_{d}^{2} \\
\sqrt{2} a_{1} a_{2} \\
\sqrt{2} a_{1} a_{3} \\
\vdots \\
\sqrt{2} a_{1} a_{d} \\
\sqrt{2} a_{2} a_{3} \\
\vdots \\
\sqrt{2} a_{2} a_{d} \\
\vdots \\
\sqrt{2} a_{d-1} a_{d}
\end{array}\right)\left(\begin{array}{c}
1 \\
\sqrt{2} b_{1} \\
\vdots \\
\sqrt{2} b_{d} \\
b_{1}^{2} \\
b_{2}^{2} \\
\vdots \\
b_{d}^{2} \\
\sqrt{2} b_{1} b_{2} \\
\sqrt{2} b_{1} b_{3} \\
\vdots \\
\sqrt{2} b_{1} b_{d} \\
\sqrt{2} b_{2} b_{3} \\
\vdots \\
\sqrt{2} b_{2} b_{d} \\
\vdots \\
\sqrt{2} b_{d-1} b_{d}
\end{array}\right)=1+2 \sum_{i=1}^{d} a_{i} b_{i}+\sum_{i=1}^{d} a_{i}^{2} b_{i}^{2}+2 \sum_{i=1}^{d} \sum_{j=i+1}^{d} a_{i} a_{j} b_{i} b_{j}
$$

Quadratic dot products

$$
\Phi(\mathbf{a}) \cdot \Phi(\mathbf{b})=1+2 \sum_{i=1}^{d} a_{i} b_{i}+\sum_{i=1}^{d} a_{i}^{2} b_{i}^{2}+2 \sum_{i=1}^{d} \sum_{j=i+1}^{d} a_{i} a_{j} b_{i} b_{j}
$$

Now consider out of interest:

$$
\begin{aligned}
(\mathbf{a} \cdot \mathbf{b}+1)^{2} & =(\mathbf{a} \cdot \mathbf{b})^{2}+2 \mathbf{a} \cdot \mathbf{b}+1 \\
& =\left(\sum_{i=1}^{d} a_{i} b_{i}\right)^{2}+2 \sum_{i=1}^{d} a_{i} b_{i}+1 \\
& =\sum_{i=1}^{d} \sum_{j=1}^{d} a_{i} a_{j} b_{i} b_{j}+2 \sum_{i=1}^{d} a_{i} b_{i}+1 \\
& =\sum_{i=1}^{d}\left(a_{i} b_{i}\right)^{2}+2 \sum_{i=1}^{d} \sum_{j=i+1}^{d} a_{i} a_{j} b_{i} b_{j}+2 \sum_{i=1}^{d} a_{i} b_{i}+1
\end{aligned}
$$

Quadratic dot products

This dot product requires $\frac{d^{2}}{2}$ additions and multiplications to compute:

$$
\Phi(\mathbf{a}) \cdot \Phi(\mathbf{b})=1+2 \sum_{i=1}^{d} a_{i} b_{i}+\sum_{i=1}^{d} a_{i}^{2} b_{i}^{2}+2 \sum_{i=1}^{d} \sum_{j=i+1}^{d} a_{i} a_{j} b_{i} b_{j}
$$

Have shown: $\Phi(\mathbf{a}) \cdot \Phi(\mathbf{b})=(\mathbf{a} \cdot \mathbf{b}+1)^{2}$

$$
\begin{aligned}
(\mathbf{a} \cdot \mathbf{b}+1)^{2} & =(\mathbf{a} \cdot \mathbf{b})^{2}+2 \mathbf{a} \cdot \mathbf{b}+1=\left(\sum_{i=1}^{d} a_{i} b_{i}\right)^{2}+2 \sum_{i=1}^{d} a_{i} b_{i}+1 \\
& =\sum_{i=1}^{d} \sum_{j=1}^{d} a_{i} a_{j} b_{i} b_{j}+2 \sum_{i=1}^{d} a_{i} b_{i}+1 \\
& =\sum_{i=1}^{d}\left(a_{i} b_{i}\right)^{2}+2 \sum_{i=1}^{d} \sum_{j=i+1}^{d} a_{i} a_{j} b_{i} b_{j}+2 \sum_{i=1}^{d} a_{i} b_{i}+1=\Phi(\mathbf{a}) \cdot \Phi(\mathbf{b})
\end{aligned}
$$

How many operations does it take to compute $(\mathbf{a} \cdot \mathbf{b}+1)^{2}$?

Quadratic dot products

This dot product requires $\frac{d^{2}}{2}$ additions and multiplications to compute:

$$
\Phi(\mathbf{a}) \cdot \Phi(\mathbf{b})=1+2 \sum_{i=1}^{d} a_{i} b_{i}+\sum_{i=1}^{d} a_{i}^{2} b_{i}^{2}+2 \sum_{i=1}^{d} \sum_{j=i+1}^{d} a_{i} a_{j} b_{i} b_{j}
$$

Have shown: $\Phi(\mathbf{a}) \cdot \Phi(\mathbf{b})=(\mathbf{a} \cdot \mathbf{b}+1)^{2}$

$$
\begin{aligned}
(\mathbf{a} \cdot \mathbf{b}+1)^{2} & =(\mathbf{a} \cdot \mathbf{b})^{2}+2 \mathbf{a} \cdot \mathbf{b}+1=\left(\sum_{i=1}^{d} a_{i} b_{i}\right)^{2}+2 \sum_{i=1}^{d} a_{i} b_{i}+1=\sum_{i=1}^{d} \sum_{j=1}^{d} a_{i} a_{j} b_{i} b_{j}+2 \sum_{i=1}^{d} a_{i} b_{i}+1 \\
& =\sum_{i=1}^{d}\left(a_{i} b_{i}\right)^{2}+2 \sum_{i=1}^{d} \sum_{j=i+1}^{d} a_{i} a_{j} b_{i} b_{j}+2 \sum_{i=1}^{d} a_{i} b_{i}+1=\Phi(\mathbf{a}) \cdot \Phi(\mathbf{b})
\end{aligned}
$$

How many operations does it take to compute $(\mathbf{a} \cdot \mathbf{b}+1)^{2}$?
$O(d)$ multiplications and additions

Optimization problem with basis functions

Back to the cost function:

$$
\begin{aligned}
\Theta(\boldsymbol{\lambda}) & =\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} \Phi\left(\mathbf{x}_{i}\right)^{t} \Phi\left(\mathbf{x}_{j}\right) \\
& =\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} Q_{i, j}
\end{aligned}
$$

where $Q_{i, j}=\Phi\left(\mathbf{x}_{i}\right)^{t} \Phi\left(\mathbf{x}_{j}\right)$.
To compute all $Q_{i, j}$ must do $\frac{n^{2}}{2}$ dot products.
Each dot product now only requires $(d+1)$ additions and multiplications.

Higher order polynomials

Polynomial	$\Phi(\mathrm{x})$	Cost to naively build $Q_{i, j}$'s	Cost if $d=100$
Quadratic	$\frac{d^{2}}{2}$ terms up to degree 2	$\frac{d^{2} n^{2}}{4}$	$2,500 n^{2}$
Cubic	$\frac{d^{3}}{6}$ terms up to degree 3	$\frac{d^{3} n^{2}}{12}$	$83,000 n^{2}$
Quartic	$\frac{d^{4}}{24}$ terms up to degree 4	$\frac{d^{4} n^{2}}{48}$	$1,960,000 n^{2}$

Polynomial	$\Phi(\mathbf{x})$	$\Phi(\mathbf{a}) \cdot \Phi(\mathbf{b})$	Cost to smartly build $Q_{i, j}$'s
Quadratic	$\frac{d^{2}}{2}$ terms up to degree 2	$(\mathbf{a} \cdot \mathbf{b}+1)^{2}$	$\frac{d n^{2}}{2}$
Cubic	$\frac{d^{3}}{6}$ terms up to degree 3	$(\mathbf{a} \cdot \mathbf{b}+1)^{3}$	$\frac{d n^{2}}{2}$
Quartic	$\frac{d^{4}}{24}$ terms up to degree 4	$(\mathbf{a} \cdot \mathbf{b}+1)^{4}$	$\frac{d n^{2}}{2}$

Do you see a couple of trends?

Optimization problem with Quintic basis functions

Let's examine the cost function:

$$
\begin{aligned}
\Theta(\boldsymbol{\lambda}) & =\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} \Phi\left(\mathbf{x}_{i}\right)^{t} \Phi\left(\mathbf{x}_{j}\right) \\
& =\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} Q_{i, j}
\end{aligned}
$$

where $Q_{i, j}=\Phi\left(\mathbf{x}_{i}\right)^{t} \Phi\left(\mathbf{x}_{j}\right)$ and $\Phi(\mathbf{x})$ has all terms up to degree 5 .
Required computations:

- Must do $\frac{n^{2}}{2}$ dot products to get this matrix compute all $Q_{i, j}$.
- In 100 dimensions, each dot product now needs 103 operations instead of 75 million.

But are there still things to worry about???

Optimization problem with Quintic basis functions

Worry 1:
There is a fear of over-fitting with this enormous number of terms
Not a problem:
The use of Maximum Margin magically makes this not a problem.

Worry 2:
The evaluation phase (doing a set of predictions on a test set) will be very expensive. Why?

Because each $\mathbf{w} \cdot \Phi(\mathbf{x})$ needs 75 million operations. What can be done?

Optimization problem with Quintic basis functions

The evaluation phase (doing a set of predictions on a test set) will be very expensive.Why?

Because each $\mathbf{w} \cdot \Phi(\mathbf{x})$ need 75 million operations. What can be done?

$$
\begin{aligned}
\mathbf{w} \cdot \Phi(\mathbf{x}) & =\sum_{k=1}^{n} \lambda_{k} y_{k} \Phi\left(\mathbf{x}_{k}\right) \cdot \Phi(\mathbf{x}) \\
& =\sum_{k=1}^{n} \lambda_{k} y_{k}\left(\mathbf{x}_{k} \cdot \mathbf{x}+1\right)^{5} \\
& =\sum_{k \text { s.t. } \lambda_{k}>0} \lambda_{k} y_{k}\left(\mathbf{x}_{k} \cdot \mathbf{x}+1\right)^{5}
\end{aligned}
$$

Therefore, only $S d$ operations where $S=\#$ support vectors.

SVM kernel functions

Have shown

- SVM learning requires only on the dot product $\Phi\left(\mathbf{x}_{i}\right) \cdot \Phi\left(\mathbf{x}_{j}\right)$ between training examples as opposed to the individual $\Phi\left(\mathbf{x}_{i}\right)$
- application of an SVM to a novel feature vector \mathbf{x} depends only on the dot product $\Phi\left(\mathbf{x}_{i}\right) \cdot \Phi(\mathbf{x})$ between \mathbf{x} and the support vectors

Therefore, operations in high dimensional space $\Phi(\mathbf{x})$ do not have to be performed explicitly if we find a function $K(\mathbf{a}, \mathbf{b})$ such that

$$
K(\mathbf{a}, \mathbf{b})=\Phi(\mathbf{a}) \cdot \Phi(\mathbf{b})
$$

$K(\mathbf{a}, \mathbf{b})$ is called a kernel function in SVM terminology.

SVM kernel functions

From our tutorial example

$$
K(\mathbf{a}, \mathbf{b})=(\mathbf{a} \cdot \mathbf{b}+1)^{l} \quad \text { is an example of an SVM Kernel Function. }
$$

It is referred to as the Polynomial kernel.
To generalize the results of the tutorial example with $K(\mathbf{a}, \mathbf{b})=(\mathbf{a} \cdot \mathbf{b}+1)^{l} \ldots$

Kernel functions + SVM learning

The constrained optimization problem is

$$
\max _{\lambda}\left\{\sum_{i=1}^{n} \lambda_{i}-\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \lambda_{j} y_{i} y_{j} \Phi\left(\mathbf{x}_{i}\right)^{t} \Phi\left(\mathbf{x}_{j}\right)\right\}
$$

subject to

$$
0 \leq \lambda_{j} \leq C \text { for } j=1, \ldots, n \quad \text { and } \quad \sum_{i=1}^{n} \lambda_{i} y_{i}=0
$$

Solving requires computation of $\Phi\left(\mathbf{x}_{i}\right) \cdot \Phi\left(\mathbf{x}_{j}\right)$ for every pair of training points.
This is prohibitively computationally expensive if $\Phi(\mathbf{x})$ is very high dimensional space.

However, if we have a kernel function such that

$$
K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\Phi\left(\mathbf{x}_{i}\right) \cdot \Phi\left(\mathbf{x}_{j}\right)
$$

which is relatively inexpensive to compute then we side-step the problem.

Kernel mapping + applying SVMs

Optimal separating hyper-plane computed by the SVM has the form

$$
\mathbf{w}=\sum_{k \text { s.t. } \lambda_{k}>0} \lambda_{k} y_{k} \Phi\left(\mathbf{x}_{k}\right) \quad \text { and } \quad b=y_{K}-\mathbf{w}^{t} \Phi\left(\mathbf{x}_{K}\right) \text { with any } K \text { s.t. } 0<\lambda_{K}<C
$$

The prediction of a new point x's class is computed from the sign of:

$$
\begin{aligned}
\mathbf{w}^{t} \Phi(\mathbf{x})+b & =\sum_{k \text { s.t. } \lambda_{k}>0} \lambda_{k} y_{k} \underbrace{\Phi\left(\mathbf{x}_{k}\right) \cdot \Phi(\mathbf{x})}_{\text {expensive to compute }}+b \\
& =\sum_{k \text { s.t. } \lambda_{k}>0} \lambda_{k} y_{k} \underbrace{K\left(\mathbf{x}_{k}, \mathbf{x}\right)}_{\text {cheap to compute }}+b
\end{aligned}
$$

Where do these Kernel functions come from?

Choice:

Option 1: First define a mapping

$$
\left.\Phi: \mathcal{R}^{d} \rightarrow \mathcal{R}^{D} \quad \text { (with } D>d\right)
$$

and then try and define a kernel function $K: \mathcal{R}^{d} \times \mathcal{R}^{d} \rightarrow \mathcal{R}$ such that

$$
K(\mathbf{a}, \mathbf{b})=\Phi(\mathbf{a}) \cdot \Phi(\mathbf{b})
$$

or Option 2: First define a function $K: \mathcal{R}^{d} \times \mathcal{R}^{d} \rightarrow \mathcal{R}$ and then check if there exists a mapping $\Phi: \mathcal{R}^{d} \rightarrow \mathcal{R}^{D}$ such that

$$
K(\mathbf{a}, \mathbf{b})=\Phi(\mathbf{a}) \cdot \Phi(\mathbf{b})
$$

Answer: Generally Option 2 is taken.

When does $K(\cdot, \cdot)$ define a valid Kernel function?

Remember:

A kernel function K is valid if there is some feature mapping Φ such that $K(\mathbf{x}, \mathbf{z})=\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z})$.

Properties of a valid Kernel Function:
Initial definitions Consider some finite set of p points (not necessarily the training set) $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$. Let a square $p \times p$ matrix \mathbf{K} be defined as follows:

$$
\mathbf{K}=\left(\begin{array}{ccc}
K\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & \ldots & K\left(\mathbf{x}_{1}, \mathbf{x}_{p}\right) \\
\vdots & \vdots & \vdots \\
K\left(\mathbf{x}_{p}, \mathbf{x}_{1}\right) & \ldots & K\left(\mathbf{x}_{p}, \mathbf{x}_{p}\right)
\end{array}\right)
$$

\mathbf{K} is called the Kernel or Gram matrix and its (i, j)-entry is $K_{i j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$.
If K is a valid kernel then

1. \mathbf{K} is symmetric as

$$
K_{i j}=K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\Phi\left(\mathbf{x}_{i}\right) \cdot \Phi\left(\mathbf{x}_{j}\right)=\Phi\left(\mathbf{x}_{j}\right) \cdot \Phi\left(\mathbf{x}_{i}\right)=K\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)=K_{j i}
$$

2. For any vector $\mathbf{z} \in R^{p}$

$$
\begin{aligned}
\mathbf{z}^{T} \mathbf{K} \mathbf{z} & =\sum_{i} \sum_{j} z_{i} K_{i j} z_{j} \\
& =\sum_{i} \sum_{j} z_{i} \Phi\left(\mathbf{x}_{i}\right) \cdot \Phi\left(\mathbf{x}_{j}\right) z_{j} \\
& =\sum_{i} \sum_{j} z_{i} \sum_{k} \phi_{k}\left(\mathbf{x}_{i}\right) \phi_{k}\left(\mathbf{x}_{j}\right) z_{j}, \quad \text { if } \Phi\left(\mathbf{x}_{i}\right)=\left(\phi_{1}\left(\mathbf{x}_{i}\right), \phi_{2}\left(\mathbf{x}_{i}\right), \ldots, \phi_{D}\left(\mathbf{x}_{i}\right)\right) \\
& =\sum_{k} \sum_{i} \sum_{j} z_{i} \phi_{k}\left(\mathbf{x}_{i}\right) \phi_{k}\left(\mathbf{x}_{j}\right) z_{j} \\
& =\sum_{k}\left(\sum_{i} z_{i} \phi_{k}\left(\mathbf{x}_{i}\right)\right)^{2} \geq 0
\end{aligned}
$$

Since \mathbf{z} was arbitrary, this shows that \mathbf{K} is positive semi-definite.

Thus if K is a valid kernel, then the corresponding Kernel matrix $\mathbf{K} \in R^{p \times p}$ is symmetric positive definite.

More generally it turns out to be not only a necessary, but also a sufficient, condition for K to be a valid kernel. The following result is due to Mercer.

Theorem (Mercer)
Let $K: \mathcal{R}^{d} \times \mathcal{R}^{d} \rightarrow \mathcal{R}$ be given. If for all $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right\}$, with $p<\infty$ and the \mathbf{x}_{i} 's distinct, K produces a symmetric positive semi-definite Gram matrix then K is a valid kernel.

Valid kernel functions

Polynomial kernels

$$
K(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{T} \mathbf{z}+1\right)^{l}
$$

The degree of the polynomial is a user-specified parameter.
Radial basis function kernels

$$
K(\mathbf{x}, \mathbf{z})=\exp \left(-\frac{\|\mathbf{x}-\mathbf{z}\|^{2}}{2 \sigma^{2}}\right)
$$

The width σ is a user-specified parameter. This kernel corresponds to an infinite dimensional feature mapping Φ.

Sigmoid Kernel

$$
K(\mathbf{x}, \mathbf{z})=\tanh \left(\beta_{0} \mathbf{x}^{T} \mathbf{z}+\beta_{1}\right)
$$

This kernel only meets Mercer's condition for certain values of β_{0} and β_{1}.

Building valid kernel functions

If $k_{1}(\cdot, \cdot)$ and $k_{2}(\cdot, \cdot)$ are valid kernel functions then $k(\cdot, \cdot)$ is a valid kernel function if

1. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z})+k_{2}(\mathbf{x}, \mathbf{z})$
2. $k(\mathbf{x}, \mathbf{z})=\alpha k_{1}(\mathbf{x}, \mathbf{z}) \quad$ where $\alpha>0$
3. $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z}) k_{2}(\mathbf{x}, \mathbf{z})$
4. $k(\mathbf{x}, \mathbf{z})=\frac{k_{1}(\mathbf{x}, \mathbf{z})}{\sqrt{k_{1}(\mathbf{x}, \mathbf{z})} \sqrt{k_{1}(\mathbf{x}, \mathbf{z})}}$

Building valid kernel functions

If

$$
k_{1}(\mathbf{x}, \mathbf{z})=\Phi_{1}(\mathbf{x}) \cdot \Phi_{1}(\mathbf{z}) \quad \text { and } \quad k_{2}(\mathbf{x}, \mathbf{z})=\Phi_{2}(\mathbf{x}) \cdot \Phi_{2}(\mathbf{z})
$$

where

$$
\begin{aligned}
& \Phi_{1}(\mathrm{x})=\left(\phi_{1}^{1}(\mathrm{x}), \phi_{1}^{2}(\mathrm{x}), \ldots, \phi_{1}^{D_{1}}(\mathrm{x})\right)^{t} \\
& \Phi_{2}(\mathrm{x})=\left(\phi_{2}^{1}(\mathrm{x}), \phi_{2}^{2}(\mathrm{x}), \ldots, \phi_{2}^{D_{2}}(\mathrm{x})\right)^{t}
\end{aligned}
$$

and

$$
k(\mathbf{x}, \mathbf{z})=\Phi(\mathbf{x}) \cdot \Phi(\mathbf{z})
$$

then (we will assume for simplicity that D_{1} and D_{2} are finite)

1. $k(x, z)=k_{1}(x, z)+k_{2}(x, z) \Longrightarrow \Phi(\mathrm{x})=\binom{\Phi_{1}(\mathrm{x})}{\Phi_{2}(\mathrm{x})}$
2. $k(x, z)=\alpha k_{1}(x, z)$ where $\alpha>0 \Longrightarrow \Phi(\mathbf{x})=\sqrt{\alpha} \Phi_{1}(\mathbf{x})$
3. $k(x, z)=k_{1}(x, z) k_{2}(x, z) \Longrightarrow \Phi(\mathrm{x})=\left(\begin{array}{cc}\phi_{1}^{1}(\mathrm{x}) & \phi_{2}^{1}(\mathrm{x}) \\ \phi_{1}^{1}(\mathrm{x}) & \phi_{2}^{2}(\mathrm{x}) \\ \vdots \\ \phi_{1}^{1}(\mathrm{x}) & \phi_{2}^{D_{2}}(\mathrm{x}) \\ \phi_{1}^{2}(\mathrm{x}) & \phi_{2}^{1}(\mathrm{x}) \\ \vdots \\ \phi_{1}^{2}(\mathrm{x}) & \phi_{2}^{D_{2}}(\mathrm{x}) \\ \vdots \\ \vdots \\ \phi_{1}^{D_{1}}(\mathrm{x}) & \phi_{2}^{1}(\mathrm{x}) \\ \vdots \\ \phi_{1}^{D_{1}}(\mathrm{x}) & \phi_{2}^{D_{2}}(\mathrm{x})\end{array}\right)$
4. $k(x, z)=\frac{k_{1}(x, z)}{\sqrt{k_{1}(x, x)} \sqrt{k_{1}(z, z)}} \Longrightarrow \Phi(\mathrm{x})=\frac{\Phi_{1}(\mathrm{x})}{\left\|\Phi_{1}(\mathbf{x})\right\|}$

Example decision boundaries for this data

Noise free data

(Noisy) training data

Example decision boundaries: Polynomial kernel

$l=3, C=.5 \quad l=3, C=1 \quad l=3, C=2 \quad l=3, C=50$

Example decision boundaries: Polynomial kernel

$l=5, C=.5$
$l=5, C=1$
$l=5, C=2$
$l=5, C=50$

Example decision boundaries: RBF kernel

$$
\sigma=2, C=.5
$$

$\sigma=2, C=1$
$\sigma=2, C=2$
$\sigma=2, C=50$

$$
\sigma=.5, C=.5 \quad \sigma=.5, C=1 \quad \sigma=.5, C=2 \quad \sigma=.5, C=50
$$

Example decision boundaries: RBF kernel

$$
\sigma=.1, C=.5
$$

$$
\sigma=.1, C=1
$$

$$
\sigma=.1, C=2
$$

$$
\sigma=.1, C=50
$$

$$
\sigma=.05, C=.5 \quad \sigma=.05, C=1 \quad \sigma=.05, C=2 \quad \sigma=.05, C=50
$$

Some more examples

Vary C, Linear kernel example

Remember: $f(\mathbf{x})=\sum_{i} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$

Linear kernel example

Remember: $f(\mathbf{x})=\sum_{i} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$

Linear kernel example

Remember: $f(\mathbf{x})=\sum_{i} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$

Vary C, Polynomial kernel: $l=1$

Remember: $f(\mathbf{x})=\sum_{i} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$

Vary C, Polynomial kernel: $l=1$

Remember: $f(\mathbf{x})=\sum_{i} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$

Vary C, Polynomial kernel: $l=1$

Remember: $f(\mathbf{x})=\sum_{i} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$

Vary l, Polynomial kernel: $l=1$

Remember: $f(\mathbf{x})=\sum_{i} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$

Vary l, Polynomial kernel: $l=5$

Remember: $f(\mathbf{x})=\sum_{i} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$

Vary l, Polynomial kernel: $l=10$

Remember: $f(\mathbf{x})=\sum_{i} \alpha_{i} y_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$

Discussion

Advantages of SVMs

- There are no problems with local minima, because the solution is a QP problem.
- The optimal solution can be found in polynomial time.
- There are few model parameters to select: the penalty term C, the kernel function and parameters.
- The final results are stable and repeatable.
- The SVM solution is sparse; it only involves the support vectors.
- SVMs rely on elegant and principled learning methods.
- SVMs provide a method to control complexity independently of dimensionality.
- SVMs have been shown (theoretically and empirically) to have excellent generalization capabilities.

Discussion

Disadvantages of SVMs

- No real principled way to choose the kernel function.
- Also the selection of the values of the parameters controlling the kernel function is not entirely solved.
- Optimal design for multiclass SVM classifiers is not yet a solved problem.
- Predictions from a SVM are not probabilistic.
- "from a practical point of view perhaps the most serious problem with SVMs is the high algorithmic complexity and extensive memory requirements of the required quadratic programming in large-scale tasks." [Horváth (2003)]

Pen \& Paper (and Programming) assignment

- Details available on the course website.
- The compulsory assignment is a simple non-linear SVM problem. There is also an optional programming exercise which introduces you to the package libsvm. With this you can learn a separating hyperplane for the digit images.
- Mail me about any errors you spot in the Exercise notes.
- I will notify the class about errors spotted and corrections via the course website and mailing list.

