
Lecture 11

Non-parametric unsupervised learning

• all kinds of clustering

Parametric unsupervised learning

• Mixture models
• EM



Supervised learning

To date have focused on learning classifiers from the following type of data:

Training examples consist of a pair of variables (x, y) where

x a feature vector AND y the feature vector’s label

This is called supervised learning since the system is given BOTH the feature
vector and its correct label.



Unsupervised learning

Today we will investigate unsupervised learning methods that operate on
unlabeled data.

Given a collection of feature vectors X = {x1,x2, . . . ,xn} without class
labels yi, unsupervised methods attempt to build a model that captures
the structure of the data.



Unsupervised learning

Such methods, if powerful enough, are extremely useful as

• Labeling large data sets can be a costly procedure.

• Class labels may not be known beforehand (i.e., data mining)

• Large datasets can be compressed by finding a small set of prototypes.

• One can train with large amount of unlabeled data, and then use supervision to label the

groupings found.

• Unsupervised methods can be used for feature extraction.

• Exploratory data analysis can provide insight into the nature or structure of the data.



Classification of unsupervised learning methods

Non-parametric (clustering)

No assumptions are made about the underlying densities, instead we seek a
partition of the data into clusters.

Parametric (mixture models)

These methods model each underlying class-conditional densities with a
parametric probability density function. Thus the overall pdf of the data is
a mixture of these class-conditional densities:

p(x |Θ) =

c∑
i=1

p(x | θi, ωx = i)P (ωx = i)

Objective is to find the model parameters.



Non-parametric unsupervised learning

Basic properties of non-parametric unsupervised learning

• No density functions are considered in these methods.

• Concerned with finding natural groupings (clusters) in a dataset.

What is a cluster?

A cluster is a number of similar objects collected or grouped together.



Other definitions of clusters (from Jain and Dubes, 1988)

1. A cluster is a set of entities which are alike and entities from different
clusters are not alike.

2. A cluster is an aggregation of points in the test space such that the distance
between any two points in the cluster is less than the distance between any
point in the cluster and any point not in it.

3. Clusters are connected regions of a multidimensional space containing a
relatively high density of points, separated from other such regions by a
region containing a relatively low density of points.



Clustering
Clustering

• Clustering is a very difficult problem because data can
reveal clusters with different shapes and sizes.

Figure 2: The number of clusters in the data often depend on the resolution (fine
vs. coarse) with which we view the data. How many clusters do you see in this
figure? 5, 8, 10, more?
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Clustering

Remember: Clustering is a very difficult problem because data can reveal
clusters with different shapes and sizes.

Clustering
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reveal clusters with different shapes and sizes.
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Clustering

Clustering algorithms can be divided into several groups

• Exclusive Vs Non-exclusive

Exclusive − each pattern belongs to only one cluster,

Non-exclusive − each pattern can be assigned to several clusters.

• Hierarchical Vs Partitional

Hierarchical − nested sequence of partitions,

Partitional − a single partition



Implementations of clustering algorithms can also be grouped

• Agglomerative Vs Divisive

Agglomerative − merging atomic clusters into larger clusters,

Divisive − subdividing large clusters into smaller ones.

• Serial Vs Simultaneous

Serial − processing patterns one by one,

Simultaneous − processing all patterns at once.

• Graph-theoretic Vs Algebraic

Graph-theoretic − based on connectedness,

Algebraic − based on error criteria.



Clustering

• Hundreds of clustering algorithms have been proposed in the literature.

• Most of these algorithms are based on the following two popular techniques:

– Iterative squared-error partitioning, k-means,
– Agglomerative hierarchical clustering.

• One of the main challenges is to select an appropriate measure of similarity
to define clusters that is often both data (cluster shape) and context
dependent.



Clustering

Non-parametric clustering involves three steps:

• Defining a measure of (dis)similarity between examples

• Defining a criterion function for clustering

• Defining an algorithm to minimize (or maximize) the criterion function



Similarity measures

• The most obvious measure of similarity (or dissimilarity) between two
patterns is the distance between them.

• If distance is a good measure of dissimilarity, then we can expect the
distance between patterns in the same cluster to be significantly less than
the distance between patterns in different clusters.

• In this case, a very simple way of doing clustering is to choose a threshold
on distance and group the patterns that are closer than this threshold.



Criterion functions

• The next challenge after selecting the similarity measure is the choice of the
criterion function to be optimized.

• Suppose that we have a set D = {x1, . . . ,xn} of n samples that we want
to partition into exactly k disjoint subsets D1, . . . ,Dk.

• Each subset represents a cluster, with samples in the same cluster being
somehow more similar to each other than they are to samples in other
clusters.

• The simplest and most widely used criterion function for clustering is the
sum-of-squared-error criterion.



Squared-error partitioning

• Suppose that the given set of n patterns has somehow been partitioned into
k clusters D1, . . . ,Dk.

• Let ni be the number of samples in Di and let mi be the mean of those
samples.

mi =
1

ni

∑
x∈Di

x.

• Then, the sum-of-squared errors is defined by

Je =
k∑
i=1

∑
x∈Di

‖x−mi‖2

• For a given cluster Di, the mean vector mi (centroid) is the best
representative of the samples in Di.



Cluster validity

The choice of (dis)similarity measure and criterion function has a major impact
on the final clustering produced by the algorithms.
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Cluster validity
! The choice of (dis)similarity measure and criterion function will have a major 

impact on the final clustering produced by the algorithms
" Notice that the validity of the final cluster solution is highly subjective

! This is in contrast with supervised training, where a clear objective function is known: Bayes risk.
" Example

! Which are the meaningful clusters in these cases?
! How many clusters should be considered?

! A number of quantitative methods for cluster validity are proposed in 
[Theodoridis and Koutrombas, 1999]The validity of the final cluster solution is highly subjective.

This contrasts with supervised training, there is a clear objective function - Bayes’ Risk.



Iterative optimization

Given a criterion function, how do we find the partition of the data set that
minimizes it ?

• Exhaustive enumeration of all partitions, which guarantees the optimal
solution, is infeasible.

For example, a problem with 5 clusters and 100 examples yields 1067 possible

partitions.



Iterative optimization

The common approach is to proceed in an iterative fashion.

1. Find some reasonable initial partition and then

2. Move samples from one cluster to another in order to reduce

the criterion function

These iterative methods produce sub-optimal solutions but are computationally
tractable.



The k-means algorithm

The k-means algorithm is a simple clustering procedure that attempts to
minimize the squared-error function Je in an iterative fashion.

k-means algorithm

1. Define, k, the number of clusters.

2. Initialize the clusters by

• arbitrary assignment of examples to clusters or

• arbitrary set of cluster centers

3. Compute the sample mean of each cluster.

4. Reassign each example to the cluster with the nearest mean.

5. If the classification of all samples has not changed, stop, else go to

step 3.



The k-means algorithm example
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The k-means algorithm

Pros

• k-means is computationally efficient and gives good results if the clusters
are compact, hyperspherical in shape, and well-separated in the feature
space.

Cons

• However, choosing k and choosing the initial partition are the main
drawbacks of this algorithm. The value of k is often chosen empirically or
by prior knowledge about the data.

• Suffers from problems of local minima.



The k-means algorithm

The k-means algorithm is widely used in the fields of signal processing and
communication for Vector Quantization.

• One dimensional signal values are usually quantized into a number of levels.
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The k-means algorithm
! The k-means algorithm is widely used in the fields of signal processing and 

communication for Vector Quantization
" Unidimensional signal values are usually quantized into a number of levels (typically a power 

of 2 so the signal can be transmitted or stored in binary format)
" The same idea can be extended for multiple channels

! However, rather than quantizing each separate channel, we can obtain a more efficient signal coding 
if we quantize the overall multidimensional vector by finding a number of multidimensional prototypes 
(cluster centers)

" The set of cluster centers is called a “codebook”, and the problem of finding this codebook is 
normally solved using the k-means algorithm
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• The same idea can be extended for multiple channels

– However, rather than quantizing each separate channel, we can obtain a
more efficient signal coding if we quantize the overall multidimensional
vector by finding a number of multidimensional prototypes (cluster
centers)

• The set of cluster centers is called a codebook, and the problem of finding
this codebook is normally solved using the k-means algorithm.
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Segmentation via clustering

Take the pixel intensity data from the image. Apply k-means clustering to this
data. For each pixel, set its intensity value to the mean value of the cluster it
is assigned to.

Original Image two clusters three clusters



Weaknesses of K-means clustering

Can’t deal effectively with clusters containing very different number of points

Ground truth clusters K-means clusters
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Weaknesses of K-means clustering

Can’t deal effectively with elongated clusters

Ground truth clusters K-means clusters

−6 −4 −2 0 2 4 6 8

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6 8

−4

−2

0

2

4

6



Weaknesses of K-means clustering

Also K-means makes hard assignments instead of soft assignments. Therefore
points on the boundary have as much influence as those in the centre on the
calculation of the mean.

Can upgrade K-means clustering to have soft assignment....



Soft K-means clustering I

Assignment Step

Each data point xi is given a soft degree of assignment to each of the means.

Call the degree to which xi is assigned to cluster k the responsibility r
(k)
i of

cluster k for point i:

r
(k)
i =

exp(−β d(µk, xi))∑
k′ exp(−β d(µk′, xi))

where d(µk,xi) is the Euclidean distance.

Note:

r
(k)
i is between 0 and 1.

What happens when β →∞?



Soft K-means clustering I

Update Step

The means are adjusted to match the sample means of the data points they
are responsible for

µk =

∑n
i=1 r

(k)
i xi

R(k)

where R(k) is the total responsibility of mean k

R(k) =

n∑
i=1

r
(k)
i



Soft K-means clustering I

Let σ ≡ 1√
β

then the assignment function can be considered as modelling each

cluster as a multi-variate Gaussian with covariance matrix proportional to σ2I.

Ground truth clusters Soft K-means σ = .5 Soft K-means σ = 2
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a different shape and number of elements....



Soft K-means clustering II

Assignment Step

The responsibilities are

r
(k)
i =

πkN (xi;µk,Σk)∑
k′ πk′N (xi;µk′,Σk′)

Update Step

Each cluster’s parameters

• µk mean

• πk proportion of total points belonging to cluster k

• Σk covariance matrix



are adjusted to match the data points that it is responsible for

µk =

∑n
i=1 r

(k)
i xi

R(k)

Σk =

∑n
i=1 r

(k)
i (xi − µk)(xi − µk)

t

R(k)

πk =
R(k)∑
kR

(k)

where R(k) is the total responsibility of mean k

R(k) =

n∑
i=1

r
(k)
i



Soft K-means clustering II

Ground truth clusters Results of soft clustering
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matrices



Soft K-means clustering II

Ground truth clusters Results of soft clustering
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Hierarchical Clustering

• The k-means algorithm produces a flat data description where the clusters
are disjoint and are at the same level.

• In some applications, groups of patterns share some characteristics when
looked at a particular level.

• Hierarchical clustering tries to capture these multi-level groupings using
hierarchical representations rather than flat partitions.



Hierarchical Clustering

Hierarchical clustering methods can be grouped in two general classes

• Agglomerative

– Also known as bottom-up or merging
– Starting with n singleton clusters, successively merge clusters until one

cluster is left

• Divisive

– Also known as top-down or splitting
– Starting with a unique cluster, successively split the clusters until n

singleton examples are left.



Dendrograms

The preferred representation for hierarchical clusters is the dendrogram.

• The dendrogram is a binary tree that shows the structure of the clusters.

• The vertical axis shows a generalized measure of similarity among clusters.Hierarchical Clustering

Figure 5: A dendrogram can represent the results of hierarchical clustering
algorithms. The vertical axis shows a generalized measure of similarity among
clusters.

CS 551, Spring 2006 19/38



Divisive clustering

Divisive Clustering
Have n training examples.

1. Start with one large cluster. Set nc = 1.

2. Find worst cluster.

3. Split it, set nc = nc + 1.

4. If nc < n go to 2.

How to choose the worst cluster Largest number of examples, largest
variance, largest sum-squared-error, ...

How to split clusters Mean-median in one feature direction, perpendicular
to the direction of largest variance,...



Agglomerative clustering

The computations required by divisive clustering are more intensive than for
agglomerative clustering methods. Hence..

Agglomerative Clustering
Have n training examples.

1. Start with n singleton clusters. Set nc = n.

2. Find the two nearest clusters.

3. Merge them, set nc = nc − 1.

4. If nc > 1 go to 2.



Popular distance measures (for two clusters Di and Dj):

dmin(Di,Dj) = min
x∈Di
x′∈Dj

‖x− x
′‖,

dmax(Di,Dj) = max
x∈Di
x′∈Dj

‖x− x
′‖

davg(Di,Dj) =
1

|Di||Dj|
∑
x∈Di

∑
x′∈Dj

‖x− x
′‖,

dmean(Di,Dj) = ‖mi −mj‖



Agglomerative clustering

Minimum Distance

• When dmin is used to measure the distance between clusters, the algorithm
is called the nearest neighbour clustering algorithm.
• Moreover, if the algorithm is terminated when the distance between

nearest clusters exceeds a threshold, it is called the single linkage
algorithm.
• This algorithm favours elongated classes.

Max Distance

• When dmax is used to measure the distance between clusters, the
algorithm is called the farthest neighbour clustering algorithm.
• Moreover, if the algorithm is terminated when the distance between



nearest clusters exceeds a threshold, it is called the complete linkage
algorithm.
• This algorithm favors compact classes.

Average and mean distance

• The minimum and maximum distance are extremely sensitive to outliers
since their measurement of between-cluster distance involves minima or
maxima.
• The average and mean distance approaches are more robust to outliers.
• Of the two, the mean distance is computationally more attractive.



Agglomerative clustering example

Problem Perform agglomerative clustering on the following one dimensional
dataset using the dmin metric

• D = {1, 3, 4, 9, 10, 13, 21, 23, 28, 29}.
• In case of ties, always merge the pair of clusters with the largest mean
• Indicate the order in which the merging operations occur.

Partial Solution

• The initial sets are D1 = {1},D2 = {3},D3 = {4}, . . . ,D10 = {29}.

• What are the i, j such that dmin(Di,Dj) is minimum ? Note
dmin(D1,D2) = 2, dmin(D1,D3) = 3, . . .



Agglomerative clustering example
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Agglomerative clustering example
! Perform agglomerative clustering on the following dataset using the 

single-linkage metric 
" X = {1, 3, 4, 9, 10, 13, 21, 23, 28, 29}
" In case of ties, always merge the pair of clusters with the largest mean
" Indicate the order in which the merging operations occur
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Parametric Methods



Mixture densities

A mixture model is a linear combination of m densities

p(x |Θ) =

m∑
j=1

αj pj(x |θj)

where Θ = (α1, . . . , αm,θ1, . . . ,θm) and each αj ≥ 0 and
∑
j αj = 1.

• α1, . . . , αm are called the mixing parameters.

• pj(x |θj), j = 1, . . . ,m are called the component densities.

Using probability density functions of this type is the alternative to the non-parametric

methods. pj(x|θj) is a parametric pdf (e.g., Gaussian).



The general Gaussian mixture model

• There are m components.

• The ith component has an
associated mean vector µi and
covariance matrix Σi.

• Each component generates data
from N (µi,Σi).

9
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The GMM assumption
• There are k components. The 

i’th component is called !i

• Component !i has an 
associated mean vector "i

• Each component generates data 
from a Gaussian with mean "i 
and covariance matrix #2I

Assume that each datapoint is 
generated according to the 
following recipe: 

1. Pick a component at random. 
Choose component i with 
probability P(!i).

2. Datapoint ~ N("i, #2I )

"2

x
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The General GMM assumption

"1

"2

"3

• There are k components. The 
i’th component is called !i

• Component !i has an 
associated mean vector "i

• Each component generates data 
from a Gaussian with mean "i 
and covariance matrix $i 

Assume that each datapoint is 
generated according to the 
following recipe: 

1. Pick a component at random. 
Choose component i with 
probability P(!i).

2. Datapoint ~ N("i, $i )

Each data-point x is generated by:
• Choose component i with probability

p(ωx = i).

• x ∼ N (µi,Σi).



Mixture model

Have n feature points X = {x1,x2, . . . ,xn}.

Imagine each example x is drawn from the jth class of the m different classes
with probability P (ωx = j) and

∑m
j=1P (ωx = j) = 1.

p(x) =

m∑
j=1

p(x, ωx = j) =

m∑
j=1

p(x |ωx = j)P (ωx = j)

Assume the class-conditional probability density functions are multi-variate
Gaussians each with its own parameters:

p(x |ωx = j) = N (x ; µj,Σj) =
1

Zj
exp

(
−

1

2
(x− µj)

t
Σ
−1
j (x− µj)

)
,



Then returning to our original definition of a mixture distribution then

P (ωx = j) = αj for j = 1, . . . ,m

Have to estimate from X these parameters and the prior class probabilities

(µ1,µ2, . . . ,µm,Σ1, . . . ,Σm, α1, . . . , αm)



How to estimate the parameters of the GMM ?

Assume one has n training examples X = {x1,x2, . . . ,xn}.

From this data we want to estimate the parameters of

p(x) =

m∑
j=1

P (ωx = j)N (x;µj,Σj) =

m∑
j=1

αjN (x;µj,Σj)

How??

Maximum Likelihood Estimate ???



E.M. for general GMMs

Introduce hidden variables:

For each training example introduce hidden variables

Z = (z1, z2, . . . , zn) and each zi ∈ {1, 2, . . . ,m}

indicating which component of the GMM generated each example.

Have a current estimate for the parameters:

At the t-th iteration the estimate of the GMM’s parameters is:

Θ(t) = {µ(t)
1 ,µ

(t)
2 , . . . ,µ(t)

m ,Σ
(t)
1 , . . . ,Σ(t)

m , α
(t)
1 , . . . , α(t)

m }

then



Iterate

E-step

Compute “expected” classes of all datapoints for each class

p(zi = k | xi,Θ(t)
) =

p(xi | zi = k,Θ(t)) p(zi = k |Θ(t))

p(xi)
=

p(xi |µ(t)
k ,Σ

(t)
k )α

(t)
k

m∑
j=1

p(xi |µ(t)
j ,Σ

(t)
j )α

(t)
j



M-step

Compute Maximum likelihood of the parameters of the mixture model given
our data’s class membership distributions.

µ
(t+1)
k =

∑
i p(zi = k | xi,Θ(t)) xi∑
i p(zi = k | xi,Θ(t))

Σ
(t+1)
k =

∑
i p(zi = k | xi,Θ(t)) (xi − µ

(t+1)
k )(xi − µ

(t+1)
k )t∑

i p(zi = k | xi,Θ(t))

α
(t+1)
k =

∑
i p(zi = k | xi,Θ(t))

n



Here EM is the same as soft clustering

Have just exchanged the responsibilities with the posterior probabilities of the
hidden variables, that is

r
(k)
i ≡ p(zi = k |xi,Θ(t))



Gaussian mixture example: Start
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E.M. for General GMMs
Iterate.  On the t’th iteration let our estimates be

!t = { µ1(t), µ2(t) … µc(t), "1(t), "2(t) … "c(t), p1(t), p2(t) … pc(t) }

E-step
Compute “expected” classes of all datapoints for each class
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M-step.  
Compute Max. like µ given our data’s class membership distributions
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Just evaluate 
a Gaussian at 
xk
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Gaussian 
Mixture 

Example: 
Start

Advance apologies: in Black 
and White this example will be 

incomprehensible



After 1st iteration
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After first 
iteration
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After 2nd 
iteration



After 2nd iteration
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After first 
iteration
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After 2nd 
iteration



After 3rd iteration
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After 3rd 
iteration
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After 4th 
iteration



After 4th iteration
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After 3rd 
iteration
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After 4th 
iteration



After 5th iteration
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After 5th 
iteration
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After 6th 
iteration



After 6th iteration
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After 5th 
iteration
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After 6th 
iteration



After 20th iteration
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After 20th 
iteration
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Some Bio 
Assay 
data



Fatal flaw of maximum likelihood estimation

Assume for each cluster Σk = σ2
kI.

What happens if

for one data point xi we have µk = xi and σ2
k is very small?



Fatal flaw of maximum likelihood estimation

Assume for each cluster Σk = σ2
kI.

What happens if

for one data point xi we have µk = xi and σ2
k is very small?

Soft clustering can blow up!!

Put one cluster exactly on one data point and let its variance go to zero =⇒
you can get an arbitrary large likelihood!



Applications of EM

Turns out this type of procedure is uesful for lots of problems

• Clustering problems

• Model estimation problems

• Missing data problems

• Find outliers

• Segmentation problems



Segmentation with EM



Summary: GMMs and EM

Pros

• Probabilistic interpretation

• Soft assignments between data points and clusters

• Generative model, can predict novel data points

• Relatively compact storage



Summary: GMMs and EM

Cons

• Local minima

• Need an initial guess of the parameters

Often good idea to start with an k-means clustering

• Need to know number of components

• There can be numerical problems.

If µ1 = x1, Σ1 = σI and σ → 0, what happens to the likelihood score?



Pen & Paper (and Programming) assignment

• Details available on the course website.

• The compulsory assignment is a very simple clustering problem. There is
also an optional programming exercise which involves exploring k-means
clustering with Matlab.

• Mail me about any errors you spot in the Exercise notes.

• I will notify the class about errors spotted and corrections via the course
website and mailing list.


