
Lecture 2: Feature Extraction

Motivation

• Ideal properties of features used for object recognition

Global Image Patch Descriptors

• Histograms & Templates

• Histograms of filter responses

Recent Image Patch Descriptors

• SIFT

• HOG

The Search Problem

• Sliding window approach



Motivation For Today’s Lecture



Recap: Approach to recognition

Assume: An object class is represented by a set of exemplar images.

For recognition: Compare a novel image to this set of labelled images via an
intermediary feature vector representation.

Thus: No explicit 3D model of the object or the physics of imaging is required.

?

Focus of Today’s Lecture
Consider the type of features that have

been used for this task.



Properties of an ideal feature

In an ideal world, our feature descriptor would have invariance to?



Properties of an ideal feature

In an ideal world, our feature descriptor would be invariant to

Viewpoint changes
• translation

• scale changes

• out-of-plane rotations

Illumination changes
Clutter (a computer vision term for the other stuff in the image that does not correspond

to what you are looking for and corrupts your measurements and confuses your detector)

Partial occlusions
Intra-class variation

while also being....



Properties of an Ideal Feature

In an ideal world, our feature descriptor would be invariant to

Viewpoint changes
• translation

• scale changes

• out-of-plane rotations

Illumination changes
Clutter (a computer vision term for the other stuff in the image that does not correspond

to what you are looking for and corrupts your measurements and confuses your detector)

Partial occlusion
Intra-class variation

while also being....

Distinctive - features extracted from car images differ to those extracted from chair images.

Fast to compute



The two extremes

Ideal features Far from ideal



Back in the real world

Must forget about the nirvana of ideal feature descriptors.

Therefore, must strike a balance between:

build invariances into the descriptor

while

incorporate the modes of variation not accounted for
by the descriptor into the training data and the

search



Back in the real world

In object recognition this is acheived via a smart trade off of

feature descriptor

AND

classifier/recognition algorithm

AND

adequate training data



Image Patch Description



Global image patch descriptions

Template (Array of pixel intensities) Fixed spatial grid
not invariant to geometric transforms

Grayscale/Colour Histogram Invariant to geometric transforms.



Definition of 1D histogram

Given

• N data points with scalar values f1, . . . , fN with each fi ∈ R.

• m intervals/bins defined by the points b0, b1, . . . , bm where bi < bi+1.

Histogram definition

Histogram h = (h1, . . . , hm) records the number of points fj falling into each bin.

Calculation of histogram

Set h = (0, . . . , 0) then

for i = 1 to N

find the j such that fi ∈ [bj−1, bj) and set hj = hj + 1

end



Example: intensity histogram

Image histogram of intensity values

Which geometric transformations of the mug wouldn’t change this histogram?



Histogram of hue
Colour histograms



, 33

Hue values of the pixels is plotted against its frequency.



Weighted histogram

Given

Sometimes the N data points f1, . . . , fN also have non-negative weights w1, . . . , wN
associated with them.

Weighted histogram definition

The weighted histogram h = (h1, . . . , hm) then records the sum of the weights of
the points fj that fall into each bin.

Calculate as follows

Set h = (0, . . . , 0) then

for i = 1 to N

find the j such that bj ≤ fi < bj+1 and set hj = hj + wj

end



Multi-dimensional histogram

Can also have multi-dimensinal histograms. Here’s an example of histogramming
the RGB values in an image.

Compute 3D histogram as h(r, g, b) = #(pixels with color (r, g, b))

image 3D Histogram



Colour histograms

Pros: Robust to geometric transforms and partial occlusions.

images 3D Histograms



Colour histograms

Cons

• May be sensitive to illumination changes (can sometimes fix)

• Many different images will have very similar histograms and many objects from
the same class will have very different histograms. (perhaps fatal)

Do we have a problem?

Other potential clashes?



Colour normalisation

One component of the 3D color space is intensity

• If a color vector is multiplied by a scalar, the intensity changes, but not the color
itself.

• This means colors can be normalized by the intensity defined by I = R+G+B

• Chromatic representation:

r =
R

R+G+B
, g =

G

R+G+B
, b =

B

R+G+B

• If this normalization is used then you’ve made your data 2-dimensional. So only
need r, g for the description task.



Can histogram other things besides
colours and intensity values



Remember: Spatial filtering

Spatial domain process denoted by

g(x, y) = T [f(x, y)]

where f(x, y) is the input image, g(x, y) is the output image and T is an operator
on f defined over a neighbourhood of point (x, y).

Example: A 3× 3 neighbourhood about a point

(x, y) in an image in the spatial domain.

Neighbourhood is moved from pixel to pixel in

the image to generate an output image. Image  f

Spatial domain

Origin

(x, y)

3x3 neighbourhood of (x, y) 

Form a new image whose pixels are a function of the original pixel values.



Spatial filtering

A spatial filter consists of a

1. neighbourhood

2. predefined operation performed on the image pixels within the neighbourhood.

If the operation performed is linear, then the filter is called a linear spatial filter
and will be of the form

g(x, y) =

a∑
s=−a

b∑
t=−b

w(s, t) f(x+ s, y + t)

for a mask of size m× n where m = 2a+1 and n = 2b+1. Generally, have filters
of odd size so the filter centre falls on integer values.



Spatial filtering

Image  f

Spatial domain

Origin

(x, y)
w(-1, -1) w(-1,0) w(-1,1)

w(0,0)

w(1,0) w(1,1)

w(0,1)w(0,-1)

w(1,-1)

Filter coefficientsf(x-1, y-1) f(x-1,y) f(x-1,y+1)

f(x,y)

f(x+1,y) f(x+1,y+1)

f(x,y+1)f(x,y-1)

f(x+1,y--1)

Pixels of image 
section under filter

g(x, y) =

a∑
s=−a

b∑
t=−b

w(s, t) f(x+ s, y + t)



Spatial correlation and convolution

Correlation Move a filter over the image and compute the sum of products at
each location as explained.

w(x, y) ? f(x, y) =

a∑
s=−a

b∑
t=−b

w(s, t) f(x+ s, y + t)

Convolution Same as correlation except the filter is first rotated by 180◦.

w(x, y) ∗ f(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t) f(x− s, y − t)



Spatial filter masks

The coefficients wj’s define the effect of applying the filter.

Example 1:

Let wj = 1 for j = 1, . . . , nm

⇒ g(x, y) =

a∑
s=−a

b∑
t=−b

f(x+ s, y + t)

⇒ g(x, y) = sum of pixel intensities in
the n×m neighbourhood.

1 1 1

1

1 1

11

1

What values of wj make g(x, y) the average intensity of a pixel in the n×m neighbourhood?



Example 2: Box filter (a smoothing filter)

Let wj =
1

nm
for j = 1, . . . , nm

⇒ g(x, y) =
1

nm

a∑
s=−a

b∑
t=−b

f(x+ s, y + t)

⇒ g(x, y) = average intensity of a pixel
in the n×m neighbourhood.

1 1 1

1

1 1

11

1

1_
9 x



Smoothing linear filters

The output of a smoothing linear spatial filter is simply the weighted average of
the pixels in the neighbourhood of the filter mask. These filters are often referred
to as weighted averaging filters and act as lowpass filters.

g(x, y) =

∑a
s=−a

∑b
t=−bw(s, t) f(x+ s, y + t)∑a
s=−a

∑b
t=−bw(s, t)

Note each w(s, t) ≥ 0 and if w′(s, t) = w(s, t)/
∑a
s=−a

∑b
t=−bw(s, t) then∑

s,tw
′(s, t) = 1.

Smoothing blurs an image. Hopefully reduces the amount of irrelevant detail in an
image, but may destroy boundary edge information.



Example: Gaussian filter

w(s, t) ∝ exp

(
−s

2 + t2

2σ2

)

Smoothing with a Gaussian

• Smoothing with a box 
actually doesn’t compare 
at all well with a 
defocussed lens

• Most obvious difference is 
that a single point of light 
viewed in a defocussed 
lens looks like a fuzzy 
blob; but the box filter 
would give a little square.

• A Gaussian gives a good 
model of a fuzzy blob

• It closely models many 
physical processes (the sum 
of many small effects)

In theory, the Gaussian function is non-zero everywhere, which would require an
infinitely large convolution kernel, but in practice it is effectively zero more than
about three standard deviations from the mean, and so we can truncate the kernel
at this point.

As a crude rule of thumb if

• have a square mask n× n with n = 2a+ 1 then set σ = a
2 .

• want to smooth the image by a Gaussian with σ ⇒ filter mask of size a = 2σ



Example

Original image Smoothed image Very smoothed image



Edges

Edges are significant local changes of intensity in an image.

Causes of these intensity changes:

Geometric events

• object boundary (discontinuity in depth and/or surface color and texture)
• surface boundary (discontinuity in surface orientation and/or surface color)

Non-geometric events

• specularity (direct reflection of light, such as a mirror)
• shadows (from other objects or from the same object)
• inter-reflections

Want to construct linear filters that respond to such edges.



Edge description

Edge normal unit vector in the direction of maximum intensity change.

Edge direction unit vector to perpendicular to the edge normal.

Edge position or center the image position at which the edge is located.

Edge strength related to the local image contrast along the normal.

-2-

• What causes intensity changes?

- Various physical events cause intensity changes.

- Geometric events
* object boundary (discontinuity in depth and/or surface color and texture)
* surface boundary (discontinuity in surface orientation and/or surface color
and texture)

- Non-geometric events
* specularity (direct reflection of light, such as a mirror)
* shadows (from other objects or from the same object)
* inter-reflections

• Edge descriptors

Edge normal: unit vector in the direction of maximum intensity change.
Edge direction: unit vector to perpendicular to the edge normal.
Edge position or center: the image position at which the edge is located.
Edge strength: related to the local image contrast along the normal.



Derivatives and edges

An edge is a place of rapid change in the image intensity function.



Derivatives and edges

Calculus describes changes of continuous functions using derivatives.

An image is a 2D function, so operators describing edges are expressed using
partial derivatives. Can approximate the derivative of a discrete signal by finite
differences.

∂f(x, y)

∂x
= lim
h→0

f(x+ h, y)− f(x, y)
h

≈ f(x+ 1, y)− f(x, y), h = 1

Therefore, the linear filter with mask [−1, 1] approximates the first derivative.

Normally use the mask [−1, 0, 1] as its length is odd.



Edge detection using the gradient

Definition of the gradient

The gradient vector

∇f =

(∂f
∂x

∂f
∂y

)
=

(
Mx

My

)
,

has an associated magnitude and direction

mag (∇f) =
√
M2

x +M2
y , dir (∇f) = tan

−1
(
My

Mx

)

Properties of the gradient

• The magnitude of gradient indicates the strength of the edge.



• The gradient direction is perpendicular to the direction of the edge (the edge
direction is rotated with respect to the gradient direction by -90 degrees).

Estimating the gradient with finite differences

∂f

∂x
= lim

h→0

f(x+ h, y)− f(x, y)
h

∂f

∂y
= lim

h→0

f(x, y + h)− f(x, y)
h

The gradient can be approximated by finite differences:

∂f

∂x
≈ f(x+ 1, y)− f(x, y)

∂f

∂y
≈ f(x, y + 1)− f(x, y)



Linear filter masks used to calculate ∂f
∂x

[
−1 0 1

]
Prewitt:

−1 0 1
−1 0 1
−1 0 1

 Sobel:

−1 0 1
−2 0 2
−1 0 1


Linear filter masks used to approximate ∂f

∂y−10
1

 Prewitt:

−1 −1 −1
0 0 0
1 1 1

 Sobel:

−1 −2 −1
0 0 0
1 2 1





Example image gradients

original image x−derivative y−derivative
gradient

magnitude



Practical issues

• Differential masks act as high-pass filters which tend to amplify noise.



• To reduce the effects of noise, the image needs to be smoothed first with a
lowpass filter.



Latter equivalent to

Because of the differentiation property of convolution: ∂
∂x(h ? f) =

∂h
∂x ? f



Can also detect edges using...

Edge is at the zero-crossing of the bottom graph.



Example image

original image The Laplacian
Absolute
Laplacian



Summary: Edge detection in 2D

Gaussian Derivative of Gaussian

hσ(u, v) = 1
2πσ2

e
−u

2+v2

2σ2 ∂
∂uhσ(u, v), ∂

∂vhσ(u, v) ∇2hσ = ∂2hσ
∂u2

+ ∂2hσ
∂v2



Back to Histograms



Histogram the output of filters

Any local descriptor (e.g. filter, filter combination) can be used to build a histogram.

Examples:

• Gradient magnitude:
√
(f2x + f2y )

• Gradient direction: tan−1
(
fy
fx

)
• Laplacian: fxx + fyy



Multi-dimensional representations

Combine output of several filters:

• Each descriptor is applied to the whole image.

• Corresponding pixel values are combined into
one feature vector.

• Feature vectors are collected in a multi-
dimensional histogram.



Multi-dimensional representations

Useful simple combinations

Rotation-variant fx − fy
• Descriptor changes when image is rotated.

• Useful for recognising oriented structure - vertical lines.

Rotation-invariant |∇f | − ∇2f

• Descriptor does not change when image is rotated

• Can be used to recognise rotated objects.

• Less discriminative than rotation-variant descriptor.



Generalization: Filter-Banks

Which filters to put in the bank?

Typically want a combination of scales and orientations, different types of patterns.



Filter bank applied to image

Filter bank of 8 filters Input Image

11

DERIVATIVES OF 
GAUSSIAN FILTERS

Measure the image gradient and its direction at different 
scales by using a pyramid.

HORIZONTAL AND VERTICAL 
STRUCTURES

FILTER BANKS

Represent image textures using the responses 
of a collection of filters. 
• An appropriate filter bank will extract useful 

information such as spots and edges
• Typically one or two spot filters plus several 

oriented bar filters

FILTER RESPONSES

Based on the pixels with large magnitudes in the 
particular filter response, we can determine the 
presence of strong edges of certain orientation. 
We can also find spot patterns from the responses 
of the first two filters

FILTER RESPONSES:
HIGH RESOLUTION

FILTER RESPONSES:
LOW RESOLUTION

11

DERIVATIVES OF 
GAUSSIAN FILTERS

Measure the image gradient and its direction at different 
scales by using a pyramid.

HORIZONTAL AND VERTICAL 
STRUCTURES

FILTER BANKS

Represent image textures using the responses 
of a collection of filters. 
• An appropriate filter bank will extract useful 

information such as spots and edges
• Typically one or two spot filters plus several 

oriented bar filters

FILTER RESPONSES

Based on the pixels with large magnitudes in the 
particular filter response, we can determine the 
presence of strong edges of certain orientation. 
We can also find spot patterns from the responses 
of the first two filters

FILTER RESPONSES:
HIGH RESOLUTION

FILTER RESPONSES:
LOW RESOLUTION

8 response images: magnitude of filtered
outputs per filter



Multi-scale representations

Combination of filter responses at several scales:

• Descriptors are computed at different
scales/sizes

• Each scale captures different information about
the object.

• Size of the support region grows with increasing
σ.

• Feature vectors capture both local details and
larger-scale structures.



Multidimensional representations

Pros

• Work very well for recognition.

• Frequently simple combinations are sufficient.

• But multiple scales are very important!

• Generalization: filter banks

Cons

• High-dimensional histograms⇒ lots of storage space.

• Global representation⇒ not robust to occlusion.



Filter response histograms

Histograms do not describe spatial relationship.

However, do these type of multi-dimensional histograms of filter bank responses
capture spatial relationships?



Filter response histograms

Histograms do not describe spatial relationship. However, these type of multi-
dimensional histograms of filter bank responses do capture spatial relationships.

• Answer: Spatial relationships are captured
implicitly via the filter responses.

• Support regions of neighboring descriptors
overlap.

• Neighborhood relations are captured implicitly.



Image Patch Descriptors for the
Naughties



Global image patch descriptors

Have seen descriptors

Template (Vector of pixel intensities) Fixed spatial grid

Grayscale/Colour Histogram Invariant to geometric transforms.

However would like a descriptor which has the advantages of both these descriptors

• invariance to small translational shifts and rotations

• Encode relative spatial relationship between different parts of the image



Two recent descriptors

Such image patch descriptors are:

• Distinctive image features from scale-invariant keypoints, by D.G. Lowe,
International Journal of Computer Vision (2004)

– In recent years this has been one of the most highly cited papers in the field of computer

science.

• Histograms of Oriented Gradients for Human Detection by Navneet Dalal and
Bill Triggs, Computer Vision and Pattern Recognition, 2005.

– The descriptor used is the basis for the (one of the) best person detector in images in the

research community.

There are great similarities between the two and both rely on the histogramming
of image gradient orientations.



Histogram of gradient orientations

Image Image gradients

Histogram the gradient orientation (weighted according to their gradient magnitude)
of the image gradients to get



This histogram can be interpreted as a one-dimensional vector h with n entries.
Where each entry is the frequency of a bin centre.

What happens to h if

• the four translates slightly within image frame ?

• the four is very slightly rotated ?

• the four is rotated by 90◦ clockwise ?



Histogram of gradient orientations

Answers

• h is invariant to translation shifts as long as the same pixels are used for the
gradient computations.

• there could be a large change in h. Why ? (Aliasing)

• h will probably be very different. Each orientation will differ by 90◦ resulting in
the histogramming of a very different set of numbers.

The latter ⇒ the descriptor is not rotationally invariant.

However, the middle condition is most worrisome. Ideally small changes in the
appearance of a patch should result only in small changes its feature description.
There is a solution to avoid this...



Avoiding aliasing

Each entry voting only for its nearest orientation bin results in possible aliasing
effects. These can cause sudden changes in the computed feature vector.

To avoid this the histogram computation should involve distributing the weight of
the orientation gradient magnitude for every pixel into the neighbouring orientation
bins. This can be done using linear interpolation.

Let

• b be the inter-bin distance of our histogram h

• h(x) the value of the histogram for the bin centred at x.

Assume that we want to interpolate a weight w at point x into the histogram.
Let x1 and x2 be the two nearest neighbouring bins of the point x such that



x1 ≤ x < x2. Linear interpolation distributes the weight w into two nearest
neighbours as follows:

h(x1)← h(x1) + w

(
1− x− x1

b

)
h(x2)← h(x2) + w

(
x− x1
b

)

Note also, when histogramming orientations/angles, the bins have to be wrapped
around as 360◦ = 0◦.



SIFT patch descriptor

• Compute and threshold image gradients.

• Create array of orientation histograms

• 8 orientations ×4× 4 histogram array = 128 dimensions

David Lowe 3/18/2007

Object Recognition 2

Scale space processed one octave at a time Key point localization

� Detect maxima and minima 
of difference-of-Gaussian in 
scale space Blur 

Sampling frequency for scale
More points are found as sampling frequency increases, but 
accuracy of matching decreases after 3 scales/octave

Select canonical orientation

� Create histogram of local 
gradient directions computed 
at selected scale

� Assign canonical orientation 
at peak of smoothed 
histogram

� Each key specifies stable 2D 
coordinates (x, y, scale, 
orientation)

0 2π

Example of keypoint detection
Threshold on value at DOG peak and on ratio of principle 
curvatures (Harris approach)

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak

value threshold
(d) 536 left after testing

ratio of principle
curvatures

SIFT vector formation
� Thresholded image gradients are sampled over 16x16 

array of locations in scale space
� Create array of orientation histograms
� 8 orientations x 4x4 histogram array = 128 dimensions



Each histogram in the array is represented by a vector hk which has 8 entries. Then
the final feature vector is concatenation of all these vectors:

fS = (hT1 ,h
T
2 , . . . ,h

T
16)

T

fS is then normalized to have unit length. This enhances its invariance to changes
in illumination conditions.



Avoid spatial aliasing

Note this descriptor is not invariant to translation of the underlying image to the
grid and also that spatial aliasing may occur.

For example, if a strong edge pixel is at the boundary of a cell in one image and
due to slight change in imaging conditions it falls into the neighbouring cell in the
next, the naive voting scheme will assign the pixel’s weight to different histograms
bins in the two cases and produce a very different feature vector.

To avoid this, use 3-D linear interpolation of the pixel weight into the spatial-
orientation histogram. This is know as trilinear interpolation



Reference for the keen

Let w at the 3-D point x = (x, y, z) be the weight to be interpolated. Let x1 and
x2 be the two corner vectors of the histogram cube containing x, where in each
component x1 ≤ x < x2. Assume that the bandwidth of the histogram along the
x, y and z axis is given by b = (bx, by, bz). Trilinear interpolation distributes the
weight w to the 8 surrounding bin centres as follows

118 D Trilinear Interpolation for Voting into 3-D Spatial Orientation Histograms

h(x1, y1, z1) ← h(x1, y1, z1)+ w
(

1− x−x1
bx

) (
1− y−y1

by

) (
1− z−z1

bz

)
h(x1, y1, z2) ← h(x1, y1, z2)+ w

(
1− x−x1

bx

) (
1− y−y1

by

) (
z−z1

bz

)
h(x1, y2, z1) ← h(x1, y2, z1)+ w

(
1− x−x1

bx

) (
y−y1

by

) (
1− z−z1

bz

)
h(x2, y1, z1) ← h(x2, y1, z1)+ w

(
x−x1

bx

) (
1− y−y1

by

) (
1− z−z1

bz

)
h(x1, y2, z2) ← h(x1, y2, z2)+ w

(
1− x−x1

bx

) (
y−y1

by

) (
z−z1

bz

)
h(x2, y1, z2) ← h(x2, y1, z2)+ w

(
x−x1

bx

) (
1− y−y1

by

) (
z−z1

bz

)
h(x2, y2, z1) ← h(x2, y2, z1)+ w

(
x−x1

bx

) (
y−y1

by

) (
1− z−z1

bz

)
h(x2, y2, z2) ← h(x2, y2, z2)+ w

(
x−x1

bx

) (
y−y1

by

) (
z−z1

bz

)

(D.1)

In our case, when histogramming along the orientation dimension, the orientation bins are
also wrapped around.



Invariance to rotation

• Create histogram of local gradient
directions

• Assign canonical orientation at peak of
smoothed histogram

• Rotate patch so that dominant
direction is vertical.

David Lowe 3/18/2007

Object Recognition 2

Scale space processed one octave at a time Key point localization

� Detect maxima and minima 
of difference-of-Gaussian in 
scale space Blur 

Sampling frequency for scale
More points are found as sampling frequency increases, but 
accuracy of matching decreases after 3 scales/octave

Select canonical orientation

� Create histogram of local 
gradient directions computed 
at selected scale

� Assign canonical orientation 
at peak of smoothed 
histogram

� Each key specifies stable 2D 
coordinates (x, y, scale, 
orientation)

0 2π

Example of keypoint detection
Threshold on value at DOG peak and on ratio of principle 
curvatures (Harris approach)

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 left after peak

value threshold
(d) 536 left after testing

ratio of principle
curvatures

SIFT vector formation
� Thresholded image gradients are sampled over 16x16 

array of locations in scale space
� Create array of orientation histograms
� 8 orientations x 4x4 histogram array = 128 dimensions



SIFT in the real world

David Lowe 3/18/2007

Object Recognition 6

Sony Aibo
(Evolution 
Robotics)

SIFT usage:

Recognize  
charging 
station

Communicate
with visual
cards



Histogram of Oriented Gradients

6

State-of-the-art (so far)

Histogram of Oriented Gradients for Human Detection – N.Dalal &
B.Triggs, CVPR’2005:  90% detection rate at 10-4 FPPW

Pictures from Dalal’s talk

Constructing HOG feature

Structure:

• Have a 2D grid of cells. Each cell is of size η × η pixels.

• Have m blocks where each block is a grid of ζ × ζ cells.

• Different blocks may contain some of the same cells. That is there will be
overlaps.



6

State-of-the-art (so far)

Histogram of Oriented Gradients for Human Detection – N.Dalal &
B.Triggs, CVPR’2005:  90% detection rate at 10-4 FPPW

Pictures from Dalal’s talk

Constructing HOG feature

The descriptor

• Weighted votes for gradient orientation are accumulated over the spatial cells to
obtain a histogram for each cell.

• For each block its cell histograms are concatenated, as in SIFT, and this HOG
feature is normalized to normalize contrast within the block.

• Concatenate all the HOG features for each block into one long vector.



Experimental findings from HOG paper

From experiments run on images of people in natural environments

• Best recognition results when the mask [−1, 0, 1] was used to compute the image
gradients and no pre-smoothing of the images was applied.

• Best recognition results when gradient orientation has at least 18 (9) bins if the
orientation is defined between 0− 360◦(180◦).

• Having many overlapping blocks and the contrast normalization being
independent for each one is critical for good performance.

• One good normalization scheme was

v←
√

v

‖v‖1 + ε
, ε > 0 and small



The search problem



Story so far

• Have introduced some methods to describe the appearance of an image patch
via a feature vector. (SIFT, HOG etc..)

• For patches of similar appearance their computed feature vectors should be
similar while dissimilar if the patches differ in appearance.

• Feature vectors are designed to be invariant to common transformations that
superficially change the pixel appearance of the patch.



Next problem

We have an reference image patch which is described by a feature vector fr.

Face Finder: Training
• Positive examples:

– Preprocess ~1,000 example face images 
into 20 x 20 inputs

– Generate 15 “clones” of each with small 
random  rotations, scalings, translations, 
reflections

• Negative examples
– Test net on 120 known “no-face” images
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⇒ fr

Given a novel image identify the patches in this image that correspond to the
reference patch.

One part of the problem we have explored.

A patch from the novel image generates a feature vector fn. If ‖fr − fn‖ is



small then this patch can be considered an instance of the texture pattern
represented by the reference patch.

However, which and how many different image patches do we extract
from the novel image ?



Remember..

The sought after image patch can appear at:

• any spatial location in the image

• any size, (the size of an imaged object depends on its from the camera)

• multiple locationsVariation in position and size- multiple detection windows
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Sliding window technique

Therefore we must examine patches centered at many different pixel locations and
at many different sizes.

Naive Option: Exhaustive search using original image

for j = 1:n s

n = n min + j*n step

for x=0:x max

for y=0:y max

Extract image patch centred on pixel x, y of size n×n.
Rescale it to the size of the reference patch

Compute feature vector f.

This is computationally intensive especially if it is expensive to compute f as it
could be calculated upto n s × x max × y max.



Also frequently if n is large then it is very costly to compute f .

Next Features lecture will review how to do this efficiently....



Today’s programming assignment



Programming assignment

• Details available on the course website.

• You will write Matlab functions to extract different feature descriptors from an
image. You will then compare these features when extracted from images of
eyes and noses.

• Important: Due to the short turn around time until the next lecture. This
assignment is not due until the lecture on Tuesday 27th of March.

• Mail me about any errors you spot in the Exercise notes.

• I will notify the class about errors spotted and corrections via the course website
and mailing list.


