
Lecture 3

Review the fundamentals of probability

• Definition of probability
• Rules of probability
• Bayes’ rule

Pdfs of real-valued quantities

Pdf characterisations

• Expectations, Covariance matrices

Gaussian distributions



When are probabilities used

Probabilities are used to describe two quantities

• Frequencies of outcomes in random experiments.

– The probability of a coin toss landing as tails is 1
2. Then if

the coin is tossed n times and kn “tails” are observed, it is
expected kn

n →
1
2 as n→∞.

• Degree of belief in propositions not involving random variables.

– the probability that Mr S. was the murderer of Mrs S. given the
evidence

– the probability that this image contains a car given a calculated
feature vector.



Defining probability

Define a probabilistic ensemble with a triple (x,AX,PX), where
x is the outcome of a random variable, X, and takes on one of
a set of possible values, AX = (a1, a2, . . . , aI), having probabilities
PX = (p1, p2, . . . , pI) with P (X = ai) = pi.

The following must be satisfied:

• pi ≥ 0 for i = 1, . . . , I

•
∑
x∈AX P (X = x) = 1.



A simple example

Let x be the outcome of throwing an unbiased die, then

AX = {‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘}

PX =

{
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

}

Question:

P (x = ‘3‘) = ?

P (x = ‘5‘) = ?



Definitions of probability

Probability of a subset: If V ⊂ AX, then

P (V ) = P (x ∈ V ) =
∑
x∈V

P (x)

Example:

Going back to our die example, let V = {‘2‘, ‘3‘, ‘4‘}, then

P (V ) = P (x = ‘2‘) + P (x = ‘3‘) + P (x = ‘4‘)

=
1

6
+

1

6
+

1

6
=

1

2



The simple example

Throwing an unbiased die

AX = {‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘}

PX =

{
1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

}

Question:

If V = {‘2‘, ‘3‘}, what is P (V )?



Definitions of probability

Joint probability: X × Y is an ensemble in which an outcome is
an ordered pair (x, y) with x ∈ AX = {a1, . . . , aI} and y ∈ BY =
{b1, . . . , bJ}. Then P (x, y) is the joint probability of x and y.

Example:

Remember the outcome of throwing an unbiased die is described
with

AX = {‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘}︸ ︷︷ ︸
Possible outcomes

, PX = {6−1
, 6
−1
, 6
−1
, 6
−1
, 6
−1
, 6
−1}︸ ︷︷ ︸

Probability of each outcome



Definitions of probability

Example ctd:

The output of two consecutive independent, T1 and T2 throws of an unbiased

die:

Throw 1: AT1
= {‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘}

PT1
= {6−1, 6−1, 6−1, 6−1, 6−1, 6−1}

Throw 2: AT2
= {‘1‘, ‘2‘, ‘3‘, ‘4‘, ‘5‘, ‘6‘}

PT2
= {6−1, 6−1, 6−1, 6−1, 6−1, 6−1}

Possible outcomes: AT1×T2
= {(‘1‘, ‘1‘), (‘1‘, ‘2‘), (‘1‘, ‘3‘), (‘1‘, ‘4‘), (‘1‘, ‘5‘), (‘1‘, ‘6‘),

(‘2‘, ‘1‘), (‘2‘, ‘2‘), (‘2‘, ‘3‘), (‘2‘, ‘4‘), (‘2‘, ‘5‘), (‘2‘, ‘6‘),

. . . . . . . . . . . . . . . . . .

(‘6‘, ‘1‘), (‘6‘, ‘2‘), (‘6‘, ‘3‘), (‘6‘, ‘4‘), (‘6‘, ‘5‘), (‘6‘, ‘6‘)}

Probabilities: PT1×T2
=
{

1
36,

1
36, · · · ,

1
36

}



Another example

Scenario:

A person throws an unbiased die. If the outcome is even throw this
die again, otherwise throw a die biased towards ‘3‘ with

PX =

{
1

10
,

1

10
,
1

2
,

1

10
,

1

10
,

1

10

}

Questions:

What is the set, AT1×T2, of possible outcomes?
What are the values in PT1×T2 ?



Definitions of probability

Marginal probability:

P (x = ai) ≡
∑
y∈AY

P (x = ai, y)

Similarly:
P (y = bj) ≡

∑
x∈AX

P (x, y = bj)

Example:

Returning to example modelling the output of two consecutive independent throws

of an unbiased die then

P (t1 = ‘1‘) =
6∑
i=1

P (t1 = ‘1‘, t2 = ‘i‘) =
6∑
i=1

1

36
=

1

6



Example

Scenario:

A person throws an unbiased die. If the outcome is even, throw this
die again, otherwise throw a die biased towards ‘3‘ with

PX =

{
1

10
,

1

10
,
1

2
,

1

10
,

1

10
,

1

10

}

Question:

Given P (t1, t2) (ie PT1×T2) and the defintion of marginal probability,
calculate P (t2) the probability of the output of the second die in this
scenario.



Definitions of probability

Conditional probability:

P (X = ai |Y = bj) =
P (X = ai, Y = bj)

P (Y = bj)
, if P (Y = bj) 6= 0

Example:

Returning to example modelling the output of two consecutive
independent throws of an unbiased die then

P (t2 = ‘3‘ | t1 = ‘1‘) =
P (t1 = ‘1‘, t2 = ‘3‘)

P (t1 = ‘1‘)
=

1
36
1
6

=
1

6



Example

Scenario:

A person throws an unbiased die. If the outcome is even, throw this
die again, otherwise throw a die biased towards ‘3‘ with

PX =

{
1

10
,

1

10
,
1

2
,

1

10
,

1

10
,

1

10

}

Question:

Calculate P (t2 = ‘3‘ | t1 = ‘1‘) and P (t2 = ‘3‘ | t1 = ‘2‘).



Rules of probability

Product Rule: from the definition of the conditional probability

P (x, y) = P (x | y)P (y) = P (y |x)P (x)

Sum/Chain Rule: rewriting the marginal probability definition

P (x) =
∑
y

P (x, y) =
∑
y

P (x | y)P (y)

Bayes’ Rule: from the product rule

P (y|x) =
P (x | y)P (y)

P (x)
=

P (x | y)P (y)∑
y′ P (x | y′)P (y′)



Independence

Independence: Two random variables X,Y are independent if

P (x, y) = P (x)P (y) ∀x ∈ AX,∀y ∈ BY .

This implies that

P (x | y) = P (x) ∀x ∈ AX,∀y ∈ BY

and
P (y |x) = P (y) ∀x ∈ AX,∀y ∈ BY .

X and Y are independent is often denoted by X ⊥⊥ Y .



An Example

Problem: Jo has the test for a nasty disease. Let a denote the state
of Jo’s health and b the test results.

a =

{
1 if Jo has the disease,

0 Jo does not have the disease
b =

{
1 if the test is positive,

0 if the test is negative.

The test is 95% reliable, that is

p(b = 1 | a = 1) = .95 p(b = 1 | a = 0) = .05

p(b = 0 | a = 1) = .05 p(b = 0 | a = 0) = .95

The final piece of background information is that 1% of people Jo’s
age and background have the disease.
Jo has the test and the result is positive.



What is the probability Jo has the disease?

Solution: The background information tells us

P (a = 1) = .01, P (a = 0) = .99

Jo would like to know how plausible it is that she has the disease.
This involves calculating P (a = 1 | b = 1) which is the probability of
Jo having the disease given a positive test result.



Applying Bayes’ Rule:

P (a = 1 | b = 1) =
P (b = 1 | a = 1)P (a = 1)

P (b = 1)

=
P (b = 1 | a = 1)P (a = 1)

P (b = 1 | a = 1)P (a = 1) + P (b = 1 | a = 0)P (a = 0)

=
.95× .01

.95× .01 + .05× .99
= .16



Your turn

Scenario: Your friend has two envelopes. One he calls the Win
envelope which has 100 dollars and four beads ( 2 red and 2 blue)
in it. While the other the Lose envelope has three beads ( 1 red and
2 blue) and no money. You choose one of the envelopes at random
and then your friend offers to sell it to you.

Question:

• How much should you pay for the envelope?

• Suppose before deciding you are allowed to draw one bead from
the envelope.

If this bead is blue how much should you pay?



Inference is important

Inference is the term given to the conclusions reached from the basis
of evidence and reasoning.

Most of this course will be devoted to inference of some form.

Some examples:

I’ve got this evidence. What’s the chance that this conclusion is
true?

• I’ve got a sore neck: how likely am I to have meningitis

• My car detector has fired in this image: how likely is it there is a
car in the image?



Inference using Bayes’ rule

In general:

If θ denotes the unknown parameters/decision, D the data and H
denotes the overall hypothesis space, then

p(θ |D,H) =
P (D |θ,H)P (θ|H)

P (D |H)

is written as

posterior =
likelihood × prior

evidence



Bayesian classification

Bayes’ Rule can be expressed as

P (ωj |x) =
P (x |ωj)P (ωj)∑N
k=1P (x |ωk)P (ωk)

=
P (x |ωj)P (ωj)

P (x)

where ωj is the jth class and x is the feature vector.

A typical decision rule (class assignment)

Choose the class ωi with the highest P (ωi |x). Intuitively, we will
choose the class that is more likely given feature vector x.



Terminology Each term in the Bayes’ Rule has a special name:

P (ωi)− Prior probability of class ωi

P (ωi | x)− Posterior probability of class ωi given the observation x

P (x |ωi)− Likelihood of observation x given class ωi

P (x)− Evidence the normalization constant



Bayes Classifier in a nutshell

1. Learn the class conditional distributions for each class ωj.

2. This gives P (x |ωj)

3. Estimate the prior P (ω) of each class

4. For a new data point x make a prediction with:

ω∗ = arg max
ωj

P (x |ωj)P (ωj)

Step one is know as density estimation. This will be the topic of
several future lectures. We will also be examining the strengths and
weaknesses of the Bayes classifiers.



We don’t live in a purely
discrete world



Continuous random variables

So far have only encountered discrete random variables. But the
outcome x of the random variable can be continuous.

In this case AX is an interval or union of intervals such as AX =
(−∞,∞). The notion of probability must also be updated. Now
p(·) denotes the probability density function (pdf). It has the two
properties:

1) p(x) ≥ 0 ∀x ∈ AX,

2)

∫
x∈AX

p(x) dx = 1.



a b
x

p(x)

The probability that a continuous random variable x lies between
values a and b (with b > a) is defined to be

P (a < X ≤ b) =

∫ b

x=a

p(x) dx



Continuous random variables

An example of a continuous probability distribution function p(·):

x

P(x)

10

1
p(x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise

The above is known as the uniform density function.



Continuous random variables

All the previous definitions and rules are the same except that the
summation signs are replaced by integral signs where appropriate.
For example:

Marginal probability

p(x) ≡
∫
y∈AY

p(x, y) dy



m dimensional random variables

Below is he joint probability density of an ordered pair (X,Y ) and
p(x, y).

Consider also the ordered vector X = (X1, X2, . . . , Xm). The



Joint Probability Density for this vector is defined as p(x) or
p(x1, x2, . . . , xm).

Probability of a volume

R

If R is a volume defined in the space of possible outcomes then the



probability of this volume is

P ((X1, X2, . . . , Xm) ∈ R) =

∫ ∫
· · ·
∫

︸ ︷︷ ︸
(x1,x2,...,xm)∈R

p(x1, x2, . . . , xm) dx1 dx2 . . . dxm



Marginal pdf

The marginal pdf is used to represent the pdf of a subset of the x′is.

p(x1, . . . , xi−1, xi+1, . . . , xm) ≡∫
z

p(x1, . . . , xi−1, xi = z, xi+1, . . . , xm) dz



PDF description

The probability density function, pX(·), fully characterizes our
random variable X. The following partially characterize pX(·).

Expectation: E [X] =

∫
x∈AX

x p(x) dx = µ

represents the center of mass of the density.

Variance: Var [X] = E
[
(X − E [X])2

]
=

∫
x∈AX

(x− µ)2 p(x) dx

represents the spread about the mean.

Std deviation: std [X] =
√

Var [X], square root of the variance.

Note: E [f(X)] =
∫
x∈AX

f(x) p(x) dx



Partial description

Mean vector

E [X] = (E [X1] ,E [X2] , . . . ,E [XN ])
T

= (µ1, . . . , µN)T = µ

Mean



Covariance Matrix

Cov [X] = E
[
(X− µ)(X− µ)

T
]

=

(
E [(X1 − µ1)(X1 − µ1)] . . . E [(X1 − µ1)(XN − µN)]

... · · · ...

E [(XN − µN)(X1 − µ1)] . . . E [(XN − µN)(XN − µN)]

)

=

(
σ2

1 · · · c1N

· · · . . . · · ·
c1N · · · σ2

N

)
= Σ



Covariance matrix I

The covariance matrix C = {cjk} indicates the tendency of each
pair of features (dimensions in a random vector) to vary together,
to co-vary.

The covariance has several important properties

• If Xi and Xk tend to increase together, then cik > 0

• If Xi tends to decrease when Xk increases, then cik < 0

• If Xi and Xk are uncorrelated, then cik = 0



• |cik| ≤ σi σk, where σi is the standard deviation of Xi

• cii = σ2
i = Var [Xi].

Covariance terms can be expressed as

cii = σ2
i and cik = ρikσiσk

where ρik is called the correlation coefficient.

ρik = −1 ρik = −1
2 ρik = 0 ρik = 1

2 ρik = 1
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Covariance matrix (1)
! The covariance matrix indicates the tendency of each pair of features 

(dimensions in a random vector) to vary together, i.e., to co-vary*
! The covariance has several important properties

" If xi and xk tend to increase together, then cik>0
" If xi tends to decrease when xk increases, then cik<0
" If xi and xk are uncorrelated, then cik=0
" |cik|!"i"k, where "i is the standard deviation of xi

" cii = "i
2 = VAR(xi)

! The covariance terms can be expressed as

" where #ik is called the correlation coefficient
kiikik

2
iii candc ""#" $$

Xi

Xk

Cik=-"i"k
#ik=-1

Xi

Xk

Cik=-½"i"k
#ik=-½

Xi

Xk

Cik=0
#ik=0

Xi

Xk

Cik=+½"i"k
#ik=+½

Xi

Xk

Cik="i"k
#ik=+1

*from http://www.engr.sjsu.edu/~knapp/HCIRODPR/PR_home.htm



Covariance matrix II

The covariance matrix can be reformulated as

Σ = E
[
(X− µ)(X− µ)T

]
= E

[
XXT

]
− µµT = S − µµT

with

S = E
[
XXT

]
=

E [X1X1] . . . E [X1XN ]
... . . . ...

E [XNX1] . . . E [XNXN ]


S is called the auto-correlation matrix and contains the same
amount of information as the covariance matrix.



The covariance matrix can also be expressed as

Σ = ΓRΓ =


σ1 0 . . . 0

0 σ2 . . . 0
... ... . . . ...

0 0 . . . σN




1 ρ12 . . . ρ1N

ρ12 1 . . . ρ2N
... ... . . . ...

ρ1N ρ2N . . . 1



σ1 0 . . . 0

0 σ2 . . . 0
... ... . . . ...

0 0 . . . σN


• A convenient formulation since Γ contains the scales of

the features and R retains the essential information of the
relationship between the features.

• R is the correlation matrix.

Correlation Vs. Independence

• Two random variables Xi and Xk are uncorrelated if
E [XiXk] = E [Xi] E [Xk]. Uncorrelated variables are also called



linearly independent.

• Two random variables Xi and Xk are independent if

p(xi, xk) = p(xi) p(xk) ∀xi, xk



Covariance intuition

σ
x

σ y

σx = 0.2249, σy = 0.2588



Covariance intuition

Eigenvectors of Σ are the orthogonal directions where there is the
most spread in the underlying distribution.

The eigenvalues indicate the magnitude of the spread.



The Gaussian Distribution



Some Motivation

Where they’re used

• Modelling the class conditional pdfs. Frequently, a Gaussian
distribution is used or is a building block in modelling it.

Why they are so important

• They pop up everywhere.

• Need them to understand the optimal Bayes’ classifier

• Need them to understand neural networks.

• Need them to understand mixture models.



Unit variance Gaussian

The Gaussian distribution with expected value E [X] = 0 and variance
Var [X] = 1 has pdf:

pX(x) =
1√
(2π)

exp

(
−x

2

2

)

7
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General 1D Gaussian

The Gaussian distribution with expected value E [X] = µ and variance
Var [X] = σ2 has pdf:

pX(x) =
1

σ
√

(2π)
exp

(
−

(x− µ)2

2σ2

)

7
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Terminology:

Write X ∼ N (µ, σ2) to denote:

X is distributed as a Gaussian with mean µ and variance σ2.



The error function

If X ∼ N (0, 1) then erf is defined as

erf(x) =

∫ x

z=−∞
p(z) dz =

1√
2π

∫ x

z=−∞
exp

(
−z

2

2

)
dz

Cumulative Distribution of X

7
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Shorthand: We say X ~ N(*,)2) to mean “X is distributed as a Gaussian 
with parameters * and )2”.

In the above figure, X ~ N(100,152)

Also known 
as the normal 
distribution 

or Bell-
shaped curve 
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The Error Function

Assume X ~ N(0,1)

Define ERF(x) = P(X<x) = Cumulative Distribution of X
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Note if X ∼ N (µ, σ2) then P (X < x) = erf
(
x−µ
σ

)



The Central Limit Theorem

Assume X1, X2, . . . , XN are identically and independently distributed
(i.i.d.) continuous random variables.

Define

z = f(x1, x2, . . . , xN) =
1

N

N∑
i=1

xi

then

p(z)→ N (E [X], Var [X]) as N →∞.

Frequently used as a justification for assuming Gaussian noise.



Illustration

500 experiments were performed using a uniform distribution.

• For N = 1, one sample was drawn from the distribution and
its mean was recorded (for each of the 500 experiments). The
histogram of the result shows a uniform density.
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Central Limit Theorem
! The central limit theorem states that given a distribution with a mean !

and variance "2, the sampling distribution of the mean approaches a 
normal distribution with a mean (!) and a variance "i

2/N as N, the 
sample size, increases.

" No matter what the shape of the original distribution is, the sampling distribution 
of the mean approaches a normal distribution 

" Keep in mind that N is the sample size for each mean and not the number of 
samples

! A uniform distribution is used to illustrate the 
idea behind the Central Limit Theorem

" Five hundred experiments were performed using 
am uniform distribution

! For N=1, one sample was drawn from the 
distribution and its mean was recorded (for each of 
the 500 experiments)

" Obviously, the histogram shown a uniform density
! For N=4, 4 samples were drawn from the 

distribution and the mean of these 4 samples was 
recorded (for each of the 500 experiments) 

" The histogram starts to show a Gaussian shape
! And so on for N=7 and N=10
! As N grows, the shape of the histograms resembles 

a Normal distribution more closely

• For N = 4, 4 samples were drawn from the distribution and
the mean of these 4 samples was recorded (for each of the 500
experiments). The histogram starts to show a Gaussian shape.



Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

21

Central Limit Theorem
! The central limit theorem states that given a distribution with a mean !

and variance "2, the sampling distribution of the mean approaches a 
normal distribution with a mean (!) and a variance "i

2/N as N, the 
sample size, increases.

" No matter what the shape of the original distribution is, the sampling distribution 
of the mean approaches a normal distribution 

" Keep in mind that N is the sample size for each mean and not the number of 
samples

! A uniform distribution is used to illustrate the 
idea behind the Central Limit Theorem

" Five hundred experiments were performed using 
am uniform distribution

! For N=1, one sample was drawn from the 
distribution and its mean was recorded (for each of 
the 500 experiments)

" Obviously, the histogram shown a uniform density
! For N=4, 4 samples were drawn from the 

distribution and the mean of these 4 samples was 
recorded (for each of the 500 experiments) 

" The histogram starts to show a Gaussian shape
! And so on for N=7 and N=10
! As N grows, the shape of the histograms resembles 

a Normal distribution more closely

• Similarly for N = 7
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Central Limit Theorem
! The central limit theorem states that given a distribution with a mean !

and variance "2, the sampling distribution of the mean approaches a 
normal distribution with a mean (!) and a variance "i

2/N as N, the 
sample size, increases.

" No matter what the shape of the original distribution is, the sampling distribution 
of the mean approaches a normal distribution 

" Keep in mind that N is the sample size for each mean and not the number of 
samples

! A uniform distribution is used to illustrate the 
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" Five hundred experiments were performed using 
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! For N=1, one sample was drawn from the 
distribution and its mean was recorded (for each of 
the 500 experiments)

" Obviously, the histogram shown a uniform density
! For N=4, 4 samples were drawn from the 

distribution and the mean of these 4 samples was 
recorded (for each of the 500 experiments) 

" The histogram starts to show a Gaussian shape
! And so on for N=7 and N=10
! As N grows, the shape of the histograms resembles 

a Normal distribution more closely

• Similarly for N = 10
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" Five hundred experiments were performed using 
am uniform distribution

! For N=1, one sample was drawn from the 
distribution and its mean was recorded (for each of 
the 500 experiments)

" Obviously, the histogram shown a uniform density
! For N=4, 4 samples were drawn from the 

distribution and the mean of these 4 samples was 
recorded (for each of the 500 experiments) 

" The histogram starts to show a Gaussian shape
! And so on for N=7 and N=10
! As N grows, the shape of the histograms resembles 

a Normal distribution more closely As N grows the histogram increasingly resembles a Gaussian.



Bivariate Gaussian

Write random variable X =

(
X
Y

)
. Define X ∼ N (µ,Σ) to mean

p(x) =
1

2π|Σ|12
exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
where

µ =

(
µx
µy

)
Σ =

(
σ2
x σxy

σxy σ2
y

)
and Σ must be symmetric and non-negative definite.

It turns out for a Gaussian distribution E [X] = µ and Cov [X] = Σ.



General Gaussian

Have a random variable X =
(
X1, X2, . . . , Xm

)T
.

Then define X ∼ N (µ,Σ) as

pX(x) =
1

(2π)
m
2 |Σ|12

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
where

µ =


µ1

µ2
...
µm

 , Σ =


σ2

1 σ12 · · · σ1m

σ12 σ2
2 · · · σ2m

... ... . . . ...
σ1m σ2m · · · σ2

m


and Σ must be symmetric non-negative definite.



General Gaussian

µ =


µ1

µ2
...

µm

 , Σ =


σ2

1 σ12 · · · σ1m

σ12 σ2
2 · · · σ2m

... ... . . . ...

σ1m σ2m · · · σ2
m
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Axis-aligned Gaussian

µ =


µ1

µ2
...

µm

 , Σ =


σ2

1 0 · · · 0 0

0 σ2
2 · · · 0 0

... ... . . . ... ...

0 0 · · · σ2
m−1 0

0 0 · · · 0 σ2
m
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Spherical Gaussian

µ =


µ1

µ2
...

µm

 , Σ =


σ2 0 · · · 0 0

0 σ2 · · · 0 0
... ... . . . ... ...

0 0 · · · σ2 0

0 0 · · · 0 σ2
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Degenerate Gaussian

µ =


µ1

µ2
...

µm

 , |Σ| = 0



Recap

• Have seen the formulae for Gaussians

• You should have an intuition of how they behave

• Have some confidence in reading a Gaussian’s covariance matrix.

How can we transform a random variable with a non-diagonal
covariance matrix to one with a diagonal covariance matrix?



Eigenvectors and eigenvalues

Given an m×m matrix A.

Definition:

v an eigenvector of A if there exists a scalar λ (eigenvalue) such that

Av = λv

How to compute them:

For an eigenvector-eigenvalue pair of A:

Av = λv ⇒ Av − λv = 0

⇒ (A− λI)v = 0 ⇒
{
v = 0 trivial soln

(A− λI) is rank deficient



For the non-trivial solution when (A− λI) being rank deficient implies

det(A− λI) = 0 ⇒ λ
m

+ a1λ
m−1

+ · · ·+ am−1λ+ am︸ ︷︷ ︸
characteristic equation

= 0

Solve this characteristic equation to obtain possible values for λ and given those

then compute their corresponding eigenvector.

Some terminology:

Matrix formed by the column eigenvectors of A is called the modal matrix M :

M =

 ↑ ↑ ↑ ↑
v1 v2 v3 . . . vm
↓ ↓ ↓ ↓





Let Λ be the diagonal matrix with A’s eigenvalues on the main diagonal:

Λ =


λ1

λ2

λ3
. . .

λm


Matrix Λ is the canonical form of A.

Properties of A and implications for its eigenvalues:

A non-singular ⇒ All eigenvalues are non-zero.

A real and symmetric ⇒ All eigenvalues are real and
Eigenvectors associated with distinct eigenvalues are orthogonal.

A positive definite ⇒ All eigenvalues are positive.



Eigen-decomposition of A

If A has non-degenerate eigenvalues λ1, λ2, . . . , λm (no two λi, λj have the

same value) and M is A’s modal matrix then

AM = A[v1 v2 . . . vm]

= [Av1Av2 . . . Avm]

= [λ1v1 λ2v2 . . . λmvm] = MΛ

=⇒ A = MΛM
−1 ← the eigen-decomposition of A

Consequently:

A
2

= MΛ
2
M
−1
,

A
n

= MΛ
n
M
−1

for n = 1, 2, 3, ...

A
−1

= (MΛM
−1

)
−1

= MΛ
−1
M
−1



Interpretation

View matrix A as a linear transformation:

An eigenvector v represents an invariant direction of the
transformation.

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

8

Interpretation of eigenvectors and eigenvalues (1)
! If we view matrix A as a linear transformation, an eigenvector represents an 

invariant direction in the vector space
" When transformed by A, any point lying on the direction defined by v will remain on that 

direction, and its magnitude will be multiplied by the corresponding eigenvalue !

" For example, the transformation which rotates 3-d vectors about the Z axis has vector [0 0 1] 
as its only eigenvector and 1 as the corresponding eigenvalue

x1

x2

v

P

d

y1

y2

v

P

d’=!d

P’

y=Ax

x

y

z

" #T100v $%
%
%

&

'

(
(
(

)

* +
$

100
0!cos!sin
0!sin!cos

A

When transformed by A, any point lying on the direction defined by
v will remain on that direction, and its magnitude will be multiplied
by the corresponding eigenvalue λ.



Back to Covariance Matrices

Given Σ the covariance of a Gaussian distribution

Eigenvectors of Σ are the principal directions of the distribution.
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Interpretation of eigenvectors and eigenvalues (2)
! Given the covariance matrix ! of a Gaussian distribution

" The eigenvectors of ! are the principal directions of the distribution
" The eigenvalues are the variances of the corresponding principal directions

! The linear transformation defined by the eigenvectors of ! leads to vectors that 
are uncorrelated regardless of the form of the distribution

" If the distribution happens to be Gaussian, then the transformed vectors will be statistically 
independent

"#
$

%&
' ()((

)
* ( µ)(Xµ)(X

2
1exp

!)(2
1(x)f 1T

1/2N/2X
"
"
#
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* i

2
yi

N
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1(y)f i
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%
%
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&
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**
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N21

"

"
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y=MTx
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y2
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x2

v1
v2

.x1

.x2

Their eigenvalues are the variances in these principal direction.



Linear transformation defined by the eigenvectors of Σ

Obtain uncorrelated vector regardless of the form of the distribution.

Let M be the modal matrix of the covariance matrix Σ =⇒ ΣM = MΛ

Define the transformation: y = MTx

if x ∼ N (µ,Σ) then y ∼ N (µ,Λ) as Σ is a symmetric matrix with real values.

This in turn means y is a Gaussian random variable with diagonal covariance

matrix.
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Interpretation of eigenvectors and eigenvalues (2)
! Given the covariance matrix ! of a Gaussian distribution

" The eigenvectors of ! are the principal directions of the distribution
" The eigenvalues are the variances of the corresponding principal directions

! The linear transformation defined by the eigenvectors of ! leads to vectors that 
are uncorrelated regardless of the form of the distribution

" If the distribution happens to be Gaussian, then the transformed vectors will be statistically 
independent
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Interpretation of eigenvectors and eigenvalues (2)
! Given the covariance matrix ! of a Gaussian distribution

" The eigenvectors of ! are the principal directions of the distribution
" The eigenvalues are the variances of the corresponding principal directions

! The linear transformation defined by the eigenvectors of ! leads to vectors that 
are uncorrelated regardless of the form of the distribution

" If the distribution happens to be Gaussian, then the transformed vectors will be statistically 
independent
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Manipulations of Normally
Distributed random variables



Linear transforms remain Gaussian

Assume X is an m−dimensional Gaussian random variable

X ∼ N (µ,Σ)

Define Y to be a p−dimensional random variable with

Y = AX

where A is a p×m matrix. Then

Y ∼ N (Aµ, AΣAT )



Gaussian marginals are Gaussian

Let X = (X1, X2, . . . , Xm)T be a multivariate Gaussian random
variable and define subsets of its variables as follows

X =

(
U
V

)
with U =

X1
...
Xp

 and V =

Xp+1
...
Xm


If (

U
V

)
∼ N

((
µu
µv

)
,

(
Σuu Σuv
ΣTuv Σvv

))
Then U is also distributed as a Gaussian with U ∼ N (µu,Σuu).

How do we prove this using the result on the previous slide?



Adding 2 independent Gaussians

If X ∼ N (µX,ΣX) and Y ∼ N (µY,ΣY) and X ⊥⊥ Y then

X + Y ∼ N (µX + µY,ΣX + ΣY)

If X and Y are not independent but uncorrelated the above result
does not hold.



Conditional of a Gaussian

Assume that (
U
V

)
∼ N

((
µu
µv

)
,

(
Σuu Σuv
ΣTuv Σvv

))

then U |V ∼ N
(
µu|v,Σu|v

)
where

µu|v = µu + ΣTuv Σ−1
vv (V − µv)

Σu|v = Σuu − ΣTuv Σ−1
vv Σuv



Conditional of a Gaussian

Consider the marginal mean:

µu|v = µu + ΣTuv Σ−1
vv (V − µv)

When V = µv ⇒ the conditional mean of U is µu

Marginal mean is a linear function of V.

Consider the conditional covariance:

Σu|v = Σuu − ΣTuv Σ−1
vv Σuv

Conditional variance is ≤ than the marginal variance.

Conditional varaince is independent of the given value of V.



Gaussians and the chain rule

Let A be a constant matrix if

U |V ∼ N (AV,Σu|v) and V ∼ N (µv,Σvv)

then (
U
V

)
∼ N (µ,Σ)

with

µ =

(
Aµv
µv

)
and Σ =

(
AΣvvA

T + Σu|v AΣvv
(AΣvv)

T Σvv

)



Are these manipulations useful?

Bayesian inference

Consider the following problem:

In the world as a whole, IQs are drawn from a Gaussian N (100, 152).

If you take an IQ test you’ll get a score that, on average (over many
tests) will be your IQ. Because of noise on any one test the score
will often be a few points lower or higher than your true IQ. Thus
assume we have the conditional distribution

Score | IQ ∼ N (IQ, 102)

If you take the IQ test and get a score of 130 what is the most likely
value of your IQ given this piece of evidence?



IQ Example

Which distribution should we calculuate?

How can we get an expression for this distribution from the
distributions of Score | IQ and IQ and the manipulations we have
described?



Plan

This we know:

IQ ∼ N (100, 152), Score | IQ ∼ N (IQ, 152), Score = 130

Want to find the distribution p(IQ |Score = 130).

Plan:

• Use the chain rule to compute the distribution of
(

Score

IQ

)
from

distributions of IQ and Score | IQ

• Swap the order of the random variables to get
(

IQ

Score

)
’s

distribution



• From
(

IQ

Score

)
compute the conditional distribution to get the

distribution of IQ | (Score = 130)

What is the best estimate for test taker’s IQ?



Today’s assignment



Pen & Paper assignment

• Details available on the course website.

• You will be asked to perform some simple Bayesian reasoning.

• Mail me about any errors you spot in the Exercise notes.

• I will notify the class about errors spotted and corrections via the
course website and mailing list.



Consider this..

Mrs S. is found stabbed in the garden of her family home in the
USA. Her husband Mr. S. behaves strangely after her death and is
considered as a suspect.

On investigation the police discover that Mr S. had beaten up his
wife on at least nine previous occasions. The prosecution offers up
this information as evidence in favour of the hypothesis that Mr S is
guilty of the murder.

However, Mr S.’s lawyer disputes this by saying ”statistically, only
one in a thousand wife-beaters actually goes on to murder his wife.
So the wife beating is not strong evidence at all. In fact given the
wife-beating evidence alone, it’s extremely unlikely that he would
be the murderer of his wife - only a 1/1000 chance. You should
therefore find him innocent.”



The prosecution replies with these two following empirical facts. In
the USA it is estimated that 2 million woman are abused each year
by their partners. (Let’s assume there are 100 million adult women in
the USA). In 1994, 4739 women were victims of homicide, of those,
1326 women (28%) were killed by husbands and boyfriends.

Question:

Is the lawyer right to imply that the history of wife-beating does not
point to Mr S.’s being the murderer? Or is the lawyer’s reasoning
flawed? If the latter, what is wrong with his argument?


