
Lecture 4

Bayesian Decision Theory

• Likelihood Ratio Test
• Gaussian distributions and the Likelihood Ratio Test
• Probability of error
• Bayes’ risk

Perils of Over-fitting

Cross-Validation



Likelihood Ratio Test

Want to classify an object based on the evidence provided by a
measurement (a feature vector) x.

One decision rule is: Choose the class that is most probable given x.

Mathematically this equates to choose class i such that

P (ωi|x) ≥ P (ωj|x) for j = 1, . . . , C

For the 2-class problem the decision rule becomes:

Class (x) =

{
ω1 if P (ω1|x) > P (ω2|x)

ω2 if P (ω1|x) < P (ω2|x)



Likelihood ratio test

This Bayesian decision rule can be re-written:

Choose class ω1 if

P (ω1|x) > P (ω2|x),

⇐⇒ p(x |ω1)P (ω1)

p(x)
>
p(x |ω2)P (ω2)

p(x)
, Bayes’ Rule

⇐⇒ p(x |ω1)P (ω1) > p(x |ω2)P (ω2), eliminate p(x) > 0

⇐⇒ p(x |ω1)

p(x |ω2)︸ ︷︷ ︸
likelihood ratio

>
P (ω2)

P (ω1)
, as P (·) ≥ 0



Introduce the notation

Λ(x) ≡ p(x |ω1)

p(x |ω2)︸ ︷︷ ︸
likelihood ratio

and the 2-class Bayesian decision rule / Likelihood Ratio Test can be
written as

Class (x) =

ω1 if Λ(x) > P (ω2)
P (ω1)

ω2 if Λ(x) < P (ω2)
P (ω1)



An example

Derive a decision rule for the 2-class problem based on the Likelihood
Ratio Test assuming equal priors and class conditional densities:

p(x |ω1) =
1√
2π

exp

(
−(x− 4)2

2

)
, p(x |ω2) =

1√
2π

exp

(
−(x− 10)2

2

)



An example: Solution

Substitute the likelihoods and priors into the expressions in the LRT

Λ(x) =
(
√

2π)−1 exp (−.5(x− 4)2)

(
√

2π)−1 exp (−.5(x− 10)2)
,

P (ω2)

P (ω1)
=
.5

.5
= 1

Choose class ω1 if:

Λ(x) > 1

⇐⇒ exp (−.5(x− 4)
2
) > exp (−.5(x− 10)

2
)

⇐⇒ (x− 4)
2
< (x− 10)

2
, by taking logs and changing signs

⇐⇒ x < 7



The LRT decision rule
is:

Class (x) =

{
ω1 if x < 7

ω2 if x > 7
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Likelihood Ratio Test: an example
! Given a classification problem with the following class conditional densities, 

derive a decision rule based on the Likelihood Ratio Test (assume equal priors)

! Solution
" Substituting the given likelihoods and priors into the LRT expression:

" Simplifying the LRT expression:

" Changing signs and taking logs:

" Which yields:

" This LRT result makes sense from an intuitive point of 
view since the likelihoods are identical and differ only 
in their mean value

! How would the LRT decision rule change if, say, the priors were such that 
P(!1)=2P(!2) ?
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Question:

How does the LRT decision rule change if P (ω1) = 2P (ω2) ?



Multi-variate example

Assume we have a 2 class problem but this time x is multi-variate
and each p(x |ωi) is a multi-variate Gaussian:

p(x |ωi) =
1

(2π)
d
2 |Σi|

1
2

exp

(
−1

2
(x− µi)

T Σ−1
i (x− µi)

)

Let the prior probability for each class be P (ω1) and P (ω2).

The likelihood ratio test says we choose class ω1 when

p(x |ω1)

p(x |ω2)
>
P (ω2)

P (ω1)



⇐⇒
(2π)

−d2 |Σ1|
−1

2 exp
(
−1

2(x− µ1)T Σ−1
1 (x− µ1)

)
(2π)

−d2 |Σ2|
−1

2 exp
(
−1

2(x− µ2)T Σ−1
2 (x− µ2)

) > P (ω2)

P (ω1)

⇐⇒ −
1

2
log(|Σ1|)−

1

2
(x− µ1)

T
Σ
−1
1 (x− µ1) taking logs on both sides

+
1

2
log(|Σ2|) +

1

2
(x− µ2)

T
Σ
−1
2 (x− µ2)

> log(P (ω2))− log(P (ω1))

⇐⇒
1

2
x
T

(Σ
−1
2 − Σ

−1
1 )︸ ︷︷ ︸

W

x + (µ
T
1 Σ
−1
1 − µ

T
2 Σ
−1
2 )︸ ︷︷ ︸

bT

x + rearrange and group terms

1

2
(− log(|Σ1|) + log(|Σ2|)− µ

T
1 Σ
−1
1 µ1 + µ

T
2 Σ
−1
2 µ2)− log(P (ω2)) + log(P (ω1))︸ ︷︷ ︸

a

> 0

≡
1

2
x
T
Wx + b

T
x + a > 0 ⇐ quadratic expression



Bivariate example

Have a two class problem with

µ1 =

(
1
−1

)
,Σ1 =

(
.9 .4
.4 .3

)
, P (ω1) = .5 µ2 =

(
2.6
3

)
,Σ2 =

(
.4 −.2
−.2 .5

)
, P (ω2) = .5

class distributions decision boundaries partition of space



Bivariate example

Covariances same as the previous example but change in prior values

µ1 =

(
1
−1

)
,Σ1 =

(
.9 .4
.4 .3

)
, P (ω1) = .95 µ2 =

(
2.6
3

)
,Σ2 =

(
.4 −.2
−.2 .5

)
, P (ω2) = .05

class distributions decision boundaries partition of space



Another example

Have axis aligned covariance matrices:

µ1 =

(
1
−1

)
,Σ1 =

(
.1 0
0 1.1

)
, P (ω1) = .5 µ2 =

(
2.6
3

)
,Σ2 =

(
.2438 0

0 .6562

)
, P (ω2) = .5

class distributions decision boundaries partition of space



Another example

Each class has the same covariance matrix:

µ1 =

(
1
−1

)
,Σ1 =

(
.4 −.2
−.2 .5

)
, P (ω1) = .5 µ2 =

(
2.6
3

)
,Σ2 =

(
.4 −.2
−.2 .5

)
, P (ω2) = .5

class distributions decision boundaries partition of space

What is the different with the decision boundary in this case?



Equal covariance matrices

Each class has the same covariance matrix

=⇒ decision boundary is a plane (line).

Remember, choose class ω1 if
1

2
x
T
Wx + b

T
x + a > 0 where

W = Σ
−1
2 − Σ

−1
1

b
T

= (µ
T
1 Σ
−1
1 − µ

T
2 Σ
−1
2 )

a = ...

In the case of equal covariance matrices what is W equal to?

Write down the expression for the decision boundary.



An aside: Mahalanobis distance

You may have heard of the Mahalanobis distance. It is defined as

‖x− y‖2Σ−1 = (x− y)TΣ−1(x− y)
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Case 3: !i=! (! non-diagonal)
! In this case, all the classes have the same covariance matrix, but this is no longer diagonal
! The quadratic discriminant becomes

! Eliminating the term log|"|, which is constant for all classes

" The quadratic term is called the Mahalanobis distance, a very important distance in Statistical PR

! The Mahalanobis distance is a vector distance that 
uses a "-1 norm

" "-1 can be thought of as a stretching factor on the space
" Note that for an identity covariance matrix ("=I), the 

Mahalanobis distance becomes the familiar Euclidean distance

# $ # $
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DistancesMahalanobi This is a vector distance that uses a Σ−1

norm.

• Σ−1 can be thought as a stretching

factor on the space.

• For Σ = I the Mahalanobis distance

becomes the Euclidean distance.



Discriminant functions

All the decision rules presented in this lecture have the same structure:

for each x in feature space choose class ωi which maximizes (or minimizes)

some measure gi(x)

There is a set of discriminant functions {gi(x)}Ci=1 and decision rule

assign x to class ωi if gi(x) > gj(x) ∀j 6= i

The three basic decision rules in this lecture are Bayes, MAP and
MaximumLikelihood in terms of Discriminant Functions:

Criterion Discriminant Function

Bayes gi(x) = R(αi | x)

MAP gi(x) = P (ωi | x)

ML gi(x) = p(x |ωi)



Discriminant fns for Normally distributed classes

The MAP decision rule can be formulated as a family of discriminant
functions

Choose class ωi if gi(x) > gj(x) ∀i 6= j with gi(x) = P (ωi | x)

For classes that are normally distributed, this family can be reduced
to very simple expressions.

Using Bayes’ rule the MAP discriminant function becomes

gi(x) =
p(x |ωi)P (ωi)

p(x)

=
1

(2π)
d
2 |Σi|

1
2

exp

(
−

1

2
(x− µi)

T
Σ
−1
i (x− µi)

)
P (ωi)

p(x)



Eliminating constant terms

gi(x) = |Σi|−1/2
exp

(
−

1

2
(x− µ)

T
Σ
−1
i (x− µ)

)
P (ωi)

Taking the log since it is a monotonically increasing function

gi(x) = −1

2
(x− µi)

TΣ−1
i (x− µi)−

1

2
log (|Σi|) + log (P (ωi))



How good is this decision rule?

Performance of a decision rule is measured by its

Probability of error:

P (error) =

C∑
i=1

P (error |ωi)P (ωi)

The class conditional probability of error is:

P (error |ωi) =
∑
j 6=i

P (choose ωj |ωi) =
∑
j 6=i

∫
Rj
p(x |ωi) dx

where Rj = {x : Class (x) = ωj}.



For the 2-class problem

P (error) = P (ω1)

∫
R2

p(x |ω1) dx︸ ︷︷ ︸
ε1

+ P (ω2)

∫
R1

p(x |ω2) dx︸ ︷︷ ︸
ε2

ε1 is the integral of the likelihood p(x |ω1) over the region where ω2

is chosen by the decision rule.

ε2 is the integral of the likelihood p(x |ω2) over the region where ω1

is chosen by the decision rule.



Back to the 1d example

For the decision rule of the previous example, the value of the
integrals, ε1 and ε2, are depicted below.

Since we assumed equal priors,
then P (error) = .5 (ε1 + ε2)
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The probability of error (1)
! The performance of any decision rule can be measured by its probability of error P[error] 

which, making use of the Theorem of total probability (Lecture 2), can be broken up into

! The class conditional probability of error P[error|!i] can be expressed as

! So, for our 2-class problem, the probability of error becomes

" where "i is the integral of the likelihood P(x|!i) over the region Rj where we choose !j

! For the decision rule of the previous example, the integrals "1 and "2 are depicted below
" Since we assumed equal priors, then P[error] = ("1 + "2)/2

! Compute the probability for the example above 

#
$

$
C

1i
ii ]]P[!!|P[errorP[error]

%$$
jR

iiji dx)!|x(P]!|!choose[P]!|error[P

!!"!!#$!!"!!#$
2

1

1

2

"

R
22

"

R
11 dx)!|x(P]![Pdx)!|x(P]![P]error[P %% &$

R1: say !1

x

R2: say !2

P(x|!1) P(x|!2)

4 10

"2 "1

Write out the expression for P (error) for this example.



Back to the 1d example

The integrals ε1 and ε2 are:

ε1 = (2π)
−1

2

∫ ∞
x=7

exp(−.5(x− 4)
2
) dx, ε2 = (2π)

−1
2

∫ 7

x=−∞
exp(−.5(x− 10)

2
) dx

= .5 ∗ (1− erf((7− 4)/
√

2)) = .5 + .5 ∗ erf((7− 10)
√

2))

= .0013 = .0013
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The probability of error (1)
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Probability of error

Thinking about the 2-class problem:

not all decisions are equally good wrt minimizing P (error).

For our example consider this (silly) rule:

Class (x) =

{
ω1 if x < −100

ω2 if x ≥ −100

What is the P (error) for this decision rule?



Probability of error

Thinking about the 2-class problem:

not all decisions are equally good wrt minimizing P (error).

For our example consider this (silly) rule:

Class (x) =

{
ω1 if x < −100

ω2 if x ≥ −100

For this rule ε1 ≈ 1 and ε2 ≈ 0 =⇒ P (error) ≈ .5

The P (error) for the rule defined by the likelihood ratio test is .0013.

Thus the likelihood ratio test classifier is much better then our silly
classifier in terms of minimizing the probability of error. In fact....



Bayes’ Error Rate

For any decision problem, the minimum probability of error is achieved
by the Likelihood Ratio Test decision rule. This probability of error
is called the Bayes Error Rate and is the BEST any classifier can
achieve.



Let’s think for a moment

Our goal:

We are interested classifying and recognising images in a robust and
efficient manner.

Recap:

You’ve just been told that once you’ve decided on the representation
of your object then using a Bayes’ classifier will minimize your
probability of error.

Any problem here:

When can we achieve the Bayes Error Rate? What do we need to
know explicitly? How often do we know these quantities exactly?
Can we estimate the Bayes Error Rate from training data?



Estimating class conditional densities

Given labelled training data, from this will estimate the class
conditional densities and build a classifier. If you know how you
are going to model p(x |ωi) you must also

• know how to fit the parameters of my model from the training examples

• estimate P (ω1) and P (ω2)

However, it is not always obvious what the best model is and how to
recognize it. Therefore one must also

• estimate how well the classifier will perform on unseen data

• estimate the best value of the tunable parameters of this model



The learning problem

Hypothesis Class We consider some restricted set P of probability
functions p : Rd → R+ which in turn defines a set of mappings
fp : Rd → {0, 1} via Bayes’ Rule.

Estimation On the basis of a training set of examples and labels
X = {(x1, y1), . . . , (xn, yn)}, find an estimate p̂ ∈ P and in turn
f̂ ≡ fp̂.

Evaluation Measure how well f̂ generalizes to unseen examples,
that is see whether f̂(xnew) = ynew for a large number of xnew

The problem of pdf parameter estimation is generally solved via
maximum likelihood estimation (will go through this in more detail
later on).



Training and test performance

Assume each training and test example-label pair, (x, y), is drawn
independently at random from the same but unknown population of
examples and labels. Represent this population as a joint pdf p(x, y).

Each example is a sample from this distribution (xi, yi) ∼ p. Then
define

Empirical error (a.k.a. Training Error):

1

n

n∑
i=1

(yi − fp̂(xi ; X ))
2

Expected loss (a.k.a. Test Loss):

E(x,y)∼p{L( y, fp̂(xi;X ) )}



where L( y, fp̂(xi;X ) ) is loss function which has a high value if the
true label of an example does not match its predicted label and zero
otherwise.

The training error based on a few sampled examples and labels
serves as a proxy for the test performance measured over the whole
population.

Is this a good idea?



Example

Consider these two class probability distributions which describe
exactly the distribution of the feature vector for each class.

true p(x |ω1) true p(x |ω2) p(x |ω1) and p(x |ω2)



Training Data

Initially have 1000 labelled training examples from each class. From
this data we will estimate the p(x |ωi)’s using 2d histograms:

Class ω1 Class ω2



Estimate p(x |ωi)’s

Calculate histograms from 1000 training points from each class.
These estimate the class conditional probability distributions. Here
we have a bin width of .1 in each dimension. This bin size defines
which class of pdfs can be accurately model.

true p(x |ω1) estimated p̂(x |ω1) true p(x |ω2) estimated p̂(x |ω2)



Classification results on training data

Classify, using the likelihood ratio test and the estimated p(x |ωi)’s,
the training points:

Training points from class ω1 Training points from class ω2

true p(x |ω1) estimated p̂(x |ω1) true p(x |ω2) estimated p̂(x |ω2)

On this data the performance is okay. It is similar to that of the true
Bayes’ classifier.



Classification results

Classify, using the likelihood ratio test and the estimated p̂(x |ωi)’s,
unseen test points generated by the true class conditionals:

Test points from class ω1 Test points from class ω2

true p(x |ω1) estimated p̂(x |ω1) true p(x |ω2) estimated p̂(x |ω2)

Have good performance on the test data. Very similar to that of the
true Bayes’ classifier.



Estimate p(x |ωi)’s

Calculate histograms from 1000 training points from each class.
These estimate the class conditional probability distributions. Here
we have a bin width of .05 in each dimension. Getting more detail..

true p(x |ω1) estimated p̂(x |ω1) true p(x |ω2) estimated p̂(x |ω2)



Classification results on training data

Classify, using the likelihood ratio test and the estimated p(x |ωi)’s,
the training points:

Training points from class ω1 Training points from class ω2

true p(x |ω1) estimated p̂(x |ω1) true p(x |ω2) estimated p̂(x |ω2)

On this data the performance is okay. It is similar to that of the true
Bayes’ classifier.



Classification results

Classify, using the likelihood ratio test and the estimated p̂(x |ωi)’s,
unseen test points generated by the true class conditionals:

Test points from class ω1 Test points from class ω2

true p(x |ω1) estimated p̂(x |ω1) true p(x |ω2) estimated p̂(x |ω2)

Performance is quite satisfactory.



Estimate p(x |ωi)’s

Calculate histograms from 1000 training points from each class.
These estimate the class conditional probability distributions. Here
we have a bin width of .01 in each dimension.

true p(x |ω1) estimated p̂(x |ω1) true p(x |ω2) estimated p̂(x |ω2)



Classification results on training data

Classify, using the likelihood ratio test and the estimated p̂(x |ωi)’s,
the training points:

Training points from class ω1 Training points from class ω2

true p(x |ω1) estimated p̂(x |ω1) true p(x |ω2) estimated p̂(x |ω2)

Fantastic performance - should we be worried?



Classification results

Classify, using the likelihood ratio test and the estimated p̂(x |ωi)’s,
unseen test points generated by the true class conditionals:

Test points from class ω1 Test points from class ω2

true p(x |ω1) estimated p̂(x |ω1) true p(x |ω2) estimated p̂(x |ω2)

Terrible performance - we have overfit to the training data.



Complexity and over-fitting

With limited training examples our last histogram combined with
Bayes’ rule achieves classification with close to zero training error,
but it has a large test (generalization) error.

training error:
1

n

n∑
t=1

(yt − fp̂(xi;X ) )
2 ≈ 0

test error: E(x,y)∼P (y − fp̂(xi;X ) )
2 � 0

where fp̂(xi;X ) in this case is our estimated Bayes’ classifier
estimated from all the training data, X .

Over-fitting occurs when

training error no longer bears any relation to the generalization error.

Warning: If your model is too flexible you will most likely over-fit.



Avoid over-fitting: cross validation

Cross Validation allows us to estimate the generalization error based
on training examples alone.

Leave-one-out cross-validation treats each training example in turn
as a test example:

CV =
1

n

n∑
i=1

(yi − fp̂(xi X\(xi, yi)) )2

where fp̂(xi; X\(xi, yi)) in this case is our estimated Bayes’ classifier
estimated from all the training data X except data-point (xi, yi).



Avoid over-fitting: cross validation

Cross Validation allows us to estimate the generalization error based
on training examples alone.

Leave-one-out cross-validation is quite computationally expensive so
another cross validation technique is K-fold cross-validation. In
this case the training data is partitioned into K sets - X1,X2, . . . ,XK
and

CV =
1

n

K∑
i=1

∑
(x,y)∈Xi

(y − fp̂(x;X\Xi) )2

where fp̂(xi;X\Xi), in this case, is our estimated Bayes’ classifier
estimated from all the training data X minus Xi.



Cross validation: model selection

As cross validation gives an estimate of the generalization error of a
classifier it can be used to estimate from a set of classifiers which
one performs the best.

So in our histogram example cross-validation could be used to
estimate the best bin width for the distribution we are trying to
model.



Naive Bayes

For dimensions of x = (x1, . . . , xd) greater than 3, we have a
problem modelling it with a histogram as one is increasingly prone
to over-fitting. Thus frequently one models all the dimensions as
independent given the class ωi

p(x |ωi) =

d∏
j=1

p(xj |ωi)

The posterior is expressed as

P (ωi |x) ∝ p(x |ωi)P (ωi) = P (ωi)

d∏
j=1

p(xj |ωi)



Building a classifier based on this posterior is known as performing
Naive Bayes.

Naive Bayes is very computationally cheap and allows the use of very
high dimensional x. And in many cases it can produce surprisingly
good classification results as it is not particularly prone to over-fitting.

If p(x |ωi) ∼ N (µ,Σ), Naive Bayes is equivalent to assuming what
about Σ?

Given many training xi’s what ways have we learnt to estimate
p(x |ωi)?



Estimate p(x |ωi)’s with Naive Bayes

Return to our previous data and fit a histogram independently to
each dimension and multiply them together for the joint likelihood.

true distributions bin = .01 bin = .05 bin = .1



Classification results with Naive Bayes

Classify unseen test points generated by the true class conditionals,
using the likelihood ratio test and the naively estimated p(x |ωi)’s.

Class ω1 points

Class ω2 points

optimal classifier bin = .01 bin = .05 bin = .1

Differences to the previous results??



Bayes’ Risk

Which misclassification is worse and why ?

- classifying a faulty airplane as a safe airplane

- classifying a safe airplane as a faulty airplane



Bayes’ Risk

Which misclassification is worse and why ?

- classifying a faulty airplane as a safe airplane
puts people’s lives in danger

- classifying a safe airplane as a faulty airplane
costs the airline company money

Not all misclassifications are equal!



Bayes’ Risk

Formalize this concept in terms of a cost function Cij.

Let Cij denote the cost of choosing class ωi when ωj is the
true class.

Bayes’ Risk is the expected value of the cost

E [C] =

2∑
i=1

2∑
j=1

Cij P (decide ωi, ωj true class)

=

2∑
i=1

2∑
j=1

Cij p(x ∈ Ri |ωj)P (ωj)



Bayes’ Risk

What is the decision rule that minimizes the Bayes’ Risk ?

• First note: p(x ∈ Ri |ωj) =
∫
x∈Ri

p(x |ωj) dx

• Bayes’ Risk is equal to:

E [C] =

∫
R1

[C11 P (ω1) p(x |ω1) + C12 P (ω2) p(x |ω2)] dx+∫
R2

[C21 P (ω1) p(x|ω1) + C22 P (ω2) p(x |ω2)] dx

• Now remember∫
R1

p(x |ωj) dx +

∫
R2

p(x |ωj) dx =

∫
R1∪R2

p(x |ωj) dx = 1.



E [C] =C11 P (ω1)

∫
R1

p(x |ω1) dx + C12 P (ω2)

∫
R1

p(x |ω2) dx+

C21 P (ω1)

∫
R2

p(x |ω1) dx + C22 P (ω2)

∫
R2

p(x |ω2) dx+

C21 P (ω1)

∫
R1

p(x |ω1) dx + C22 P (ω2)

∫
R1

p(x |ω2) dx + ← +A

−C21 P (ω1)

∫
R1

p(x |ω1) dx− C22 P (ω2)

∫
R1

p(x |ω2) dx ← −A

=C21 P (ω1)

∫
R1∪R2

p(x |ω1) dx + C22 P (ω2)

∫
R1∪R2

p(x |ω2) dx +

(C12 − C22)P (ω2)

∫
R1

p(x |ω2) dx− (C21 − C11)P (ω1)

∫
R1

p(x |ω1) dx

=C21 P (ω1) + C22 P (ω2) +

(C12 − C22)P (ω2)

∫
R1

p(x |ω2) dx− (C21 − C11)P (ω1)

∫
R1

p(x |ω1) dx



We want to find the region R1 that minimizes the Bayes’ Risk. From
the previous slide we see the first two terms of E [C] are constant
with respect to R1. Thus the optimal region is:

R∗1 = arg min
R1

{∫
R1

[(C12 − C22)P (ω2)p(x |ω2)− (C21 − C11)P (ω1)p(x |ω1)] dx

}

= arg min
R1

{∫
R1

g(x) dx

}

Note we are assuming C21 > C11 and C12 > C22, that is the cost of
a misclassification is higher than the cost of a correct classification.
Thus:

(C12 − C22) > 0 AND (C21 − C11) > 0



Bayes’ Risk (2)

Momentarily forget about the specific expression of g(x). Consider
the type of decision region R∗1 we are looking for. The intervals that
minimize the integral

∫
R1
g(x) dx are those where g(x) < 0

Thus choose R∗1 such that

(C21 − C11)P (ω1)p(x |ω1) > (C12 − C22)P (ω2)p(x |ω2)



Rearranging the terms yields:

p(x |ω1)

p(x |ω2)
>

(C12 − C22)P (ω2)

(C21 − C11)P (ω1)

Therefore we obtain the decision rule:

A Likelihood Ratio Test

Class (x) =


ω1 if p(x |ω1)

p(x |ω2) >
(C12−C22)P (ω2)
(C21−C11)P (ω1)

ω2 if p(x |ω1)
p(x |ω2) <

(C12−C22)P (ω2)
(C21−C11)P (ω1)



Bayes’ Risk: An example

Consider the following 2 class classification problem. The likelihood
functions for each class are:

p(x |ω1) = (2π3)−
1
2 exp

(
−.5x2/3

)
, p(x |ω2) = (2π)−

1
2 exp

(
−.5 (x− 2)2

)

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
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The Bayes Risk: an example
! Consider a classification problem with two classes 

defined by the following likelihood functions

" Sketch the two densities
" What is the likelihood ratio?
" Assume P[!1]=P[!2]=0.5, C11=C22=0, C12=1 and C21=31/2. 

Determine a decision rule that minimizes the probability of 
error
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The priors are: P (ω1) = P (ω2) =
.5

Define the (mis)classification costs
as: C11 = C22 = 0, C12 =
1, C21 =

√
3

Problem: Determine a decision rule minimizing the Bayes’ risk.



Bayes’ Risk: an example

Solution: Λ(x) =
(2π3)

−1
2 exp

(
−.5x2/3

)
(2π)
−1

2 exp (−.5(x−2)2)
=

(3)
−1

2 exp
(
−.5x2/3

)
exp (−.5(x−2)2)

.

Choose class ω1 if Λ(x) >
.5(1− 0)

.5(
√

3− 0)

⇐⇒
(3)−

1
2 exp

(
−.5x2/3

)
exp (−.5(x− 2)2)

> 1

⇐⇒ exp
(
−.5x2

/3
)
> exp

(
−.5(x− 2)

2
)

⇐⇒ −
1

2

x2

3
>

1

2
(x− 2)

2

⇐⇒ x
2 − 6x+ 6 > 0

⇐⇒ x > 4.73 and x < 1.27
Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University
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The Bayes Risk: an example
! Consider a classification problem with two classes 

defined by the following likelihood functions

" Sketch the two densities
" What is the likelihood ratio?
" Assume P[!1]=P[!2]=0.5, C11=C22=0, C12=1 and C21=31/2. 

Determine a decision rule that minimizes the probability of 
error
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Today’s programming
assignment



Programming Assignment

• Details available on the course website.

• You will write Matlab functions to fit a multi-variate Gaussian
distribution to skin colour data and also to background data.
Using these Gaussian models you will then classify unseen pixels
as skin or non-skin based on a likelihood ratio test.

• Mail me about any errors you spot in the Exercise notes.

• I will notify the class about errors spotted and corrections via the
course website and mailing list.


