
Lecture 5

• Nearest Neighbours and Non-parametric Density Estimation

– Simple approximation of any probability density function given
training data.

• Nearest Neighbours and Non-Bayesian Classification

– A classifier learned directly from labeled training data without
estimating any probabilistic structure.

Nearest Neighbours

and

Non-parametric Density
Estimation

Remember..

Bayesian Decision Theory has shown us how to design an optimal
classifier if we know the prior probabilities P (ωi) and the class-
conditional densities p(x |ωi).

What is this optimal classifier?

Remember..

It is a decision rule based on the Likelihood Ratio Test:

Class (x) =

ω1 if p(x |ω1)
p(x |ω2) ≥

P (ω2)
P (ω1)

ω2 if p(x |ω1)
p(x |ω2) <

P (ω2)
P (ω1)

This classifier minimizes the probability of error: P (error).

Potential stumbling block

Unfortunately, we rarely have complete knowledge of these class-
conditional densities or the prior probabilities.

p(x |ωi) = ?? P (ωi) = ??

However, we can often find training data that include particular
representatives of the patterns we want to classify. Can obtain

x1,x2, . . . ,xn sampled from p(x |ωi)

Density estimation

Given

x1,x2, . . . ,xn sampled from p(x |ωi)

Want to estimate p(x |ωi).

HOW ?

Density estimation

Approach I:

Parametric Assume some parametric form for the conditional
densities.

For example assume each one is a multivariate Gaussian:

p(x |ωi) = N (µi,Σi)

Estimate its parameters, (µ̂i Σ̂i), from the training examples
x1,x2, . . . ,xn.

Then use the resulting estimates as if they were the true values
and perform classification using the Bayesian decision rule.
That is set: µi = µ̂i and Σi = Σ̂i

Technical Interlude: MLE

Maximum Likelihood Estimation is a fundamental part of data
analysis. It is used frequently used for parameter estimation.

Suppose you have x1,x2, . . . ,xn (i.i.d) with each xi ∼ p(x |θ).
Then the MLE of θ is defined as

θ
MLE

= arg max
θ

p(x1, x2, . . . , xn | θ)

= arg max
θ

n∏
i=1

p(xi | θ)

= arg max
θ

n∑
i=1

log p(xi | θ)

Will quickly review the general approach when x is univariate.

Learning univariate Gaussians from data

Suppose you have x1, x2, . . . , xn (i.i.d) with each xi ∼ N (µ, σ2).

If you know σ but not µ then: µMLE = arg max
µ

p(x1, x2, . . . , xn |µ, σ2)

Log-likelihood scores for 3 different µ values

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

p(
x

|µ
, σ

)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

p(
x

|µ
, σ

)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

p(
x

|µ
, σ

)

µtry = 5.5 µtry = 4 µtry = 4.5

L = −80.4257 L = −109.7614 L = −87.4829

Learning univariate Gaussians from data

Suppose you have x1, x2, . . . , xn (i.i.d) with each xi ∼ N (µ, σ2).

Say you know σ but not µ, then

µMLE = arg max
µ

p(x1, x2, . . . , xn |µ, σ2)

Graph of log-likelihood scores for different µ’s

3 3.5 4 4.5 5 5.5 6 6.5 7
−200

−180

−160

−140

−120

−100

−80

−60

µ

lo
g−

lik
el

ih
oo

d

General MLE strategy for a scalar

Task Find MLE θ assuming known form of p(Data | θ, stuff)

1. Write down the log-likelihood of the data

L = log p(Data | θ, stuff) (=

n∑
i=1

log p(xi | θ, stuff))

2. Work out ∂L
∂θ

3. Set ∂L
∂θ = 0 to find the maximum, creating an equation in θ and

solve for θ.

4. Check you’ve found a maximum rather than a minimum or saddle-
point and be careful if θ is constrained.

Learning univariate Gaussians from data

µ
MLE

= arg max
µ

p(x1, x2, . . . , xn |µ, σ2
)

= arg max
µ

n∏
i=1

p(xi |µ, σ2
)

= arg max
µ

n∑
i=1

log p(xi |µ, σ2
)

= arg max
µ

− n log σ −
n

2
log 2π +

n∑
i=1

−
(xi − µ)2

2σ2

= arg min
µ

n∑
i=1

(xi − µ)
2

The MLE µ

0 =
∂L
∂µ

=
∂

∂µ

n∑
i=1

(xi − µ)2 = −
n∑
i=1

2 (xi − µ)

Thus

µMLE =
1

n

n∑
i=1

xi

The best estimate of the mean of a distribution is the mean of the
sample!

General MLE strategy

Suppose θ = (θ1, θ2, . . . , θp)
T is a vector of parameters

Task Find MLE θ assuming known form of p(Data |θ, stuff)

1. Write down the log-likelihood of the data

L = log p(Data | θ, stuff)(=

n∑
i=1

log p(xi | θ, stuff))

2. Calculate ∂L
∂θ =

(
∂L
∂θ1
, ∂L

∂θ2
, · · · , ∂L

∂θp

)T
3. Solve the set of simultaneous equations

∂L
∂θ1

= 0,
∂L
∂θ2

= 0, · · · ,
∂L
∂θp

= 0

4. Check you’ve found a maximum.

Learning univariate Gaussians from data

Suppose you have x1, x2, . . . , xn (i.i.d) with each xi ∼ N (µ, σ2).

You don’t know µ or σ:

Log-likelihood scores for 3 different (µ, σ) values

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

p(
x

|µ
, σ

)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

p(
x

|µ
, σ

)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

p(
x

|µ
, σ

)

µtry = 5.2, σtry = .8 µtry = 4.8, σtry = 1.4 µtry = 4.9, σtry = .7

L = −83.7677 L = −80.2036 L = −94.8745

Learning univariate Gaussians from data

Suppose you have x1, x2, . . . , xn (i.i.d) with each xi ∼ N (µ, σ2).

You don’t know µ or σ. Find it by maximizing the log-likelihood.

Log-likelihood scores as µ and σ vary

µ
σ

 3 3.5 4 4.5 5 5.5 6 6.5 7

 0.5

0.75

 1

1.25

 1.5

1.75

 2

2.25

 2.5

2.75

 3

Learning univariate Gaussians from data

Suppose you have x1, x2, . . . , xn (i.i.d) with each xi ∼ N (µ, σ2).

You don’t know µ or σ. Find it by maximizing the log-likelihood.

In this case can solve the optimization problem analytically:

The log-likelihood

L = log p(x1, x2, . . . , xn |µ, σ2
) =

n∑
i=1

log p(xi |µ, σ2
)

= −n log σ −
n

2
log 2π −

1

2σ2

n∑
i=1

(xi − µ)
2

Optimization of the log-likelihood

∂L
dµ

=
1

σ2

n∑
i=1

(xi − µ) = 0 =⇒ µ
MLE

=
1

n

n∑
i=1

xi

∂L
dσ

= −
n

σ
+

2

2σ3

n∑
i=1

(xi − µ)
2

= 0 =⇒ σ
2
MLE =

1

n

n∑
i=1

(xi − µMLE
)
2

Density estimation

Approach II:

Non-Parametric Make no assumptions about the form of the
underlying class-conditionals and estimate them completely from
the training data.

Why non-parametric ?

• Common parametric forms do not always fit the densities actually
encountered in practice.

• In addition, most of the classical parametric densities are unimodal,
whereas many practical problems involve multi-modal densities.

• Non-parametric methods can be used with arbitrary distributions
and without the assumption that the forms of the underlying
densities are known.

Non-parametric density estimation: How?

Given: Suppose n samples x1, . . . ,xn are drawn i.i.d. (independently
and identically distributed) from a probability density function p(x).

Probability of a sample landing in a region

The probability, PR, a vector x ∼ p will fall in a region R is given by

PR =

∫
x′∈R

p(x′) dx′

R

p(x)

x

Probability of k samples landing in a region

The probability 1 of the n training points will fall in R is

P
(1)
R =

n∑
i=1

PR (1− PR)n−1︸ ︷︷ ︸
⇓

= nPR (1− PR)n−1

R

p(x)

x

The probability 2 of the n training points will fall in R is

P
(2)
R =

n−1∑
i=1

n∑
j=i+1

P 2
R (1− PR)n−2︸ ︷︷ ︸
⇓

=
1

2
n(n− 1)P 2

R (1− PR)n−2

R

p(x)

x

The probability k of the n will fall in R is given by the binomial law

P
(k)
R =

(
n

k

)
P kR (1− PR)n−k

Expected number of samples landing in region R

The expected value of k is

E [k] =

n∑
k=0

k P
(k)
R =

n∑
k=0

k
(n
k

)
P
k
R (1− PR)

n−k
=

n∑
k=1

k
(n
k

)
P
k
R (1− PR)

n−k

= nPR

n−1∑
k′=0

(n− 1

k′

)
P
k′
R (1− PR)

n−1−k′

= nPR (PR + (1− PR))
n−1

, as (x+ y)n =
∑n

k=0

(n
k

)
xkyn−k

= nPR

If k samples land in R what is a good estimate for PR?

P (k samples land in R) =
(n
k

)
P
k
R (1− PR)

n−k

The MLE for PR is calculated via the constraint

dP (k samples land in R)

dPR
=
(n
k

)
k P

k−1
R (1− PR)

n−k
+
(n
k

)
P
k
R (n− k) (1− PR)

n−k−1

=
(n
k

)
P
k−1
R (1− PR)

n−k−1
(k (1− PR) + (n− k)PR)

=
(n
k

)
P
k−1
R (1− PR)

n−k−1
(k − nPR) = 0

Solving this constraint we get

P̂R =
k

n

Non-parametric density estimation: How?

If we assume that p(x) is continuous and R is small enough so that
p(x) does not vary significantly in it, we can approximate

R

p(x)

x

PR =

∫
x′∈R

p(x′) dx′

≈ p(x)

∫
x′∈R

dx′ for some x ∈ R

= p(x)V

If we approximate PR with k
n the density estimate becomes

p(x) ≈ k

nV

Histogram method

A very simple method is to partition the
space into a number of equally-sized cells
(bins) and compute a histogram.

Histogram Method

• A very simple method is
to partition the space into
a number of equally-sized
cells (bins) and compute
a histogram.

Figure 1: Histogram in one dimension.

• The estimate of the density at a point x becomes

p(x) =
k

nV
where n is the total number of samples, k is the number
of samples in the cell that includes x, and V is the
volume of that cell.

CS 551, Spring 2006 5/21

Histogram in one dimension

The estimate of the density at a point x becomes

p(x) =
k

nV

where n is the total number of samples, k is the number of samples in the cell

that includes x, and V is the volume of that cell.

Histogram method

Although the histogram method is very easy to implement, it is
usually not practical in high-dimensional spaces due to the number
of cells.

Many observations are required to prevent the estimate being zero
over a large region.

Non-parametric density estimation

Have computed the general expression for non-parametric density
estimation:

p(x) ∼=
k

nV
where


V is the volume surrounding x

n is the total number of examples

k is the number of examples inside V

Approach I to computing this estimate:

Fix the volume V and count the number k of data points inside V .

This is the histogram method.

Non-parametric density estimation

Have computed the general expression for non-parametric density
estimation:

p(x) ∼=
k

nV
where


V is the volume surrounding x

n is the total number of examples

k is the number of examples inside V

Approach II to computing this estimate:

Fix the value of k and determine the minimum volume V that
encompasses k points in the dataset

This gives rise to the k Nearest Neighbour (kNN) approach

kNN density estimation

In the kNN method grow the volume surrounding the estimation
point x until it encloses a total of k data points

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

3

kNN Density Estimation (1)
! In the kNN method we grow the volume surrounding the estimation

point x until it encloses a total of k data points
! The density estimate then becomes

" Rk(x) is the distance between the estimation point x and its k-th closest neighbor
" cD is the volume of the unit sphere in D dimensions, which is equal to

! Thus c1=2, c2=!, c3=4!/3 and so on

(x)RcN
k

NV
kP(x) D

kD ""
#$

% & % &1D/2!D/2
c

D/2D/2

D '
##
!
""

R

Vol=!R2

x
2

RN

k
P(x)

"
#

The density estimate then becomes

p(x) ∼=
k

nV
=

k

n cdRdk(x)

where

• Rd
k(x) is the distance between the estimation point x and its k-th closest

neighbour,

• cd is the volume of the unit sphere in d dimensions, equal to

cd =
π
d
2

Γ(d2 + 1)

(Remember Γ(n+ 1) = nΓ(n) and Γ(1) = 1,Γ(1
2) =

√
π)

• Thus c1 = 2, c2 = π, c3 = 4π
3 and so on

kNN density estimation

Unfortunately, the estimates obtained with the kNN method are
frequently not very satisfactory.

Why do you think is the case?

These properties are illustrated in the next few slides.

kNN density estimation, example 1

A kNN estimate for a mixture of two Gaussians: p(x) = 1
2N (0, 1)+ 1

2N (10, 4)

using several values of n and k.

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

5

kNN Density Estimation, example 1
! To illustrate the behavior of kNN we generated several density estimates for a univariate

mixture of two Gaussians: P(x)=½N(0,1)+½N(10,4) and several values of N and k

n = 50 n = 250

kNN density estimation, example 2

A two dimensional example

Below is the true density, a mixture of two bivariate Gaussians

p(x) =
1

2
N (µ1,Σ1) +

1

2
N (µ2,Σ2)

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

6

kNN Density Estimation, example 2 (a)
! The performance of the kNN

density estimation technique on
two dimensions is illustrated in
these figures

" The top figure shows the true density,
a mixture of two bivariate Gaussians

" The bottom figure shows the density
estimate for k=10 neighbors and
N=200 examples

" In the next slide we show the
contours of the two distributions
overlapped with the training data
used to generate the estimate

! " ! "

$

$
%
%
&

%
%
'

(

)
*

+
,
-

.
/

/
00

)
*

+
,
-

.
00

10

41
11

!05µ

21
11

!50µ
with

!,µN
2
1!,µN

2
1p(x)

2
T

2

1
T

1

2211

µ1 = (0, 5)
T
, Σ1 =

(
1 1

1 2

)
, µ2 = (5, 0)

T
, Σ2 =

(
1 −1

−1 4

)

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

6

kNN Density Estimation, example 2 (a)
! The performance of the kNN

density estimation technique on
two dimensions is illustrated in
these figures

" The top figure shows the true density,
a mixture of two bivariate Gaussians

" The bottom figure shows the density
estimate for k=10 neighbors and
N=200 examples

" In the next slide we show the
contours of the two distributions
overlapped with the training data
used to generate the estimate

! " ! "

$

$
%
%
&

%
%
'

(

)
*

+
,
-

.
/

/
00

)
*

+
,
-

.
00

10

41
11

!05µ

21
11

!50µ
with

!,µN
2
1!,µN

2
1p(x)

2
T

2

1
T

1

2211

The density estimate for k = 10 neighbours and n = 200 examples

kNN density estimation, example 2

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

7

kNN Density Estimation, example 2 (b)
True density contours kNN density estimate contours

Contours of the true and estimated distribution and training data.

kNN density estimation

Common problems with the estimates obtained with the kNN
method:

• The estimates are prone to local noise

• The method produces estimates with very heavy tails.

• Since the function Rdk(x) is not differentiable, the density estimate
will have discontinuities.

• The resulting density is not a true probability density since its
integral over all the sample space diverges.

kNN density estimation as a Bayesian classifier

The main advantage of the kNN method is that it leads to a very
simple approximation of the (optimal) Bayes classifier, from Bishop
1996.

Derivation: Assume we have a dataset with n examples, ni from
class ωi, and we want to classify an unknown sample xu.

Draw a hyper-sphere of volume V around

xu. Assume this volume contains a total

of k examples of which ki are from class

ωi

Can approximate the likelihood functions using the kNN method by:

p(xu |ωi) =
ki

niV

The priors are approximated by

P (ωi) =
ni

n

The unconditional density is estimated by

p(xu) =
∑
i

p(xu |ωi)P (ωi) =
∑
i

ki

niV

ni

n
=

1

nV

∑
i

ki =
k

nV

Putting everything together, the Bayes classifier becomes

P (ωi | xu) =
p(xu |ωi)P (ωi)

p(xu)
=

ki
niV

ni
n

k
nV

=
ki

k

Kernel density estimation in 1D

This is another popular non-parametric method for estimating p(x)
from a set of training examples x1, x2, . . . , xn. It is also known as
Parzen Windows.

p̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
where K(·) is some kernel (window) function and h is the bandwidth
(smoothing parameter). Frequently, K(·) is chosen to the Gaussian
function with mean 0 and variance 1.

K(x) =
1

(2π)1/2
exp

(
−x

2

2

)

An example

Six Gaussians (red) and their sum (blue). The bandwidth, h, of
the estimate was set to 0.5. The kernel density estimate p̂h(x) is
obtained by dividing 6 × .5.

Note:

− Where the training points are denser the density estimate has
higher values.

− Each training sample contributes to p̂h(x) in accordance with its
distance from x.

Kernel density estimate properties

Properties:

If K(x) ≥ 0 ∀x and
∫
x
K(x) dx = h then

p̂h(x) ≥ 0 ∀x and

∫
x

p̂h(x) dx = 1

Major parameter choice:

Choice of h (bandwidth). If too large then the density estimate
p̂h(x) will be very smooth and out-of-focus. If too small then p̂h(x)
will be noisy and wiggly.

Effect of varying bandwidth

The true density (red curve) .6N (3, .42) + .4N (5, .42) is approximated with

kernel density estimation (dashed curve) with bandwidths varying from h = .1

to h = .6 using 100 training observations.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

x

p(
x)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

x

p(
x)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

x

p(
x)

h=.1 h=.2 h=.3

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

x

p(
x)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

x

p(
x)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

x

p(
x)

h=.4 h=.5 h=.6

Rule of thumbs for bandwidth estimation

Rule of thumb 1
ĥ = 1.06 σ̂ n−

1
5

where σ̂2 is the sample variance of the points x1, . . . , xn.

Rule of thumb 2

ĥ = 1.06 min

(
σ̂,

R̂

1.34

)
n−

1
5

where R̂ is an estimate of the interquartile range of the points
x1, . . . , xn. (This estimate is more robust to outliers.)

Kernel density estimation in dD

Kernel density can also be applied on d dimensional data. Estimate
p(x) from a set of training examples x1,x2, . . . ,xn.

p̂h(x) =
1

nh1 h2 . . . hd

n∑
i=1

K
(
H−1 (x− xi)

)
where

H =


h1 0 0 . . . 0
0 h2 0 . . . 0
...
...
0 0 0 . . . hd



and

K(x) =
1

(2π)d/2
exp

(
−x

Tx

2

)

Estimate the bandwidth in each dimension, h1, h2, . . . , hd
independently using the rule of thumb for one dimension.

Revisit Lecture 4 example

Estimate the distributions using kernel density estimation with the
bandwidth set by the rule of thumb 1 and 1000 training examples
for each class.

true p(x |ω1) estimated p(x |ω1) true p(x |ω2) estimated p(x |ω2)

Classification results

Test points from class ω1 Test points from class ω2

true p(x |ω1) estimated p(x |ω1) true p(x |ω2) estimated p(x |ω2)

Cross-validation could also be used to find good values of the
bandwidth.

Nearest Neighbours

and

Non-Bayesian Classification

Nearest Neighbours

• Nearest Neighbours density estimation

• The k Nearest Neighbours classification rule

The k Nearest Neighbour classification rule

The k Nearest Neighbour Rule (kNN) is a very intuitive method
that classifies unlabeled examples based on their similarity to
examples in the training set.

Exact steps:

For a given unlabeled example xu ∈ Rd:

• Find the k closest labeled examples in the training data set.

• Assign xu to the class that appears most frequently within the
k-subset.

The k Nearest Neighbour classification rule

The kNN requires

• An integer k.

• A set of labeled examples (training data).

• A metric to measure closeness.

Example

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

9

The k Nearest Neighbor classification rule
! The K Nearest Neighbor Rule (kNN) is a very intuitive method that

classifies unlabeled examples based on their similarity to examples in
the training set

" For a given unlabeled example xu!"D, find the k “closest” labeled examples
in the training data set and assign xu to the class that appears most
frequently within the k-subset

! The kNN only requires
" An integer k
" A set of labeled examples (training data)
" A metric to measure “closeness”

! Example
" In the example below we have three classes

and the goal is to find a class label for the
unknown example xu

" In this case we use the Euclidean distance
and a value of k=5 neighbors

" Of the 5 closest neighbors, 4 belong to #1 and
1 belongs to #3, so xu is assigned to #1, the
predominant class

xu

#3

#1 #2

• In the example below we have
three classes and the goal is
to find a class label for the
unknown example xu

• Use the Euclidean distance and
a value of k = 5 neighbours.

• Of the 5 closest neighbours, 4
belong to ω1 and 1 belongs to
ω2, so xu is assigned to ω1, the
predominant class

kNN in action: example 1

Have generated data for a 2-dimensional 3-class problem, where the
class-conditional densities are multi-modal, and non-linearly separable
as shown.

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

10

kNN in action: example 1
! We have generated data for a 2-dimensional 3-

class problem, where the class-conditional
densities are multi-modal, and non-linearly
separable, as illustrated in the figure

! We used the kNN rule with
" k = 5
" The Euclidean distance as a metric

! The resulting decision boundaries and decision
regions are shown below

Solution:

Use the kNN rule with k = 5 and the Euclidean distance as the
distance metric.

The resulting decision boundaries and regions are shown below

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

10

kNN in action: example 1
! We have generated data for a 2-dimensional 3-

class problem, where the class-conditional
densities are multi-modal, and non-linearly
separable, as illustrated in the figure

! We used the kNN rule with
" k = 5
" The Euclidean distance as a metric

! The resulting decision boundaries and decision
regions are shown below

kNN in action: example 2

Have generated data for a 2-dimensional 3-class problem, where the
class-conditional densities are unimodal and are distributed in rings
around a common mean. These classes are also non-linearly separable
as illustrated in the figure below

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

11

kNN in action: example 2
! We have generated data for a 2-dimensional 3-class

problem, where the class-conditional densities are
unimodal, and are distributed in rings around a
common mean. These classes are also non-linearly
separable, as illustrated in the figure

! We used the kNN rule with
" k = 5
" The Euclidean distance as a metric

! The resulting decision boundaries and decision
regions are shown below

Solution:

Use the kNN rule with k = 5 and the Euclidean distance as a metric.

The resulting decision boundaries and regions are shown below

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

11

kNN in action: example 2
! We have generated data for a 2-dimensional 3-class

problem, where the class-conditional densities are
unimodal, and are distributed in rings around a
common mean. These classes are also non-linearly
separable, as illustrated in the figure

! We used the kNN rule with
" k = 5
" The Euclidean distance as a metric

! The resulting decision boundaries and decision
regions are shown below

Distance functions

The nearest neighbour classifier relies on a metric or a
distance function between points.

For all points x,y and z, a metric D(·, ·) must satisfy the following
properties:

• Nonnegativity: D(x,y) ≥ 0.

• Reflexivity: D(x,y) = 0 ⇐⇒ x = y.

• Symmetry: D(x,y) = D(y,x).

• Triangle inequality: D(x,y) +D(y, z) ≥ D(x, z).

Distance functions

A general class of metrics for d-dimensional patterns is the Minkowski
metric

Lp(x, y) =

(
d∑
i=1

|xi − yi|p
)1
p

also referred to as the Lp norm.

Euclidean distance is the L2 norm

L2(x, y) =

(
d∑
i=1

|xi − yi|2
)1

2

Manhattan/city block distance is the L1 norm

L1(x, y) =

d∑
i=1

|xi − yi|

Infinity norm is the L∞ norm

L∞(x, y) = max
i
|xi − yi|

Distance Functions

• The L∞ norm is the maximum of the distances along individual
coordinate axes

L∞(x,y) = dmax
i=1

|xi − yi|.

Figure 3: Each colored shape consists of points at a distance 1.0 from the origin,
measured using different values of p in the Minkowski Lp metric.

CS 551, Spring 2006 9/12

Each colored curve shows points
at a distance 1.0 from the origin,
measured using different values of
p in the Minkowski Lp metric.

Decision boundary depends on distance fn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training data City block distance Euclidean distance

Minkowski p = 10 Infinity distance

Nearest Neighbours

• Nearest Neighbours density estimation

• The k Nearest Neighbours classification rule

• kNN as a lazy learner

kNN as a lazy (machine learning) algorithm

kNN is considered a lazy learning algorithm

• Defers data processing until it receives a request to classify an
unlabelled example
• Replies to a request for information by combining its stored

training data
• Discards the constructed answer and any intermediate results

Other names for lazy algorithms

• Memory-based, Instance-based, Exemplar-based, Case-based,
Experience-based

As opposed to

Eager learning algorithms

Compiles its data into a compressed description or model such as

a density estimate or density parameters
a graph structure and associated weights

In these cases the algorithms

• discard the training data after compilation of the model
• classify incoming patterns using the induced model, which is

retained for future requests

Which one to choose:

Tradeoffs

• Lazy algorithms have fewer computational costs than eager
algorithms during training
• Lazy algorithms have greater storage requirements and higher

computational costs on recall

Nearest Neighbours

• Nearest Neighbours density estimation

• The k Nearest Neighbours classification rule

• kNN as a lazy learner

• Characteristics of the kNN classifier

Characteristics of the kNN classifier

Advantages

• Analytically tractable

• Simple implementation

• Nearly optimal in the large sample limit, as n→∞

P (error)Bayes < P (error)1NN < 2P (error)Bayes

• Uses local information, which can yield highly adaptive behavior

• Lends itself very easily to parallel implementations

Disadvantages

• Large storage requirements

• Computationally intensive recall

• Highly susceptible to the curse of dimensionality

1NN Vs kNN

The use of large values of k has two main advantages

• Yields smoother decision regions.
• Provides probabilistic information

The ratio of examples for each class gives information about the ambiguity

of the decision

However, too large a value of k is detrimental

• It destroys the locality of the estimation since far away examples
are taken into account.
• Additionally it increases the computational burden.

kNN versus 1NN

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

14

kNN versus 1NN
1-NN 5-NN 20-NN

kNN and the problem of feature weighting

The basic kNN rule’s similarity measure is based on the Euclidean
distance which makes the kNN rule very sensitive to noisy features.

An example

Have a data set with 3-classes and 2 dimensions:

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

16

kNN and the problem of feature weighting
! The basic kNN rule computes the similarity measure based on the Euclidean distance

" This metric makes the kNN rule very sensitive to noisy features
" As an example, we have created a data set with three classes and two dimensions

! The first axis contains all the discriminatory information. In fact, class separability is excellent
! The second axis is white noise and, thus, does not contain classification information

! In the first example, both
axes are scaled properly

" The kNN (k=5) finds
decision boundaries fairly
close to the optimal

! In the second example,
the magnitude of the
second axis has been
increased two order of
magnitudes (see axes
tick marks)

" The kNN is biased by the
large values of the
second axis and its
performance is very poor

The first axis contains the discriminatory information. Class separability is excellent.

The second axis is white noise and, thus, does not contain classification information.

Example 1

If both axes are scaled properly, then kNN (k=5) finds decision
boundaries fairly close to the optimal.

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

16

kNN and the problem of feature weighting
! The basic kNN rule computes the similarity measure based on the Euclidean distance

" This metric makes the kNN rule very sensitive to noisy features
" As an example, we have created a data set with three classes and two dimensions

! The first axis contains all the discriminatory information. In fact, class separability is excellent
! The second axis is white noise and, thus, does not contain classification information

! In the first example, both
axes are scaled properly

" The kNN (k=5) finds
decision boundaries fairly
close to the optimal

! In the second example,
the magnitude of the
second axis has been
increased two order of
magnitudes (see axes
tick marks)

" The kNN is biased by the
large values of the
second axis and its
performance is very poor

Example 2

We increase the magnitude of the second axis by two order of
magnitudes (see axes tick marks).

The kNN is now biased by the large values of the second axis and its performance

is very poor.

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

16

kNN and the problem of feature weighting
! The basic kNN rule computes the similarity measure based on the Euclidean distance

" This metric makes the kNN rule very sensitive to noisy features
" As an example, we have created a data set with three classes and two dimensions

! The first axis contains all the discriminatory information. In fact, class separability is excellent
! The second axis is white noise and, thus, does not contain classification information

! In the first example, both
axes are scaled properly

" The kNN (k=5) finds
decision boundaries fairly
close to the optimal

! In the second example,
the magnitude of the
second axis has been
increased two order of
magnitudes (see axes
tick marks)

" The kNN is biased by the
large values of the
second axis and its
performance is very poor

Feature weighting

The kNN classifier is sensitivity to noisy axes.

Problem:

Examine the Euclidean distance:

D(xu, x) =

√√√√ d∑
k=1

(xuk − xk)2

This metric can become very noisy if

• Different dimensions have different scalings,

• Most of the dimensions are irrelevant to the classification task
even if all dimensions have the same scale. Explain..

Feature weighting

Solution to unequal scaling:

Normalize each dimension of the feature to N (0, 1).

Solution to irrelevant dimensions:

Modify the Euclidean metric by a set of non-negative weights that
represent the information content or goodness of each feature

D(xu, x) =

√√√√ d∑
k=1

wk (xuk − xk)2

Note: this procedure is identical to performing a linear
transformation where the transformation matrix is diagonal with
the weights placed in the diagonal elements.

Feature weighting

Feature weighting can be thought as:

Special case of feature extraction
Feature weighting can be thought of as a special case of feature
extraction where the different features are not allowed to interact
(null off-diagonal elements in the transformation matrix)

Like feature subset selection
Feature subset selection can be viewed as a special case of feature
weighting where the weights can only take binary {0, 1} values

Feature weighting

An aside:

Do not confuse feature-weighting with distance-weighting, a kNN
variant that weights the contribution of each of the k nearest
neighbours according to their distance to the unlabeled example

• Distance-weighting distorts the kNN estimate of P (ωi|x) and is NOT
recommended

• Studies have shown that distance-weighting DOES NOT improve kNN

classification performance

Feature weighting methods

Performance bias methods

• These methods find a set of weights through an iterative procedure
that uses the performance of the classifier as guidance to select a
new set of weights.

• These methods normally give good solutions since they can
incorporate the classifier’s feedback into the selection of weights.

Preset bias methods

• These methods obtain the values of the weights using a pre-
determined function that measures the information content of

each feature (i.e., mutual information and correlation between
each feature and the class label).

• These methods have the advantage of executing very quickly

Nearest Neighbours

• Nearest Neighbours density estimation

• The k Nearest Neighbours classification rule

• kNN as a lazy learner

• Characteristics of the kNN classifier

• Optimizing the kNN classifier

Improving the nearest neighbour search procedure

The problem of nearest neighbour can be stated as follows:

Given a set of n points in d-dimensional space and an unlabeled
example xu ∈ Rd, find the point that minimizes the distance
to xu.

The näıve approach of computing a set of n distances, and finding
the (k) smallest becomes impractical for large values of n and d.

Improving the nearest neighbour search procedure

There are two classical algorithms that speed up the nearest neighbour
search

• Bucketing (a.k.a Elias’s algorithm) [Welch 1971]

• k-d trees [Bentley, 1975; Friedman et al, 1977]

The Bucketing algorithm

1. The space is divided into identical cells and for each cell the data
points inside it are stored in a list

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

19

Improving the nearest neighbor search procedure
! The problem of nearest neighbor can be stated as follows

" Given a set of N points in D-dimensional space and an unlabeled example xu!"D, find the point that
minimizes the distance to xu

" The naïve approach of computing a set of N distances, and finding the (k) smallest becomes impractical for
large values of N and D

! There are two classical algorithms that speed up the nearest neighbor search
" Bucketing (a.k.a Elias’s algorithm) [Welch 1971]
" k-d trees [Bentley, 1975; Friedman et al, 1977]

! Bucketing
" In the Bucketing algorithm, the space is divided into identical cells and for

each cell the data points inside it are stored in a list
" The cells are examined in order of increasing distance from the query point

and for each cell the distance is computed between its internal data points
and the query point

" The search terminates when the distance from the query point to the cell
exceeds the distance to the closest point already visited

! k-d trees
" A k-d tree is a generalization of a binary search tree in high dimensions

! Each internal node in a k-d tree is associated with a hyper-rectangle and a hyper-plane orthogonal to one of the
coordinate axis

! The hyper-plane splits the hyper-rectangle into two parts, which are associated with the child nodes
! The partitioning process goes on until the number of data points in the hyper-rectangle falls below some given threshold

" The effect of a k-d tree is to partition the (multi-dimensional) sample space according to the underlying
distribution of the data, the partitioning being finer in regions where the density of data points is higher

! For a given query point, the algorithm works by first descending the the tree to find the data points lying in the cell that
contains the query point

! Then it examines surrounding cells if they overlap the ball centered at the query point and the closest data point so far

2. Each cell’s minimum possible
distance to the query point is
computed (fast operation).

3. Cells are examined in increasing
order of these minimum distances
and for each cell the distance
is computed between its internal
data points and the query point.

4. The search ends when the minimum distance from the query
point to the cell exceeds the current minimum distance to a point.

KD-tree construction

......

.1.95
.55.03

.15 .1
YX

Start with a list of d-dimensional points

KD-tree construction

......
.55.03

.15 .1
YX

......
.95 .1

YX

X > .5
No Yes

Split the points into 2 groups by choosing a dimension x and values
v and separating the points into x < v and x ≥ v.

KD-tree construction

......
.55.03

.15 .1
YX

......
.95 .1

YX

X > .5
No Yes

Consider each group separately and possibly split again (along
same/different dimension).

KD-tree construction

......
.95 .1

YX

X > .5
No Yes

......
.15 .1

YX

Y> .5

......
.03 .55

YX

No Yes

Consider each group separately and possibly split again (along
same/different dimension).

KD-tree construction

Keep splitting the points in each set to create a tree structure. Each
node with no children (leaf node) contains a list of points.

KD-tree construction

Will keep around one additional piece of information at each node.
The (tight) bounds of the points at or below this node.

KD-tree construction

Use heuristics to make splitting decisions:

• Which dimension do we split along ?

Widest

• Which value do we split at ?

Median of value of the split dimension for the points.

• When do we stop ?

When there are fewer then m points left OR the box

has hit some minimum width.

KD-tree construction in words

A k-d tree is a generalization of a binary search tree in high dimensions

• Each internal node in a k-d tree is associated with a hyper-
rectangle and a hyper-plane orthogonal to one of the coordinate
axis

• The hyper-plane splits the hyper-rectangle into two parts, which
are associated with the child nodes

• The partitioning process goes on until the number of data points
in the hyper-rectangle falls below some given threshold

The k-d tree partitions the (multi-dimensional) sample space
according to the underlying distribution of the data, the partitioning
being finer in regions where the density of data points is higher.

Nearest neighbour with KD-trees

Traverse the tree looking for the nearest neighbor of the query point.

Nearest neighbour with KD-trees

Examine nearby points first: Explore the branch of the tree that is
closest to the query point first. Descend to query point’s leaf node.

Nearest neighbour with KD-trees

Examine nearby points first: Explore the branch of the tree that is
closest to the query point first. Descend to query point’s leaf node.

Nearest neighbour with KD-trees

When leaf node is reached: compute the distance to each point
in the node.

Nearest neighbour with KD-trees

When a leaf node is reached: compute the distance to each point
in the node.

Nearest neighbour with KD-trees

When a leaf node is reached: compute the distance to each point
in the node.

Nearest neighbour with KD-trees

Then we can backtrack and try the other branch at each node visited.

Nearest neighbour with KD-trees

Each time a new closest node is found, we can update the distance
bounds.

Nearest neighbour with KD-trees

Using the current smallest distance and the bounds of the data below
each node, prune parts of the tree that can NOT include the nearest
neighbour.

Nearest neighbour with KD-trees

Using the current smallest distance and the bounds of the data below
each node, prune parts of the tree that can NOT include the nearest
neighbour.

Nearest neighbour with KD-trees

Using the current smallest distance and the bounds of the data below
each node, prune parts of the tree that can NOT include the nearest
neighbour.

Nearest Neighbour serch with KD-trees

Advantages

• Finding the nearest point is O(logn) operation in the case of n randomly

distributed points. As opposed to O(n) for an exhaustive search.

• Can easily be converted to find an approximate nearest neighbour and hence

to run much faster.

Disadvantages

• kd-trees are not suitable for efficiently finding the nearest neighbour in high

dimensional spaces.

• Rule of thumb if the dimensionality is d and the number of data points, n,

is n >> 2d, then using kd-trees will generally be better than an exhaustive

search. Otherwise, it will not be.

Pen & Paper Assignment

• Details available on the course website.

• You will perform some simple nearest neighbour classifications.

• Mail me about any errors you spot in the Exercise notes.

• I will notify the class about errors spotted and corrections via the
course website and mailing list.

