
Lecture 6

Discriminative learning of linear decision boundaries

• Classification and regression

• Perceptron learning

• Fisher linear discriminant

• Logistic regression

Recap

Bayesian Decision Theory has shown us how to design an optimal
classifier if we know the prior probabilities P (ωi) and the class-
conditional densities p(x |ωi).

Steps required:

• Estimate p(x |ω) and P (ω) from training data.

• Use Bayes’ Rule to construct a decision rule

• Decision rule imposes a decision boundary

If have good estimates of p(x |ω) and P (ω) then this approach
minimizes P (error).

However what about directly learning the decision boundary??

Instead

Decide on a form of the decision boundary. This function is defined
by a set of parameters and a decision is often made via

Class (x) = sgn(f(x;w))

where

sgn(f(x;w)) =

{
ω1 if f(x;w) > 0

ω2 if f(x;w) < 0

Have two separate problems given labelled training data

1. Decide on the form of f

2. Estimate parameters, w, defining f(·;w)

Linear discriminant functions

Linear discriminant functions for the 2-class problem are of the form

f(x;w) = w
T
1 x + w0, Class (x) =

{
ω1 if f(x;w) > 0

ω2 if f(x;w) < 0

where w is the weight vector and w0 is the bias.

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

2

Linear Discriminant Functions (1)
! The objective of this lecture is to present methods for learning linear

discriminant functions of the form

" where w is the weight vector and w0 is the threshold weight or bias (not to be
confused with that of the bias-variance dilemma)

x1

x2

w
x

wTx+w0>0

wTx+w0<0

x(1

x(2d

x1

x2

w
x

wTx+w0>0

wTx+w0<0

x(1

x(2d

! " ! "
! "#

$
%

&'
&(

)*+
2

1
0

T

!x0xg
!x0xg

wxwxg

Linear discriminant functions

Similar discriminant functions were derived where each p(x |ωi) is
Normally distributed with equal covariance matrices.

class distributions decision boundary partition of space

In this lecture, no assumptions, made about the underlying densities.

The form of the discriminant function will be assumed to be linear.

Learning the discriminant function

If the form of f(x;w) has been decided upon, in our case a linear
function, then

Given training data {(x1, y1), (x2, y2), . . . , (xn, yn)} where
each xi ∈ Rd is a feature vector and the corresponding
yi ∈ {−1, 1} its label/target value, we have to learn/estimate
the f ’s parameters, w, from the labeled training data.

Common approach is:

• define an error function J(w) based on the parameters of interest

• find minimum of J(w) w.r.t. these parameters.

Learning the discriminant function

1. Define an error function J(w) based on the parameters of interest

J(w) =

n∑
i=1

L(yi, f(xi;w))

where L : {−1,+1}×R → R+ is a loss function, which measures
how well f(xi;w) predicts the label of xi.

2. Find minimum of J(w) w.r.t. these parameters.

w∗ = arg min
w

J(w)

3. Then the classifier is defined by the sign of f(x;w∗).

Common loss functions

0, 1 Loss function

−2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

y * f(x)

0,
 1

 L
os

s

L(y, f(x;w)) =

{
0 if y = sgn(f(x;w))

1 if y 6= sgn(f(x;w))

=

{
0 if y × sgn(f(x;w)) > 0

1 if y × sgn(f(x;w)) < 0

0, 1 Loss function

Consider the case when f(x;w) is a hyper-plane

f(x;w) = wT
1 x + w0 with w = (w1, w0)

Two dimensional example of a linear decision function

blue =⇒ negative values
red =⇒ positive values
black =⇒ values close to 0.

f(x;w) = 0

f(x;w) = 1

f(x;w) = −1

f(x;w) = wT1 x + w0

0, 1 Loss function

Our linear function used for classification

All points belong to class ω1 All points belong to class ω2

1× f(x;w) L(1, f(x;w)) −1× f(x;w) L(−1, f(x;w))

Misclassified pts have loss 1, otherwise loss 0 Misclassified pts have loss 1, otherwise loss 0

0, 1 Loss function

Our linear function used for classification

If all points in plane correctly classified If all points in plane incorrectly classified

y × f(x;w) L(y, f(x;w)) y × f(x;w) L(y, f(x;w))

Loss is zero for each pt Loss is one for each pt

Common loss functions

Squared Error loss

−2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

y * f(x)

S
qu

ar
e

Lo
ss

L(y, f(x;w)) = (y − f(x;w))2

= (1− yf(x;w))2

Squared error loss

All points belong to class ω1 All points belong to class ω2

1× f(x;w) L(1, f(x;w)) −1× f(x;w) L(−1, f(x;w))

Squared error loss

All points in plane correctly classified

y × f(x;w) L(y, f(x;w))

All points in plane incorrectly classified

y × f(x;w) L(y, f(x;w))

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

slice of f(x; w)

Sq
ua

re
 L

os
s

Points correctly
classified

Points incorrectly
classified

1D cross section of the 2D loss

function

Common loss functions

Absolute loss

−2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

y * f(x)

A
bs

ol
ut

e
Lo

ss

L(y, f(x;w)) = |y − f(x;w)|

= |1− yf(x;w)|

Absolute loss

All points belong to class ω1 All points belong to class ω2

1× f(x;w) L(1, f(x;w)) −1× f(x;w) L(−1, f(x;w))

Absolute loss

All points in plane correctly classified

y × f(x;w) L(y, f(x;w))

All points in plane incorrectly classified

y × f(x;w) L(y, f(x;w))

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

slice of f(x; w)

A
bs

ol
ut

e
Lo

ss

1D cross section of the 2D loss

function

Common loss functions

Hinge loss

−2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

y * f(x)

H
in

ge
 L

os
s

L(y, f(x;w)) = max(1− yf(x;w), 0)

Hinge loss

All points belong to class ω1 All points belong to class ω2

1 ∗ f(x;w) L(1, f(x;w)) −1 ∗ f(x;w) L(−1, f(x;w))

Hinge loss

All points in plane correctly classified

y ∗ f(x;w) L(y, f(x;w))

All points in plane incorrectly classified

y ∗ f(x;w) L(y, f(x;w))

−4 −3 −2 −1 0 1 2 3 4
0

1

2

3

4

5

6

slice of f(x; w)

H
in

ge
 L

os
s

1D cross section of the 2D loss

function

Summary of common loss functions

0, 1 Loss Square Loss Absolute Loss

Ind(y 6= sgn(f(x;w))) (1− yf(x;w))2 |1− yf(x;w)|

Hinge Loss Exponential Loss

max(1− yf(x;w), 0) exp (−yf(x;w))

Unconstrained optimization

Recall that the minimum of a function J(x) is defined by the zeros
of the gradient

x∗ = arg min
∀x

J(x) =⇒ ∇xJ(x) = 0

However

• Only in very special cases does this minimization function have a
closed form solution

• In some other cases, a closed form solution may exist, but is
numerically ill-posed or impractical (e.g., memory requirements).

Technical interlude: Iterative Optimization

w∗ = arg min
∀w

J(w)

Common approach to solving such unconstrained optimization
problem is iterative non-linear optimization.

Start with an estimate w(0) and try to improve it by finding successive
new estimates w(1),w(2),w(3), . . . such that J(w(1)) ≤ J(w(2)) ≤
J(w(3)) ≤ · · · , until convergence.

The search at each iteration to find a better estimate is performed
locally around the current estimate.

Such iterative approaches will find a local minima.

Technical interlude: Iterative Optimization

These non-linear iterative methods alternate between these two steps:

Decide search direction Choose a search direction based on the
local properties of the cost function.

Line Search Perform an intensive search to find the minimum along
the chosen direction.

Technical interlude: the gradient

Choosing a search direction (simplest approach)

The gradient is defined as:

∇xJ(x) ≡ ∂J(x)

∂x
=


∂J(x)
∂x1

∂J(x)
∂x2

...
∂J(x)
∂xd


The gradient points in the
direction of the greatest increase
of J(x).

Technical interlude: Gradient descent

Gradient descent is general method for function minimization

Gradient descent finds the minimum in an iterative fashion by moving
in the direction of steepest descent.

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

4

Gradient descent
! Gradient descent is general method for function minimization

" Recall that the minimum of a function J(x) is defined by the zeros of the gradient

" Only in very special cases this minimization function has a closed form solution
" In some other cases, a closed form solution may exist, but is numerically ill-

posed or impractical (e.g., memory requirements)
! Gradient descent finds the minimum in an iterative fashion by moving

in the direction of steepest descent

" where ! is a learning rate

" # 0J(x)J(x)argminx* x
x

$%&$
'

1. Start with an arbitrary solution x(0)
2. Compute the gradient &xJ(x(k))
3. Move in the direction of steepest descent:

4. Go to 1 (until convergence)

1. Start with an arbitrary solution x(0)
2. Compute the gradient &xJ(x(k))
3. Move in the direction of steepest descent:

4. Go to 1 (until convergence)
() () ()()kxJ!kx1kx x&*$+

-2 0 2
-2

0

2

x1

x 2

Initial
guess Global

minimum

Local
minimum

-2 0 2
-2

0

2

x1

x 2

Initial
guess Global

minimum

Local
minimum

Gradient Descent Minimization

1. Start with an arbitrary solution x(0).

2. Compute the gradient ∇xJ(x(k)).

3. Move in the direction of steepest

descent:

x
(k+1)

= x
(k) − η(k)∇xJ(x

(k)
).

where η(k) is the step size.

4. Go to 2 (until convergence).

Line Search: Armijo rule

Still need to figure out a way to set the step size to guarantee
convergence.

x← x(k) + η(k)∇xJ(x(k))

Armijo’s Rule

Set the largest possible step size η0 and β ∈ (0, 1).

Choose η(k) be the largest η ∈ {η0, βη0, β
2η0, β

3η0, . . .} such that

J(x
(k)

)− J
(
x

(k)
+ η∇xJ(x

(k)
)
)
≥

1

2
η ‖∇xJ(x

(k)
)‖2

Armijo’s rule is guaranteed to converge to a (local) maximum under
certain technical assumptions.

Some derivatives of vectors

∂ xTa

∂x
=
∂ aTx

∂x
= a

∂ xTBx

∂x
= (B + B

T
)x

Thus if J(x) = xTAx + aTx then (you’ll be doing this frequently)

∇xJ(x) = (A+AT)x + a

Finding the decision boundary: Attempt 1
classification via regression

Have training data

point in Rd actual label target label in learning

x1 ω2 y1 = 1

x2 ω2 y2 = 1

x3 ω1 y3 = −1

x4 ω1 y4 = −1
...

Ignoring the fact that the target output y is binary rather than a
continuous variable. Approximate the output with a linear regression

function

f(x;w) = w0 + w1x1 + w2x2 + · · ·+ wdxd = w0 + wT
1 x

Learn w from the training data by finding the w that minimizes:

J(w) =
1

2

n∑
i=1

(f(xi;w)− yi)2︸ ︷︷ ︸
Squared error loss

such a J is known as the sum-of-squares error function.

The w∗ that minimizes J(w) is known as the Minimum Squared
Error solution.

This minimum is found as follows:

Pseudo-Inverse solution

Substitute in the expression for f(xi;w), then error function becomes

J(w) =
1

2

n∑
i=1

(f(xi;w)− yi)2

=
1

2

n∑
i=1

(
w0 + w

T
1 xi − yi

)2

=
1

2

n∑
i=1

(
w
T
x
′
i − yi

)2

, x
′
i = (1, x

T
i)
T

Writing in matrix notation this becomes

J(w) =
1

2
‖Xw − y‖2

=
1

2
(Xw − y)

T
(Xw − y)

=
1

2

(
w
T
X
T
Xw − 2y

T
Xw + y

T
y
)

where

y = (y1, . . . , yn)T

w = (w0, . . . , wd)
T

X =


1 xT1
1 xT2
... ...

1 xTn



Pseudo-Inverse solution

The gradient of J(w) wrt w:

∇wJ(w) = XTXw −XTy

Setting this equal to zero yields XTXw = XTy and

w = X†y

where

X† ≡
(
XTX

)−1
XT

X† is called the pseudo-inverse of X. Note that X†X = I but in

general XX† 6= I. If XTX is singular, there is no unique solution to
XTXw = XTy.

However, if instead one uses

Xridge ≡
(
XTX + εI

)−1
XT

where ε > 0 is small then a solution for w will be found even if XTX
is singular and will be close to the true solution when (XTX)−1

exists. This is know as ridge regression.

Gradient descent solution

The error function J(w) could also be minimized wrt w by using a
gradient descent procedure.

Why

• This avoids the numerical problems that arise when XTX is (nearly) singular.

• In addition, it also avoids the need for working with large matrices

How

1. Begin with an initial guess w(0) for w.

2. Update the weight vector by moving a small distance in w-space
in the direction −∇wJ .

Solution

w(τ+1) = wτ + η(τ)XT (y −Xw(τ))

It can be shown that if η(τ) = η0/τ , where η0 is any positive constant,
this rule generates a sequence of vectors that converge to a solution
to XT (Xw−y) = 0 irrespective of whether XTX is singular or not.

Sequential gradient descent solution

The storage requirements of the previous algorithm can be reduced
by considering each training sample sequentially

w(τ+1) = w(τ) + η(τ)(yi − xTi w
(τ))xi

This is known as the Widrow-Hoff, least-mean-squares (LMS) or
delta rule [Mitchell, 1997].

Classification via regression

The resulting regression function

f(x;w∗) = w∗0 + w∗T1 x

is then used to classify any new (test) example x according to

Class (x) = sgn(f(x;w∗))

f(x;w∗) = 0 therefore defines a linear decision boundary that
partitions the input space into two class specific regions.

Is this such a good thing to do?

Extension of model: Generalized linear
discriminants

Can transform the input vector x using a set of m pre-defined non-
linear functions φj. This permits a much larger range of possible
decision boundaries.

f(x;w) =

m∑
j=1

wjφj(x) + w0

The bias can be absorbed by defining an extra basis function φ0 = 1,
so that

f(x;w) =

m∑
j=0

wjφj(x) = wTφ

f(x;w) represents a much larger class of function. This, of course,
depends on the choice of φj’s.

Generalized linear discriminants: An example

Say x ∈ R2 and

φ1(x) = x
2
1, φ2(x) = x1, φ3(x) = x

2
2, φ4(x) = x2, φ5(x) = x1 x2

Then the decision boundary can take the form of bivariate quadratic
curve (ie circle, parabola, ellipse, etc..)

Or indeed φj’s could be the output of a set of linear filters to an
image applied at particular locations.

The MSE solution for w, in this more general case, is the solution to

Φ
T
Φw = Φ

T
y where Φ =


1 φT

1

1 φT
2

... ...

1 φT
n

 and φi =


φ1(xi)

φ2(xi)
...

φm(xi)



Attempt 2: Perceptron learning

Model of a Neuron

The following has been used as a simple mathematical model for the
behavior of a single neuron in a biological nervous system.

y = g(w
T
1 x + w0), with g(a) =

{
−1 where a < 0

1 where a ≥ 0

• xi - the level of activity of neurons in the system connected to this neuron.

• wi - the strength of the interconnections (synapses).

• w0 - the threshold for the neuron to fire.

Model introduced by McCulloch and Pitts (1943).
Networks of these thresholded units were studied by Rosenblatt
(1962) under the name perceptrons.

The Perceptron

Single-layer networks, with threshold activation

functions were studied by Rosenblatt (1962) who

called them perceptrons. These networks were

applied to classification problems, in which the

inputs were binary images of characters and simple

shapes. The φj’s were fixed processing elements

that were typically a threshold activation function

based on pixel values from the binary image. Once

again φ0 is set to 1 to absorb the bias w0.

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

3

A brief history of artificial neural networks (2)
! Rosenblatt, 1958

" Frank Rosenblatt introduced the perceptron, the
simplest form of neural network

! The perceptron is a single neuron with adjustable
synaptic weights and a threshold activation function

! Rosenblatt’s original perceptron consisted of three
layers (sensory, association and response)

" Only one layer had variable weights, so his original
perceptron is actually similar to a single neuron

" Rosenblatt also developed an error-correction rule
to adapt these weights (the perceptron learning
rule)

" He also proved that if the (two) classes were
linearly separable, the algorithm would converge to
a solution (the perceptron convergence theorem)

! g
wj

"j

"j() and g() are fixed thresholds
wj are variable weights

! Widrow and Hoff, 1960
" Bernard Widrow and Ted Hoff introduced the LMS algorithm and used it to train

the Adaline (ADAptive Linear Neuron)
! The Adaline was similar to the perceptron, except that it used a linear activation function

instead of a threshold
! The LMS algorithm is still heavily used in adaptive signal processing

f(x;w) = g

 m∑
j=0

wjφj(x)

 = g(wTφ) with g(a) =

{
−1 if a < 0

1 if a ≥ 0

The Perceptron criterion

Once again have to estimate w. Each training example xi has an
associated target value yi with yi ∈ {−1, 1} depending if xi belongs
to class ω1 or ω2. Each training example xi generates a corresponding
vector of activations φi. Want wTφi > 0 for vectors belonging to
class ω1 and wTφi < 0 otherwise. Thus want

yi(w
Tφi) > 0 for all the training examples.

Define the error function, known as the Perceptron criterion function

JP(w) = −
∑

φi∈M

yiw
Tφi

where M = {φi | φi misclassified by the current value of w}.

Perceptron learning

To find the minimum, use gradient descent

• The gradient is defined by

∇wJP(w) = −
∑

φi∈M

yiφi

• And the gradient descent update rule, known in this case as the
Perceptron Rule, becomes

w(τ+1) = w(τ) + η
∑

φi∈M

φiyi

This is known as the perceptron batch update rule.

• The weight vector may also be updated in an on-line fashion, that
is, after the presentation of each individual example.

w(τ+1) = w(τ) + ηφiyi

where φi is an example that has been misclassified by w(τ).

Perceptron learning: properties

If classes are linearly separable with respect to the φj’s, the
perceptron rule is guaranteed to converge to a valid solution.

• Some version of the perceptron rule use a variable learning rate η(τ) - In this

case, convergence is guaranteed only under certain conditions

However, if the two classes are not linearly separable, the perceptron
rule will not converge.

• Since no weight vector w can correctly classify every sample in a non-separable

dataset, the corrections in the perceptron rule will never cease.

• One ad-hoc solution to this problem is to enforce convergence by using variable

learning rates η(τ) → 0 as τ →∞.

Summary: Perceptron vs. MSE procedures

• Perceptron rule The perceptron rule always finds a solution if
the classes are linearly separable, but does not converge if the
classes are non-separable.

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

14

Summary: Perceptron vs. MSE procedures
! Perceptron rule

" The perceptron rule always finds a solution if the classes are linearly separable,
but does not converge if the classes are non-separable

! MSE criterion
" The MSE solution has guaranteed convergence, but it may not find a separating

hyperplane if classes are linearly separable
! Notice that MSE tries to minimize the sum of the squares of the distances of the

training data to the separating hyperplane, as opposed to finding this hyperplane

x1

x2

LMS

Perceptron

x1

x2

LMS

Perceptron

In this particular example φj(x) = xj.

• MSE Criterion The MSE solution has guaranteed convergence,
but it may not find a separating hyperplane if classes are
linearly separable

MSE tries to minimize the sum of the squares of the distances of the

projected training data on the separating hyperplane to the class labels,

as opposed to finding a separating hyperplane.

Attempt 3: Projections and classifications

A linear function

f(x;w) = w0 + wT
1 x

projects each point x = (x1, x2, . . . , xd)
T to a line parallel to w1.

point in Rd class label projected point in R

x1 y1 z1 = w0 + wT
1 x1

x2 y2 z2 = w0 + wT
1 x2

...

xn yn zn = w0 + wT
1 xn

Can study how well the projected points {z1, . . . , zn}, viewed as a
function of w1, are separated across the classes.

Projections

A linear function

f(x;w) = w0 + w
T
1 x

projects each point x = (x1, x2, . . . , xd)
T to a line parallel to w1.

 f(x; w) = 0.5

 f(x; w) = 1 f(x; w) = 1.5

Can study how well the projected
points {z1, . . . , zn}, viewed as a
function of w1, are separated
across the classes.

Projections

Data points and the projection direction

 f(x; w) = 0.5

 f(x; w) = 1 f(x; w) = 1.5

histograms of zi’s for the two classes

Projection and classification

 f(x; w) = 0.5

 f(x; w) = 1

 f(x; w) = 1.5

 f(x; w) = 0.5

 f(x; w) = 1

 f(x; w) = 1.5

projection direction histograms of zi’s

Varying w1 varies the
separation between the
projected points.

Optimizing the projection

Would like to find w1 that somehow maximizes the separation of the
projections points across classes.

Data points and the projection direction

 f(x; w) = 0.5

 f(x; w) = 1 f(x; w) = 1.5

histograms of zi’s for the two classes

Can quantify the separation (overlap) in terms of means and variances
of the resulting 1-dimensional class distributions.

Fisher linear discriminant: preliminaries

Class descriptions in Rd:

Class ω1 points Class ω2 points

n1 samples, mean µ1, covariance Σ1 n2 samples, mean µ2, covariance Σ2

Fisher linear discriminant: preliminaries

Projected class descriptions in R:

Projected class ω1 points Projected class ω2 points

n1 samples, mean µ1 = wT
1 µ1, n2 samples, mean µ2 = wT

1 µ2,

variance σ2
1 = wT

1 Σ1w1 variance σ2
2 = wT

1 Σ2w1

The expressions for µi and σi in terms of µi and Σi for i = 1, 2 can be easily
derived. First define Xi = {xj | yj = ωi} and Zi = {zj = wT

1 xj | yj = ωi}

µi =
1

ni

∑
z∈Zi

z =
1

ni

∑
x∈Xi

w
T
1 x = w

T
1

 1

ni

∑
x∈Xi

x

 = w
T
1 µi

and

σ
2
i =

1

ni

∑
z∈Zi

(z − µi)
2

=
1

ni

∑
x∈Xi

(w
T
1 x− w

T
1 µi)

2

=
1

ni

∑
x∈Xi

(w
T
1 (x− µi))

2

=
1

ni

∑
x∈Xi

w
T
1 (x− µi)(x− µi)

T
w1

= w
T
1

 1

ni

∑
x∈Xi

(x− µi)(x− µi)
T

w1 = w
T
1 Σiw1

Fisher linear discriminant

Intuitively, look for a projection where examples from the same class
are projected very close to each other and, at the same time, the
projected means are as far apart as possible.

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

4

Linear Discriminant Analysis, two-classes (3)
! The solution proposed by Fisher is to maximize a function that represents the

difference between the means, normalized by a measure of the within-class
scatter

" For each class we define the scatter, an equivalent of the variance, as

! where the quantity is called the within-class scatter of the projected examples
" The Fisher linear discriminant is defined as the linear function wTx that maximizes the

criterion function

" Therefore, we will be looking for a projection
where examples from the same class are
projected very close to each other and, at the
same time, the projected means are as farther
apart as possible

! "#
$

%&
i!y

2
i

2
i µ~ys~

! "2
2

2
1 s~s~ '

2
2

2
1

2
21

s~s~
µ~µ~

)w(J
'

%
&

x1

x2

(1

(2

The solution proposed by Fisher is to maximize a cost function
that represents the difference between the means, normalized by a
measure of the within-class scatter:

JFisher(w1) =
(Separation of projected means)2

Sum of within class scatter

=
(wT

1 µ2 −wT
1 µ1)2

n1wT
1 Σ1w1 + n2wT

1 Σ2w1

=
wT

1 (µ2 − µ1)(µ2 − µ1)Tw1

wT
1 (n1Σ1 + n2Σ2)w1

Fisher linear discriminant

The solution to the optimization problem

w∗1 = arg max
w1

JFisher(w1)

is the Fisher Linear Discriminant (1936)

w∗1 ∝ (n1Σ1 + n2Σ2)−1(µ2 − µ1)

It should be noted it is not a discriminant but rather a specific choice
of direction for the projection of the data down to one dimension.

Fisher linear discriminant

For our toy example w∗1 ∝ (n1Σ1+n2Σ2)−1(µ2−µ1) is shown below

Data points and the projection direction

 f(x; w) = 0.5

 f(x; w) = 1

 f(x; w) = 1.5

histograms of zi’s for the two classes

Details of the optimization

Let SB = (µ2 − µ1)(µ2 − µ1)
T and SW = n1Σ1 + n2Σ2, then the cost

function is written as

JFisher =
wT

1 SBw1

wT
1 SWw1

The derivative wrt w1 is

∂JFisher(w1)

∂w1

=
1

wT
1 SWw1

(SB + S
T
B)w1 −

wT
1 SBw1

(wT
1 SWw1)2

(SW + S
T
W)w1

=
2SB w1

wT
1 SWw1

−
2(wT

1 SBw1)SW w1

(wT
1 SWw1)2

, as SW = STW , SB = STB

=
2(wT

1 SWw1)SB w1 − 2(wT
1 SBw1)SW w1

(wT
1 SWw1)2

Set the derivative to 0 and get

(w
T
1 SWw1)SB w1 − (w

T
1 SBw1)SW w1 = 0

=⇒ (w
T
1 SWw1)SB w1 = (w

T
1 SBw1)SW w1

Can we solve this? Remember SB = (µ2 − µ1)(µ2 − µ1)
T so

SB w1 =
(

(µ2 − µ1)(µ2 − µ1)
T
)
w1 =

(
(µ2 − µ1)

T
w1

)
(µ2 − µ1)

Thus

SB w1 ∝ (µ2 − µ1)

We do not care about the magnitude of w1 only its direction. Then by dropping

scale factors get

SW w1 ∝ (µ2 − µ1)

=⇒ w1 ∝ S−1
W (µ2 − µ1)

Fisher classifier

Use w1 to construct a classifier. Project the training data onto a
line parallel to w1. Must find a threshold θ such that

wT
1 x ≥ θ =⇒ x belongs to class ω1

wT
1 x < θ =⇒ x belongs to class ω2

How should we learn θ ?

Fisher classifier

Use w1 to construct a classifier. Project the training data onto the
line w1. Must find a threshold θ such that

wT
1 x ≥ θ =⇒ x belongs to class ω1

wT
1 x < θ =⇒ x belongs to class ω2

How should we learn θ ?

• Project the training data from both classes onto w.

• Search for θ such that the number of mis-classifications is
minimized.

Classifier based on Fisher discriminant

projection direction

 f(x; w) = 0.5

 f(x; w) = 1

 f(x; w) = 1.5

 Decision boundary : f(x; w) = 0.89144

histograms of zi’s decision boundary

Is this our only option ?

Limitations of Fisher discrimination

The Fisher linear discriminant (a.k.a linear discriminant analysis)
assumes unimodal Gaussian likelihoods

If the distributions are significantly non-Gaussian, the LDA projections will

not be able to preserve any complex structure of the data, which may be

needed for classification.

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

12

Limitations of LDA
! LDA produces at most C-1 feature projections

" If the classification error estimates establish that more features are needed, some other
method must be employed to provide those additional features

! LDA is a parametric method since it assumes unimodal Gaussian likelihoods
" If the distributions are significantly non-Gaussian, the LDA projections will not be able to

preserve any complex structure of the data, which may be needed for classification

! LDA will fail when the discriminatory information is not in the mean but rather
in the variance of the data

!1 !2

!2 !1

"1="2="

!1

!2

"1

"2

"1="2="!1

!2

!1 !2

!2 !1

"1="2="

!1

!2

"1

"2

"1="2="!1

!2

x1

x2

LD
APCA

x1

x2

LD
APCA

LDA will fail when the discriminatory information is not in the mean
but rather in the variance of the data.

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

12

Limitations of LDA
! LDA produces at most C-1 feature projections

" If the classification error estimates establish that more features are needed, some other
method must be employed to provide those additional features

! LDA is a parametric method since it assumes unimodal Gaussian likelihoods
" If the distributions are significantly non-Gaussian, the LDA projections will not be able to

preserve any complex structure of the data, which may be needed for classification

! LDA will fail when the discriminatory information is not in the mean but rather
in the variance of the data

!1 !2

!2 !1

"1="2="

!1

!2

"1

"2

"1="2="!1

!2

!1 !2

!2 !1

"1="2="

!1

!2

"1

"2

"1="2="!1

!2

x1

x2

LD
APCA

x1

x2

LD
APCA

(Note: Fisher’s LDA generalizes very gracefully for c-class problems.
Instead of one projection y, seek (c−1) projections (y1, y2, . . . , yc−1)
by means of (c− 1) projection vectors wi, which can be arranged by
columns into a projection matrix W = [w1w2 . . .wc−1].)

Attempt 4: Logistic regression

The optimal decisions are based on the posterior class probabilities
P (ω|x). Can write these decisions as

Class (x) =

{
1, if log P (ω=1 | x)

P (ω=0 | x) > 0

0, otherwise.

Generally, don’t know P (ω |x) but could parametrise the decision
boundary as

log
P (ω = 1 |x)

P (ω = 0 |x)
= f(x;w) = w0 + wT

1 x

Logistic regression cont’d

This log-odds model

log
P (ω = 1 | x)

P (ω = 0 | x)
= w0 + w

T
1 x

gives rise to a specific form of the conditional likelihood of the labels
(the logistic model):

P (ω = 1 | x,w) = g(w0 + w
T
1 x)

where

g(z) = (1 + exp(−z))−1
=

exp(z)

1 + exp(z)

is a logistic squashing function that
turns linear predictions into probabilities.

Logistic regression: decisions

A logistic regression model implies a linear decision boundary

log
P (ω = 1 | x)

P (ω = 0 | x)
= w0 + w

T
1 x = 0

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

2

Linear Discriminant Functions (1)
! The objective of this lecture is to present methods for learning linear

discriminant functions of the form

" where w is the weight vector and w0 is the threshold weight or bias (not to be
confused with that of the bias-variance dilemma)

x1

x2

w
x

wTx+w0>0

wTx+w0<0

x(1

x(2d

x1

x2

w
x

wTx+w0>0

wTx+w0<0

x(1

x(2d

! " ! "
! "#

$
%

&'
&(

)*+
2

1
0

T

!x0xg
!x0xg

wxwxg

Fitting logistic regression models

Given training data {(xi, yi)}ni=1, we can fit the logistic model using
the maximum (conditional) log-likelihood criterion:

l(D;w) =

n∑
i=1

logP (ω = yi |xi)

where

P (ω = 1 |x) = g(w0 + wT
1 x)

The log-likelihood function l(D;w) is a jointly concave function of
the parameters w; a number of optimization techniques are available
for finding the maximizing parameters.

Re-writing

Can re-write the conditional distribution as

logP (ω = yi | xi) = yi logP (ω = 1 | xi) + (1− yi) log(1− P (ω = 1 | xi))

When yi = 1 then

logP (ω = 1 | xi) = 1 logP (ω = 1 | xi) + (1− 1) log(1− P (ω = 1 | xi))

= logP (ω = 1 | xi)

and when yi = 0 then

logP (ω = 0 | xi) = 0 logP (ω = 1 | xi) + (1− 0) log(1− P (ω = 1 | xi))

= log(1− P (ω = 1 | xi))

= logP (ω = 0 | xi)

Thus log-likelihood of the data becomes

l(D;w) =

n∑
i=1

logP (ω = yi |xi)

=

n∑
i=1

[yi logP (ω = 1 |xi) + (1− yi) log(1− P (ω = 1 |xi))]

Remember

P (ω = 1 | x) =
exp(wo + wT

1 x)

1 + exp(wo + wT
1 x)

1− P (ω = 1 | x) =
1

1 + exp(wo + wT
1 x)

Substituting these into the expression for the log-likelihood and after

a little algebra get

l(D;w) =

n∑
i=1

[
yi (wo + wT

1 xi)− log(1 + exp(wo + wT
1 xi))

]

Let w = (w0,w
T
1)T and x′ = (1,xT)T then

l(D;w) =

n∑
i=1

[
yiw

Tx′i − log(1 + exp(wTx′i))
]

Take the derivatives of the log-likelihood w.r.t. the parameters and

set to zero get

∂

∂w
l(D;w) =

n∑
i=1

[
yix
′
i −

exp(wTx′i)

1 + exp(wTx′i)
x
′
i

]

=

n∑
i=1

x
′
i

[
yi −

exp(wTx′i)

1 + exp(wTx′i)

]

=

n∑
i=1

x
′
i [yi − P (ω = 1 | xi)] = 0

Now have a set of d + 1 non-linear equations ∂
∂wj

l(D;w) = 0 for

j = 0, 1, 2, . . . , d, no easy closed form solution.

Stochastic gradient ascent

Can maximize the log-likelihood in an on-line or incremental fashion.

Given each training input xi and its binary label yi ∈ {0, 1}, we
can change the parameters w slightly to increase the corresponding
log-probability:

w← w + η
∂

∂w
logP (yi |xi,w)

= w + η (yi − P (w = 1 |xi,w))︸ ︷︷ ︸
prediction error

x′i

where η is the learning rate.

Examples that are already correctly classified do not lead to any
significant updates.

Gradient ascent of the log-likelihood

Can also perform gradient ascent steps on the log-likelihood of all
the training labels given examples at the same time. In other words,

w← w + η
∂

∂w
l(D;w)

= w + η

n∑
i=1

(yi − P (w = 1 |xi,w))x′i

Still need to figure out a way to set the learning rate to guarantee
convergence.

Additive models and classification

Can extend the logistic regression models to additive logistic models

P (ω = 1 |x,w) = g(w0 + w1 φ1(x) + · · ·+ wm φm(x))

Free to choose the basis functions φi(x) to capture relevant properties
of any specific classification problem.

Since one can also easily over-fit, use leave-one-out cross-validation
(in terms of log-likelihood or classification error) to estimate the
generalization performance.

Toy Example - Logistic regression classifier

linear decision boundary quadratic decision boundary

Pen & Paper Assignment

• Details available on the course website.

• You will implement perceptron learning to find the separating
hyperplane between images of digits.

• Mail me about any errors you spot in the Exercise notes.

• I will notify the class about errors spotted and corrections via the
course website and mailing list.

