
Lecture 7

Searching the image

• Sliding windows

• Image scale pyramid

Dimensionality Reduction

• Curse of dimensionality

• Principal Components Analysis

Story so far

• Have introduced some methods to describe the appearance of an
image/image patch via a feature vector. (SIFT HOG etc..)

• For patches of similar appearance their computed feature vectors
should be similar while dissimilar if the patches differ in
appearance.

• Feature vectors are designed to be invariant to common
transformations that superficially change the pixel appearance
of the patch.

Next problem

Have a training set of image patches each described by a feature
vector fr and a label ω such as face or not face.

Face Finder: Training
• Positive examples:

– Preprocess ~1,000 example face images
into 20 x 20 inputs

– Generate 15 “clones” of each with small
random rotations, scalings, translations,
reflections

• Negative examples
– Test net on 120 known “no-face” images

����!������
��!���

����!������!��!���

≡ fr, . . .

face

Given a novel image identify the patches in this image that
correspond to the target class (faces).

One part of the problem we have already partially explored.....

Know about classification

A patch from the novel image generates a feature vector fn, then
can assign a label to fn based on

• a nearest neighbour classifier

• logistic regression

• a learnt separating hyper-plane etc..

• and some more methods you’ll be learning about

However, which and how many different image patches
do we extract from the novel image ??

Remember....

The sought after image patch can appear at:

• any spatial location in the image,

• any size (the size of an imaged object depends on its distance from the camera),

• multiple locations.Variation in position and size- multiple detection windows

, 49

Sliding window technique

Must examine patches centered at different pixel locations and sizes.

Näıve Option: Exhaustive search in the test image

for j = 1:n s %% vary size of patch

n = n min + j*n step

for x=0:x max %% vary x-position of patch

for y=0:y max %% vary y-position of patch

Extract image patch centred on pixel x, y of size n×n.
Rescale it to the size of the reference patch

Compute feature vector f. Classify it.

This is computationally intensive, especially if it is expensive to
compute f , have n s × x max × y max iterations.

Also if n is large then it is probably very costly to compute f .

What about a multi-scale search?

Scale pyramid option

Construct an image pyramid that represents an image at several
resolutions. Then either

• Use the coarse scale to highlight promising image patches and
then just explore these area in more detail at the finer resolutions.
(Quick but may miss best image patches)

• Visit every pixel in the fine resolution image as a potential centre
pixel, but simulate changing the window size by applying the same
window size on the different images in the pyramid.

Now will review construction of the image pyramid..

Image Scale Pyramids

Naive subsampling

6

SMOOTHED IMAGE NAIVE SUBSAMPLING

Pick every other pixel in both directions

SUBSAMPLING ARTIFACTS

Particularly
noticeable in
high frequency
areas, such as
on the hair. The lowest resolution level

represents very poorly the
highest one.

SYNTHETIC EXAMPLE

1—D ALIASING

High frequency
signal sampled
at a much lower
frequency.

2—D ALIASING

Sampling frequency
lower than that of
the signal yields a
poor representation.

! Must remove high
frequencies before
sub-sampling.

Pick every other pixel in both directions

Sub-sampling artifacts

6

SMOOTHED IMAGE NAIVE SUBSAMPLING

Pick every other pixel in both directions

SUBSAMPLING ARTIFACTS

Particularly
noticeable in
high frequency
areas, such as
on the hair. The lowest resolution level

represents very poorly the
highest one.

SYNTHETIC EXAMPLE

1—D ALIASING

High frequency
signal sampled
at a much lower
frequency.

2—D ALIASING

Sampling frequency
lower than that of
the signal yields a
poor representation.

! Must remove high
frequencies before
sub-sampling.

Particularly
noticeable in

high frequency
areas, such as on

the hair.

Synthetic example

6

SMOOTHED IMAGE NAIVE SUBSAMPLING

Pick every other pixel in both directions

SUBSAMPLING ARTIFACTS

Particularly
noticeable in
high frequency
areas, such as
on the hair. The lowest resolution level

represents very poorly the
highest one.

SYNTHETIC EXAMPLE

1—D ALIASING

High frequency
signal sampled
at a much lower
frequency.

2—D ALIASING

Sampling frequency
lower than that of
the signal yields a
poor representation.

! Must remove high
frequencies before
sub-sampling.

Under-sampling
Undersampling

• Looks just like lower frequency signal!

Undersampling

• Looks like higher frequency signal!

Aliasing: higher frequency information
can appear as lower frequency
information

Undersampling

Good sampling

Bad sampling

Aliasing

Aliasing
Input signal:

x = 0:.05:5; imagesc(sin((2.^x).*x))

Matlab output:

Not enough samples

Aliasing in video

Slide credit: S. Seitz

Looks just like a lower frequency signal!

Under-sampling
Undersampling

• Looks just like lower frequency signal!

Undersampling

• Looks like higher frequency signal!

Aliasing: higher frequency information
can appear as lower frequency
information

Undersampling

Good sampling

Bad sampling

Aliasing

Aliasing
Input signal:

x = 0:.05:5; imagesc(sin((2.^x).*x))

Matlab output:

Not enough samples

Aliasing in video

Slide credit: S. Seitz

Looks like higher frequency signal!

Aliasing: higher frequency information can appear as lower frequency
information

2-D aliasing

6

SMOOTHED IMAGE NAIVE SUBSAMPLING

Pick every other pixel in both directions

SUBSAMPLING ARTIFACTS

Particularly
noticeable in
high frequency
areas, such as
on the hair. The lowest resolution level

represents very poorly the
highest one.

SYNTHETIC EXAMPLE

1—D ALIASING

High frequency
signal sampled
at a much lower
frequency.

2—D ALIASING

Sampling frequency
lower than that of
the signal yields a
poor representation.

! Must remove high
frequencies before
sub-sampling.

High frequency
signal sampled

lower than that of
the signal yields a

poor representation.
Therefore must

remove high
frequencies before

sub-sampling.

Aliasing summary

• Can’t shrink an image by taking every second pixel due to sampling
below the Nyquist rate

• If we do, characteristic errors appear such as

– jaggedness in line features,
– spurious highlights.
– appearance of frequency patterns not present in the original

image.

Gaussian pyramid

7

GAUSSIAN PYRAMID

• Gaussian smooth
• Pick every other pixel in both directions

LOSS OF DETAILS
BUT NOT ARTIFACTS

!No aliasing but
details are lost as
high frequencies
are progressively
removed.

LAPLACIAN PYRAMID

Each level of the Laplacian pyramid is the
difference between corresponding and next
higher level of the Gaussian Pyramid.

LAPLACIAN RECONSTRUCTION

• Upsampling by interpolation.
• Adding upsampled image and difference image.

P. Burt and E. Adelson, The Laplacian Pyramid as a Compact Image Code,
IEEE Transactions on Communications, 1983.

LAPLACIAN PYRAMID

• Pixels in the difference images are relatively
uncorrelated.

• Their values are concentrated around zero.

ENTROPY AND QUANTIZATION

! Effective compression
through shortened and
variable code words.

• Gaussian smooth image.

• Pick every other pixel in both directions.

Images in the pyramid

7

GAUSSIAN PYRAMID

• Gaussian smooth
• Pick every other pixel in both directions

LOSS OF DETAILS
BUT NOT ARTIFACTS

!No aliasing but
details are lost as
high frequencies
are progressively
removed.

LAPLACIAN PYRAMID

Each level of the Laplacian pyramid is the
difference between corresponding and next
higher level of the Gaussian Pyramid.

LAPLACIAN RECONSTRUCTION

• Upsampling by interpolation.
• Adding upsampled image and difference image.

P. Burt and E. Adelson, The Laplacian Pyramid as a Compact Image Code,
IEEE Transactions on Communications, 1983.

LAPLACIAN PYRAMID

• Pixels in the difference images are relatively
uncorrelated.

• Their values are concentrated around zero.

ENTROPY AND QUANTIZATION

! Effective compression
through shortened and
variable code words.

No aliasing but
details are lost as

high frequencies are
progressively

removed.

Scaled representation advantages

• Find template matches at all scales

– Template size is constant, but image size changes

• Efficient search for correspondence

– look at coarse scales, then refine with finer scales
– much less cost, but may miss best match

• Examining of all levels of detail

– Find edges with different amounts of blur
– Find textures with different spatial frequencies

Back to Sliding Windows

Summary: Sliding windows

Pros

• Simple to implement.
• Good feature choices critical.
• Past successes for certain classes.
• Good detectors available.

Cons/Limitations

• High computational complexity
– 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!

– Puts constraints on the type of classifiers we can use.

– If training binary detectors independently, this means cost increases

linearly with number of classes.

• With so many windows, false positive rate better be low!!

Limitations of sliding windows

• Not all object are box shaped.

Limitations of sliding windows

• Non-rigid, deformable objects not captured well with
representations assuming a fixed 2D structure; or must assume
fixed viewpoint

• Objects with less-regular textures not captured well with holistic
appearance-based descriptions.

Limitations of sliding windows

• If considering windows in isolation, context is lost.

Sliding Window Detector’s View

Limitations of sliding windows

• In practice, often entails large, cropped training set.

• Using a global appearance description can lead to sensitivity to
partial occlusions.

Need lots of training data Partial occlusion a problem

The curse of dimensionality

The curse of dimensionality

The curse of dimensionality

• A term coined by Richard Bellman in 1961,

• Refers to the problems associated with estimation and
classification of high-dimensional data.

• High-dimensions cause our intuition and many methods to break
down.

There are many manifestations of the curse of dimensionality...

The curse of dimensionality

Consider a 3-class pattern recognition problem:

Have training which consisis of a set of feature vectors
{x1,x2, . . . ,xn} and their associated class label {y1, y2, . . . , yn}.
Given a query example xu want to estimate its class label.

A simple approach would be to:

• Divide the feature space into uniform bins

• Compute the ratio of examples for each class at each bin and,

• For a new example, find its bin and choose the predominant class
in that bin

The curse: Toy example

In our toy problem we decide to start with feature vectors of one
dimension and divide the real line into 3 segments

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

2

! The curse of dimensionality
" A term coined by Bellman in 1961
" Refers to the problems associated with multivariate data analysis as the

dimensionality increases
" We will illustrate these problems with a simple example

! Consider a 3-class pattern recognition problem
" A simple approach would be to

! Divide the feature space into uniform bins
! Compute the ratio of examples for each class at each bin and,
! For a new example, find its bin and choose the predominant class in that bin

" In our toy problem we decide to start with one single feature and divide the real
line into 3 segments

" After doing this, we notice that there exists too much overlap among the classes,
so we decide to incorporate a second feature to try and improve separability

The curse of dimensionality (1)

x1x1

Notice, however, that there exists too much overlap among the
classes, so we decide to incorporate a second feature to try and
improve separability.

The curse: Toy example

Preserving the granularity of each axis raises the # of bins to 32 = 9 (in 2D)

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

3

! We decide to preserve the granularity of each axis, which raises the number of
bins from 3 (in 1D) to 32=9 (in 2D)

" At this point we need to make a decision: do we maintain the density of examples per bin or
do we keep the number of examples had for the one-dimensional case?

! Choosing to maintain the density increases the number of examples from 9 (in 1D) to 27 (in 2D)
! Choosing to maintain the number of examples results in a 2D scatter plot that is very sparse

! Moving to three features makes the problem worse:
" The number of bins grows to 33=27
" For the same density of examples the number of needed

examples becomes 81
" For the same number of examples, well, the 3D scatter

plot is almost empty

The curse of dimensionality (2)

x1

x2

Constant density

x1

x2

x3

x1

x2

Constant # examples

Then must decide to either

Maintain the density of examples
per bin

or
Keep the number of examples as
for the 1D case

Consequences of this decision

• Maintaining the density increases the number of examples from 9
(in 1D) to 27 (in 2D)

• Maintaining the number of examples constant results in a very
sparse 2D scatter plot

The curse: Toy example

Moving to three features makes the problem worse:

• The number of bins grows to 33 = 27

• For the same density of examples the number of needed examples becomes 81

• For the same number of examples, well, the 3D scatter plot is almost empty

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

3

! We decide to preserve the granularity of each axis, which raises the number of
bins from 3 (in 1D) to 32=9 (in 2D)

" At this point we need to make a decision: do we maintain the density of examples per bin or
do we keep the number of examples had for the one-dimensional case?

! Choosing to maintain the density increases the number of examples from 9 (in 1D) to 27 (in 2D)
! Choosing to maintain the number of examples results in a 2D scatter plot that is very sparse

! Moving to three features makes the problem worse:
" The number of bins grows to 33=27
" For the same density of examples the number of needed

examples becomes 81
" For the same number of examples, well, the 3D scatter

plot is almost empty

The curse of dimensionality (2)

x1

x2

Constant density

x1

x2

x3

x1

x2

Constant # examples

The curse of dimensionality

• This approach to divide the sample space into equally spaced bins
was quite inefficient

– There are other approaches that are much less susceptible to the curse of

dimensionality, but the problem still exists.

• How do we beat the curse of dimensionality?

– By incorporating prior knowledge

– By providing increasing smoothness of the target function

– By reducing the dimensionality

In practice, the curse of dimensionality means that, for a given
sample size, there is a maximum number of features above which the
performance of our classifier will degrade rather than improve

• In most cases, the additional information that is lost by discarding some

features is (more than) compensated by a more accurate mapping in the lower

dimensional space

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

4

The curse of dimensionality (3)
! Obviously, our approach to divide the sample space into equally

spaced bins was quite inefficient
" There are other approaches that are much less susceptible to the curse of

dimensionality, but the problem still exists
! How do we beat the curse of dimensionality?

" By incorporating prior knowledge
" By providing increasing smoothness of the target function
" By reducing the dimensionality

! In practice, the curse of dimensionality means that, for a given sample
size, there is a maximum number of features above which the
performance of our classifier will degrade rather than improve

" In most cases, the additional information that is lost by discarding some features
is (more than) compensated by a more accurate mapping in the lower-
dimensional space

dimensionality

pe
rfo

rm
an

ce

The curse: Implications

• Exponential growth in the number of examples required to
maintain a given sampling density

– For a density of n examples/bin and d dimensions, the total number of

examples is nd

• Exponential growth in the complexity of the target function (a
density estimate) with increasing dimensionality

– “A function defined in high-dimensional space is likely to be much more

complex than a function defined in a lower-dimensional space, and those

complications are harder to discern” - Friedman

This means that, in order to learn it well, a more complex target
function requires denser sample points!

• What to do if it isn’t Gaussian?

– For one dimension a large number of density functions can be found in

textbooks, but for high-dimensions only the multivariate Gaussian density is

available. Moreover, for larger values of d the Gaussian density can only be

handled in a simplified form!

• In high dimensions most data points are closer to the boundary of
the sample space than to any other data point. The reason that
this presents a problem is that prediction is much more difficult
near the edges of the training sample. One must extrapolate from
neighboring sample points rather than interpolate between them.

• Humans have an extraordinary capacity to discern patterns and
clusters in 1, 2 and 3-dimensions, but these capabilities degrade
drastically for 4 or higher dimensions.

Lecture 7

• The curse of dimensionality

• Dimensionality reduction & Feature selection vs.
feature extraction

Dimensionality reduction

Feature extraction: new features from combinations of the existing features.

x1

x2

...

xd


−→


z1

z2
...
zk

 = f





x1

x2

...

xd




︸ ︷︷ ︸

feature extraction

Feature selection: choose a subset of the features (the more informative ones)

x1

x2

...

xd


−→


xi1
xi2...
xik


︸ ︷︷ ︸

feature selection

Feature extraction

The problem of feature extraction can be stated as

• Given a feature x ∈ Rd find a mapping

f : Rd → Rk with k < d and z = f(x)

such that the transformed feature vector z ∈ Rk preserves (most
of) the information or structure in Rd.

• An optimal mapping with respect to a classification task z = f(x)
will be one that results in no increase in the minimum probability
of error.

– That is, a Bayes decision rule applied to the initial space Rd and to the

reduced space Rk yield the same classification rate.

Feature extraction

Generally, the optimal mapping y = f(x) is a non-linear function

• However, there is no systematic way to generate non-linear
transforms

– The selection of a particular subset of transforms is problem dependent

• For this reason, feature extraction is commonly limited to linear
transforms: z = Wx

x1

x2

...

xd


−→


z1

z2
...

zk

 =


w11 w12 · · · w1d

w21 w22 · · · w2d
...

wk1 wk2 · · · wkd




x1

x2

...

xd



Lecture 7

• The curse of dimensionality

• Dimensionality reduction

• Feature selection vs. Feature extraction

• Signal representation vs. signal classification

Signal representation Vs classification

• The selection of the feature extraction mapping z = f(x) is guided
by an objective function that we seek to maximize (or minimize)

• Depending on the criteria used by the objective function, feature
extraction techniques are grouped into two categories:

Signal representation The goal of the

feature extraction mapping is to

represent the samples accurately in

a lower-dimensional space.

Classification The goal of the feature

extraction mapping is to enhance

the class-discriminatory information

in the lower-dimensional space.

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

8

Signal representation versus classification
! The selection of the feature extraction mapping y=f(x) is guided by an

objective function that we seek to maximize (or minimize)
! Depending on the criteria used by the objective function, feature

extraction techniques are grouped into two categories:
" Signal representation: The goal of the feature extraction mapping is to represent

the samples accurately in a lower-dimensional space
" Classification: The goal of the feature extraction mapping is to enhance the

class-discriminatory information in the lower-dimensional space
! Within the realm of linear feature

extraction, two techniques are
commonly used

" Principal Components Analysis (PCA)
! uses a signal representation criterion

" Linear Discriminant Analysis (LDA)
! uses a signal classification criterion

Feature 1

Fe
at

ur
e

2

Clas
sif

ica
tio

n

Signal representation

1

2

11
1 1 1

111
1 1

1
1

11

11 1
1

1
1

2
2

2 2
2

2
2

22 222 2
2 2 2

2

2

When applying linear feature extraction, two techniques
are commonly used

Principal Components Analysis (PCA) - uses a signal representation
criterion

Linear Discriminant Analysis (LDA) - uses a signal classification
criterion (remember this from lecture 6)

Lecture 7

• The curse of dimensionality

• Dimensionality reduction

• Feature selection vs. feature extraction

• Signal representation vs. signal classification

• Principal Components Analysis

Intuitive motivation

Want to encode as accurately as possible the position of the n
points in this cluster. Can do so exactly with their x, y-coordinate
locations - 2n numbers. However, say I only have bandwidth to send
n+ 4 numbers. Intuitively, what should these numbers be ?

Intuitive motivation

Devote 2 numbers to the center of mass of the points.

Intuitive motivation

Use 2 numbers to define a direction which corresponds to
the direction in which there is most variation.

Intuitive motivation

Let the other m numbers represent where each point is
projected onto this line.

Intuitive motivation

Consider the variation in the direction
v among the xi’s.

• Project each point xi onto v via zi =

vTxi.

• The mean of the zi’s is:

1

n

∑
zi =

1

n

∑
v
T
xi = v

T
(

1

n

∑
xi

)
= v

T
µ

• The variance, σ2
z, of the zi’s is

∝
∑
i

(
v
T
(xi − µ)

)2

Which unit vector v maximizes σ2
z ?

Which unit vector v minimizes σ2
z ?

Intuitive motivation

Want to find the unit v that maximizes/minimises:

∑
i

(
(xi − µ)

T
v
)2

=
∑
i

v
T

(xi − µ)(xi − µ)
T
v = v

T

[∑
i

(xi − µ)(xi − µ)
T

]
v = v

T
Av

where A =
∑
i(xi − µ)(xi − µ)T

The two optimization problems are to find

v
∗

= arg max
v

v
T
Av subject to v

T
v = 1

v
∗

= arg min
v

v
T
Av subject to v

T
v = 1

Solution:

Constrained optimization problem =⇒ use Lagrange Multipliers.

Therefore construct the Lagrangian:

L = vTAv + λ (1− vTv)

Take its derivative wrt v, remembering A is symmetric, and set to 0

∂ L
∂v

= 2Av − 2λv = 0 =⇒ Av = λv

Therefore the optimum v is an eigenvector of A and the value of the
cost function at this optimum is vTAv = λvTv = λ.

Maximum occurs when v is eigenvector of A with largest eigenvalue.

Minimum occurs when v is eigenvector of A with smallest eigenvalue.

PCA derivation

A more formal derivation of the PCA basis for d dimensional data.

• Let x be an d-dimensional random vector, represented as a linear
combination of orthonormal basis vectors (φ1,φ2, . . . ,φd) as

x =

d∑
i=1

ziφi, where φ
T
i φj = δij

• Suppose we choose to represent x with only k (k < d) of the basis
vectors. Do this by replacing the components (zk+1, . . . , zd)

T

with some pre-selected constants bi

x̂(k) =
k∑
i=1

ziφi +
d∑

i=k+1

biφi

• The representation error is then

∆ x(k) = x− x̂(k) =

d∑
i=1

ziφi −

 k∑
i=1

ziφi +

d∑
i=k+1

biφi

 =

d∑
i=k+1

(zi − bi)φi

• We can measure this representation error by the mean-squared
magnitude of ∆x.

• Our goal is to find the basis vectors φi and constants bi that
minimize this mean-square error

ε̄
2
(k) = E

[
|∆x(k)|2

]
= E

 d∑
i=k+1

d∑
j=k+1

(zi − bi)(zj − bj)φT
i φj


=

d∑
i=k+1

E
[
(zi − bi)2

]
, as the φi’s are orthonormal

PCA derivation ctd

• The optimal values of bi can be found by computing the partial derivative of

the objective function and setting it to zero

∂

∂bi
E
[
(zi − bi)2

]
= −2 (E [zi]− bi) = 0 =⇒ bi = E [zi]

Therefore, replace the discarded dimensions zi’s by their expected value
• The mean-square error can then be written as

ε̄
2
(k) =

d∑
i=k+1

E
[
(zi − E [zi])

2
]

=

d∑
i=k+1

E

[(
φ
T
i x− E

[
φ
T
i x
])(

φ
T
i x− E

[
φ
T
i x
])T]

=

d∑
i=k+1

φ
T
i E

[
(x− E [x]) (x− E [x])

T
]
φi =

d∑
i=k+1

φ
T
i Σxφi

• We want the solution that minimizes this expression subject to the ortho-

normality constraints. Incorporate these into the expression using a set of

Lagrange multipliers λi

ε̄
2
(k) =

d∑
i=k+1

φ
T
i Σxφi +

d∑
i=k+1

λi(1− φ
T
i φi)

• Compute the partial derivative with respect to the basis vectors, for j =
k + 1, . . . , d

∂

∂φj
ε̄
2
(k) =

∂

∂φj

 d∑
i=k+1

φ
T
i Σxφi +

d∑
i=k+1

λi(1− φ
T
i φi)

 = 2
(

Σxφj − λjφj
)

Setting this equal to zero implies

Σxφj = λjφj

φj and λj are the eigenvectors and eigenvalues of the covariance matrix Σx.

The mean-square error can now be written as

ε̄
2
(k) =

d∑
i=k+1

φ
T
i Σxφi =

d∑
i=k+1

φ
T
i λiφi =

d∑
i=k+1

λi

To minimize this measure, choose λi’s to be the smallest eigenvalues.

Therefore, to represent the xi’s with minimum square-square error,
choose φi (for i = 1, . . . , k) to be the eigenvectors of Σx with the k
largest eigenvalues.

PCA summary

• The eigenvectors of Σx define a new coordinate system.

– eigenvectors with largest eigenvalues capture the most variation among

training vectors xi,

– eigenvectors with smallest eigenvalues have the least variation.

• Can compress the data by only using the top few eigenvectors

– corresponds to choosing a linear subspace

– these eigenvectors are known as the principal components.

Properties of PCA

Have shown that the mean square error between x and its
reconstruction using only k principle eigenvectors is given by the
expression:

d∑
j=k+1

λj

Interpretation

• PCA minimizes reconstruction error.

• PCA maximizes the variance of projection.

• Finds a more natural coordinate system for the sample data.

PCA and Images

• An image is a point in a high dimensional space.

– An W ×H image can be viewed as a point in RWH

• The set of faces is a subspace of the set of all images

– Suppose it is k dimensional.

– Can find the best subspace using PCA

– This is like fitting a hyper-plane to the set of faces

• This hyper-plane is spanned by the eigenvectors v1,v2, . . . ,vk.

– Any face is then approximated by:

x ≈ µ + (vT1 x)v1 + (vT2 x)v2 + · · ·+ (vTk x)vk

PCA and Images

If the matrix W ∈ Rk×d is formed such that each of its rows
corresponds to one of the eigenvectors vi then

x̂ = WTW x

is the point on the hyper-plane that is closest to x.

The error of the reconstruction is then

‖x−WTWx‖

Object representation

PCA representation

Object detection: distance to eigenspace

Slide a window over the image and classify the window as object or
non-object as follows:

1. Project window, x, to the eigen-subspace and reconstruct.

x̂ = WTWx

2. Compute the reprojection error ε = ‖x− x̂‖.

3. Local minima of the reprojection error over all image locations
=⇒ object location.

4. Repeat at different scales.

Object identification: distance in eigenspace

Object represented by its coordinates in an k-dimensional eigenspace.

Example:

A parametric eigenspace is a set of points representing individual
objects which differ according to some parameter, such as orientation,
pose, or illumination.

Estimate novel object properties by finding the nearest neighbour in
the eigenspace.

Parametric eigenspace

Object identifcation / pose estimation

Eigenfaces: Key ideas

• Assume that most faces lie on a low-dimensional subspace
determined by the k < d directions of the maximum variance.

• Use PCA to determine the vectors v1,v2, . . . ,vk that span this
subspace.

x ≈ µ + a1v1 + a2v2 + · · ·+ akvk

• Represent each face using its face space coordinates z =
(a1, a2, . . . , ak).

• Can then perform face recognition using nearest-neighbour
recognition in face space.

Choosing the dimension k

How many eigenfaces to use ?

Look at the decay of the
eigenvalues

• the eigenvalues tell you the
amount of variance in the
direction of that eigenface

• ignore eigenfaces with low
variance.

Cumulative influence of
eigenvectors

Eigenfaces example

Let X = {x1,x2, . . . ,xn} be a collection of feature vectors. Each
feature vector xi ∈ [0, 255]WH corresponds to the pixel values of a
visual image (W ×H) of a face.

Eigenfaces example

Mean face: µ

Top eigenvectors: v1,v2, . . . ,vk

Example 2, better alignmentEigenfaces
Turk & Pentland (1992)

mean and eigenfaces

Eigenfaces example

Face x in face space coordinates

novel face

x→ (vT1 (x−µ), . . . ,vTk (x−µ)) = (a1, . . . , ak)

Reconstruction

x = µ +
∑k
i=1 ai vi

Summary: Recognition with eigenfaces

Process labelled training images:

• Find mean µ and covariance matrix Σx

• Find k principal components (eigenvectors of Σ) v1,v2, . . . ,vk

• Project each training image xi onto subspace spanned by principal
components:

(ai1, . . . , aik) = (vT1 (xi − µ), . . . ,vTk (xk − µ))

Summary: Recognition with eigenfaces

Given novel image x:

• Project onto subspace

(a1, . . . , ak) = (vT1 (x− µ), . . . ,vTk (x− µ))

• Optional: check reconstruction error ‖x − x̂‖ to determine
whether image is really a face.

• Classify as closest training face in k-dimensional subspace.

Important footnote

Don’t really implement PCA this way! Why?

1. How big is Σ?

• d × d, where d is the number of pixels in an image. Can be a
big number.
• However, we only have n training examples.

Typically n� d2 =⇒ Σ will a rank of most n!

2. You only need the first k eigenvectors.

Remember SVD

Any arbitrary k× n matrix X can be converted to the product of an
orthogonal matrix, a diagonal matrix and another orthogonal matrix
via singular value decomposition:

X = USV T

S ∼ a diagonal matrix (k × n) with non-negative entries (σ1, σ2, . . . , σs)

where s = min(k, n) are called the singular values.

Singular values are the square roots of the eigenvalues of XX
T

U ∼ a square (k × k) orthogonal matrix, columns of U are the eigenvectors of XXT

V ∼ a square (n× n) orthogonal matrix, columns of V are the eigenvectors of XT
X

SVD PCA - Implementation guide

• Given n data points xi each of dimension d.

• Compute the mean µ = 1
n

∑n
i=1 xi and subtract it from each data

point.
xci = xi − µ

• Compute the data matrix X where each column is a data point
xci .

• Let Y = 1√
n
XT and perform SVD such that Y = WSV T .

• The principal components are the k singular vectors with highest
singular values (rows of V T).

Limitations

• Global appearance method: it is not robust to misalignment or
background variation.

• PCA implicitly assumes the data has a Gaussian distribution

These points are not well described by its principal components

Pen & Paper Assignment

• Details available on the course website.

• You will implement compute the eigenfaces of the Bush dataset
and for another face dataset.

• Mail me about any errors you spot in the Exercise notes.

• I will notify the class about errors spotted and corrections via the
course website and mailing list.

