
Lecture 9

Structural Risk Minimization

• Empirical Risk
• VC Dimension

Review of Lagrange multipliers

SVMs for the separable case

• Maximum margin hyper-plane
• The Lagrangian dual problem



Introduction

Learning a binary classification function from data

Given a dataset (x1, y1), (x2, y2), . . . , (xn, yn) where each yi ∈ {−1, 1}.
Learn a function y = f(x;θ) that will correctly classify unseen examples.

How do we choose the type of f and θ ?

By optimizing some measure of performance of the learned model.

What is a good measure of performance?

A good measure is the expected risk

Rf(θ) = E [L(y, f(x;θ))] = Expected value of the Loss function



Unfortunately, the risk cannot be measured directly since the underlying pdf
is unknown. Instead, we typically use the risk over the training set, also
known as the empirical risk

R
emp
f (θ) =

1

n

n∑
i=1

L(yi, f(xi;θ)) = Average value of loss function on the training set



Introduction

Empirical Risk Minimization

• A formal term for a simple concept: find the function f(x) that minimizes
the average risk on the training set.

• Minimizing the empirical risk is not a bad thing to do, provided that
sufficient training data is available, since the law of large numbers ensures
that the empirical risk will asymptotically converge to the expected risk for
n→∞.

• However, for small samples, one cannot guarantee that ERM will also
minimize the expected risk. This is the all too familiar issue of generalization.



Introduction

How do we avoid overfitting ?

By controlling model complexity. Intuitively, we should prefer the simplest
model that explains the data (Occam’s razor).
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Introduction (2)
! Empirical Risk Minimization

" A formal term for a simple concept: find the function f(x) that minimizes the 
average risk on the training set

" Minimizing the empirical risk is not a bad thing to do, provided that sufficient 
training data is available, since the law of large numbers ensures that the 
empirical risk will asymptotically converge to the expected risk for n!"

" However, for small samples, one cannot guarantee that ERM will also minimize 
the expected risk.  This is the all too familiar issue of generalization

! How do we avoid overfitting? 
" By controlling model complexity.  Intuitively, we should prefer the simplest model 

that explains the data (Occam’s razor)

From [Müller et al., 2001]



The VC dimension

The Vapnik-Chervonenkis dimension

This is a measure of the complexity / capacity of a class of functions F . It
measures the largest number of examples that can be explained by the family
F .

Trade-off between High Capacity and Good generalization

More capacity If the family F has sufficient capacity to explain every possible
data-set =⇒ there is a risk of overfitting.

Less capacity Functions f ∈ F having small capacity may not be able to
explain our particular dataset, however, are much less likely to overfit.

How does VC-dimension characterize this trade-off?



Vapnik-Chervonenkis dimension

Rf(θ) = E

[
1

2
|y − f(x; θ)|

]
R

emp
f (θ) =

1

n

n∑
i=1

1

2
|yi − f(xi; θ)|

Given a class of functions F , let h be its VC dimension.

h is a measure of F ’s capacity (h does not depend on the choice of training set)

Vapnik showed that with probability 1− η

Rf(θ) ≤ Remp
f (θ) +

√
h(log(2nh ) + 1)− log(η4)

n

This gives us a way to estimate the error on future data based only on the
training error and the VC-dimension of F .



Vapnik-Chervonenkis dimension

Given F how do we define and compute h, its VC dimension?

Will now introduce the concept of shattering....



Shattering

A function f(x;θ) can shatter a set of points x1,x2, . . . ,xr if and only if

For every possible training set of the form (x1, y1), (x2, y2), . . . , (xr, yr),
there exists some value of θ such that f(xi;θ) = yi for i = 1, . . . , r.

Remember, there are 2r such training sets to consider, each with a different combination of

+1’s and -1’s for the y’s.



Shattering

A function f can shatter a set of points x1,x2, . . . ,xr if and only if

For every possible training set of the form (x1, y1), (x2, y2), . . . , (xr, yr),
there exists some value of θ such that f(xi;θ) = yi for i = 1, . . . , r.

Question: Can the following f shatter the following points?

f(x;w) = sgn
(
wTx

)



Shattering

A function f can shatter a set of points x1,x2, . . . ,xr if and only if

For every possible training set of the form (x1, y1), (x2, y2), . . . , (xr, yr),
there exists some value of θ such that f(xi;θ) = yi for i = 1, . . . , r.

Answer: No problem. There are four training sets to consider

X X X X



Shattering

A function f can shatter a set of points x1,x2, . . . ,xr if and only if

For every possible training set of the form (x1, y1), (x2, y2), . . . , (xr, yr),
there exists some value of θ such that f(xi;θ) = yi for i = 1, . . . , r.

Question: Can the following f shatter the following points?

f(x; b) = sgn
(
xTx− b

)



Shattering

A function f can shatter a set of points x1,x2, . . . ,xr if and only if

For every possible training set of the form (x1, y1), (x2, y2), . . . , (xr, yr),
there exists some value of θ such that f(xi;θ) = yi for i = 1, . . . , r.

Answer: Not possible.

X X X 7



Definition of VC dimension

Given the class of functions F , it has VC-dimension h if

there exists at least one set of h points that can be shattered

by f ∈ F (note but, in general, it will not be true that every set of h points can

be shattered).

Question: What’s the VC dimension of f(x; b) = sgn
(
xTx− b

)
?



Definition of VC dimension

Given the class of functions F , it has VC-dimension h if

there exists at least one set of h points that can be shattered

by f ∈ F

Answer: 1. We can’t even shatter two points! It’s clear one point can be
shattered.

X X



Definition of VC dimension

Given the class of functions F , it has VC-dimension h if

there exists at least one set of h points that can be shattered

by f ∈ F

Example: For 2 dimensional imputs, what’s the VC dimension of

f(x; q, b) = sgn
(
q xTx− b

)



Definition of VC dimension

Given the class of functions F , it has VC-dimension h if

there exists at least one set of h points that can be shattered

by f ∈ F

Answer: 2

X X X X (q, b are -ve)



Definition of VC dimension

Given the class of functions F , it has VC-dimension h if

there exists at least one set of h points that can be shattered

by f ∈ F

Example: What’s the VC dimension of f(x; q, b) = sgn
(
q xTx− b

)
Answer: 2 (clearly can’t do 3)
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VC dimension of separating line

Given the class of functions F , it has VC-dimension h if

there exists at least one set of h points that can be shattered by f ∈ F

Example: For 2 dimensional imputs, what’s the VC dimension of

f(x;w, b) = sgn
(
w
T
x + b

)

Can f shatter these 3 points?



VC dimension of separating line

Given the class of functions F , it has VC-dimension h if

there exists at least one set of h points that can be shattered

by f ∈ F

Example: What’s the VC dimension of f(x;w, b) = sgn
(
wTx + b

)
?

Answer: Yes, can shatter 3 points.

X X X X X X X X



VC dimension of separating line

Given the class of functions F , it has VC-dimension h if

there exists at least one set of h points that can be shattered

by f ∈ F

Example: For 2-dimensional inputs, what’s the VC dimension of f(x;w, b) =
sgn

(
wTx + b

)
?

Can we find four points that f can
shatter?



VC dimension of separating line

Given the class of functions F , it has VC-dimension h if

there exists at least one set of h points that can be shattered

by f ∈ F

Example: What’s the VC dimension of f(x;w, b) = sgn
(
wTx + b

)
?

Can always draw 6 lines between pairs
of four points.



VC dimension of separating line

Given the class of functions F , it has VC-dimension h if

there exists at least one set of h points that can be shattered

by f ∈ F

Example: What’s the VC dimension of f(x;w, b) = sgn
(
wTx + b

)
?

Can always draw 6 lines between pairs
of four points.

Two of those lines will cross.



VC dimension of separating line

Given the class of functions F , it has VC-dimension h if

there exists at least one set of h points that can be shattered by f ∈ F

Example: What’s the VC dimension of f(x;w, b) = sgn
(
wTx + b

)
?

Can always draw 6 lines between pairs of four

points.

Two of those lines will cross.

If we put points linked by the crossing lines in

the same class they can’t be linearly separated.

A line can shatter 3 points but not 4 =⇒ VC-dim of a separating line is 3.



VC dimension of linear classifier in d-dimensions

If the input space is d-dimensional and if f is sgn
(
wTx− b

)
, what is its

VC-dimension?

Proof:

First will show d points can be shattered...



VC dimension of linear classifier in d-dimensions

If the input space is d-dimensional and if f is sgn
(
wTx− b

)
, what is its

VC-dimension?

Proof:

Define d input points thus:

x1 = (1, 0, 0, . . . , 0), x2 = (0, 1, 0, . . . , 0), . . . , xd = (0, 0, 0, . . . , 1)

So xk,j = 1 if k = j and 0 otherwise.

Let y1, y2, . . . , yd be any one of the 2d combinations of class labels.

How can we define w and b to ensure

sgn
(
wTxk + b

)
= yk for all k ?



Remember

sgn
(
wTxk + b

)
= sgn

(
b+

d∑
i=1

xk,iwi

)
= sgn (b+ wk)

Set b = 0 and wk = yk for all k. Thus

f(xk;w, b) = sgn
(
wTxk + b

)
= sgn (b+ wk) = sgn (0 + yk) = yk

Thus the VC-dimension is ≥ d.

Next:

Show that f can shatter d+ 1 points. How?

As before set

x1 = (1, 0, 0, . . . , 0), x2 = (0, 1, 0, . . . , 0), . . . , xd = (0, 0, 0, . . . , 1)



and additionally xd+1 = 0 = (0, 0, 0, . . . , 0).

This time round set

w = (y1 − yd+1, y2 − yd+1, . . . , yd − yd+1) and b = yd+1

Then for k = 1, . . . , d:

f(xk;w, b) = sgn
(
w
T
xk + b

)
= sgn (b+ wk) = sgn (yd+1 + (yk − yd+1)) = yk

and for k = d+ 1:

f(xd+1;w, b) = sgn
(
w
T
xd+1 + b

)
= sgn (b) = sgn (yd+1) = yd+1

Thus the VC-dimension is ≥ d+ 1.

Will prove in the next Exercise class that you cannot find a hyper-plane to
shatter d + 2 points =⇒ VC dimension of the family of oriented separating
hyperplanes in Rd is d+ 1.



What does VC-dimension measure?

Is it the number of parameters?

Related but not really the same

One may intuitively expect that models with a large number of free
parameters would have high VC dimension, whereas models with few
parameters would have low VC dimensions.

However, consider this example....



Example

Consider the one-parameter function

fα(x) = sign (sin(αx)), x, α ∈ R.

Choose an arbitrary number h and set xi = 10−i, i = 1, . . . , h.

Choose the corresponding labels yi arbitrarily with yi ∈ {−1,+1}.

Let α be

α = π

(
1 +

h∑
i=1

(1− yi)10i

2

)
Despite having only one parameter, the function fα(x) shatters an arbitrarily large number of

points chosen according to the outlined procedure.



In this picture h = 10 and whatever the labelling predictions are correct.
Circles the predictions and crosses are the ground truth.
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But, can also find four points that cannot be shattered by this function!
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So what do we make of this? The VC dimension is a more sophisticated measure of

model complexity than dimensionality or number of free parameters [Pardo, 2000].



Structural Risk Minimization

Another formal term for an intuitive concept: the optimal model is found by
striking a balance between the empirical risk and the VC dimension.

Remember:

R(θ) ≤ Remp
(θ) +

√
h(log(2nh ) + 1)− log(η4)

n

The SRM principle proceeds as follows

• Construct a nested structure for family of function classes F1 ⊆ F2 ⊆
. . . ⊆ Fk with non-decreasing VC dimensions (h1 ≤ h2 ≤ . . . ≤ hk).

• For each class Fi, compute solution fi that minimizes the empirical risk.

• Choose the function class Fi, and the corresponding solution fi, that
minimizes the risk bound.



In other words

• Train a set of machines, one for each subset.

• For a given subset, train to minimize the empirical risk.

• Choose the machine whose sum of empirical risk and VC confidence is minimum.

i Fi Remp(θ) VC Confidence Probable Upper bound Choice

1 F1 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H HH H

2 F2 H H H H H H H H H H H H H H H H H H H H H H H H H H H HH H

3 F3 H H H H H H H H H H H H H H H H H H H H H H H H H H H HH H

4 F4 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H HH H

5 F5 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H HH H

6 F6 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H HH H
Note the second VC-confidence term is usually very, very conservative (at
least hundreds of times larger than the empirical over-fitting effect).



Structural Risk Minimization
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Structural Risk Minimization (3)

From [Cherkassky and Mulier, 1998]

VC dimension

Empirical RiskVC confidence

Expected risk

SkS1 S2

Underfitting Overfitting

VC dimension

Empirical RiskVC confidence

Expected risk

SkS1 S2

Underfitting Overfitting



Using VC-dimensionality

People have worked hard to find the VC-dimension for

• Perceptrons

• Neural Nets

• Support Vector Machines

• And many many more

All with the goals of

1. Understanding which learning machines are more or less powerful under
which circumstances.

2. Using Structural Risk Minimization to choose the best learning machine.



Alternatives to VC-dim based model selection

Could use potentially use Cross-validation instead:

i Fi Remp(θ) 10-Fold-CV-Error Choice

1 F1

2 F2

3 F3

4 F4

5 F5

6 F6

Note the CV error might have more variance.



The VC dimension in practice

Unfortunately, computing an upper bound on the expected risk is not
practical in various situations

• The VC dimension cannot be accurately estimated for non-linear models
such as neural networks.

• Implementation of Structural Risk Minimization may lead to a non-linear
optimization problem.

• The VC dimension may be infinite (e.g., k = 1 nearest neighbor),
requiring infinite amount of data.

• The upper bound may sometimes be trivial (e.g., larger than one).

Fortunately, Statistical Learning Theory can be rigorously applied in the
realm of linear models.



Optimal separating hyperplanes

Consider the problem of finding a separating hyperplane for a linearly
separable dataset {(x1, y1), (x2, y2), . . . , (xn, yn)} with xi ∈ Rd and y ∈
{−1,+1}.
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Optimal separating hyperplanes (1)
! Consider the problem of finding a separating hyperplane for a linearly 

separable dataset {(x1,y1),(x2,y2),…,(xN,yN)}, x!RD, y!{-1,+1}
" Which of the infinite hyperplanes should we choose? 

! Intuitively, a hyperplane that passes too close to the training examples will be sensitive 
to noise and, therefore, less likely to generalize well for data outside the training set

! Instead, it seems reasonable to expect that a hyperplane that is farthest from all 
training examples will have better generalization capabilities

" Therefore, the optimal separating hyperplane will be the one with the largest 
margin, which is defined as the minimum distance of an example to the decision 
surface

From [Cherkassky and Mulier, 1998]

x1

x2

x1

x2

Optimal hyperplane

Maximum
margin

Which of the infinite hyperplanes should we choose?



Intuitively

Bad a hyperplane passing too close to the training examples will be sensitive
to noise and probably less likely to generalize well

Better a hyperplane far away from all training examples will probably have
better generalization capabilities.
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Optimal separating hyperplanes (1)
! Consider the problem of finding a separating hyperplane for a linearly 

separable dataset {(x1,y1),(x2,y2),…,(xN,yN)}, x!RD, y!{-1,+1}
" Which of the infinite hyperplanes should we choose? 

! Intuitively, a hyperplane that passes too close to the training examples will be sensitive 
to noise and, therefore, less likely to generalize well for data outside the training set

! Instead, it seems reasonable to expect that a hyperplane that is farthest from all 
training examples will have better generalization capabilities

" Therefore, the optimal separating hyperplane will be the one with the largest 
margin, which is defined as the minimum distance of an example to the decision 
surface

From [Cherkassky and Mulier, 1998]

x1

x2

x1

x2

Optimal hyperplane

Maximum
margin

Therefore, the optimal separating
hyperplane will be the one with the
largest margin, which is defined as the
minimum distance of an example to
the decision surface.



Optimal separating hyperplanes

How does this intuitive result relate to the VC dimension?

It can be shown [Vapnik, 1998] that the VC dimension of a separating
hyperplane with a margin m is bounded as follows

h ≤ min

(
r2

m2
, d

)
+ 1

where d is the dimensionality of the input space, and r is the radius of the
smallest sphere containing all the input vectors.

By maximizing the margin one is minimizing the VC dimension.

The separating hyperplane has zero empirical error and maximizing the margin
=⇒ minimizing the upper bound on the expected risk.

Therefore: The separating hyperplane with maximum margin will also
minimize the structural risk.



Optimal separating hyperplanes

To further understand the relationship between margin and capacity,
consider the two separating hyperplanes depicted below

A skinny one (small margin), will be able to adopt many orientations.
A fat one (large margin), will have limited flexibility.
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Optimal separating hyperplanes (3)
! To further understand the relationship between margin and capacity, 

consider the two separating hyperplanes depicted below
" A “skinny” one (small margin), which will be able to adopt many orientations
" A “fat” one (large margin), which will have limited flexibility

! A larger margin necessarily results in lower capacity
" We normally think of complexity as being a function of the number of parameters

! Instead, Statistical Learning Theory tells us that if the margin is sufficiently large, the 
complexity of the function will be low even if the dimensionality is very high! 

From [Bennett and Campbell, 2000]

x1

x2

Small margin Large margin

x1

x2



A larger margin necessarily results in lower capacity

• We normally think of complexity as being a function of the number of
parameters.

Instead, Statistical Learning Theory tells us that if the margin is
sufficiently large, the complexity of the function will be low even
if the dimensionality is very high!



Optimal separating hyperplanes

Express the margin in terms of w and b of the separating hyperplane.

The distance between a point x and a plane (w, b) is |w
Tx+b|
‖w‖

Introduction to Pattern Analysis
Ricardo Gutierrez-Osuna
Texas A&M University

15

Optimal separating hyperplanes (4)
! Since we want to maximize the margin, let’s express it as a function of 

the weight vector and bias of the separating hyperplane
" From basic trigonometry, the distance between a point x and a plane (w,b) is

" Noticing that the optimal hyperplane has infinite solutions by simply scaling the 
weight vector and bias, we choose the solution for which the discriminant 
function becomes one for the training examples closest to the boundary

! This is known as the canonical hyperplane
" Therefore, the distance from the closest 

example to the boundary is

" And the margin becomes

w
bxwT !

1bxw i
T "!

w
1

w
bxwT

"
!

w
2m "

x1

x2

w
bxwT !

w
b

w
2

x1

x2

w
bxwT !

w
b

w
2

The optimal hyperplane has an infinite number of representations by simply
re-scaling the weight vector and bias.



Choose the representation for which the discriminant function becomes one
for the training examples closest to the boundary.

|wTx + b| = 1, ⇐ the canonical hyperplane

Therefore, the distance from the closest example to the boundary is

|wTx + b|
‖w‖

=
1

‖w‖

The margin becomes

m =
2

‖w‖



Optimal separating hyperplanes

The problem of maximizing the margin is equivalent to

minimize J(w) = 1
2‖w‖

2 subject to yi(w
Txi + b) ≥ 1 ∀i

Notice that J(w) is a quadratic function, which means that there exists a
single global minimum and no local minima.

To solve, use classical Lagrangian optimization techniques

The Karush-Kuhn-Tucker conditions are used to analyse the solution.



Lagrange multipliers

Our optimization problem is

min
w
f(w) subject to gj(w, b) ≤ 0, j = 1, . . . , n.

where

f(w) =
1

2
‖w‖2 and gj(w, b) = 1− yj(wTxj + b)

As f(x) is convex as is each gj(x) and we are assuming the points are linearly
separable, we can invoke the theorem we stated earlier and solve the dual
problem....



Properties of the solution

Karush-Kuhn-Tucker conditions: For an optimal feasible, w∗, b∗, λ∗ solution
the following conditions hold:

KKT dual complementary condition →λ
∗
i gi(w

∗
, b
∗
) = 0, i = 1, . . . , n

gi(w
∗
, b
∗
) ≤ 0, i = 1, . . . , n

λ
∗
i ≥ 0, i = 1, . . . , n
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Support Vectors
! The KTT complementary condition states that, for every point in the 

training set, the following equality must hold

" Therefore, for each example, either !i=0 or yi(wTxi+b-1)=0 must hold
" Those points for which !i>0 must then lie on one of the two hyperplanes that 

define the largest margin (only at these hyperplanes the term yi(wTxi+b-1) 
becomes zero)

! These points are known as the Support Vectors
" All the other points must have !i=0 
" Note that only the support vectors contribute 

to defining the optimal hyperplane

! NOTE: the bias term b is found from the KKT
complementary condition on the support vectors

" Therefore, the complete dataset could be 
replaced by only the support vectors, and 
the separating hyperplane would be the same

" #$ % 1...Ni01bxwy! i
T

ii &'&()

" # *
&

&+&
,

, N

1i
iii xy!w0

w
!b,w,J

x1

x2

Support 
Vectors (!>0)

If λ∗i > 0 then gi(w
∗, b∗) = 0 =⇒ the

constraint gi is active.

Thus the SVM in fact only depends only a small number of support vectors.



The dual problem

Our Lagrangian is

L(w, b,λ) =
1

2
‖w‖2 +

n∑
j=1

λj(1− yj (wTxj + b))

The Lagrange dual function of our optimization problem

Θ(λ) ≡ min
w,b
L(w, b,λ) = L(w∗, b∗,λ)

Finding w∗ and b∗ requires computing the gradient

∇w L(w, b,λ) = w −
n∑
j=1

λj yj xj = 0



This implies that

w∗ =

n∑
j=1

λj yj xj

Also

∂L(w, b,λ)

∂b
= −

n∑
j=1

λjyj = 0

Plugging w∗ and b∗ into L get

L(w∗, b∗,λ) =

n∑
j=1

λj − b
∑
j

λj yj −
1

2

∑
i

∑
j

λi λj yi yj x
T
i xj



but
∑
j λj yj = 0, thus

L(w∗, b∗,λ) =

n∑
j=1

λj −
1

2

∑
i

∑
j

λi λj yi yj x
T
i xj

Putting everything together get the dual optimization problem

max
λ


n∑
i=1

λi −
1

2

∑
i

∑
j

λi λj yi yj x
T
i xj


subject to λj ≥ 0 for i = 1, . . . , n and

∑
j

λj yj = 0.



Properties of the solution

If w∗ found
b
∗
= −

1

2

(
max
i:yi=−1

w
∗T

xi + min
i:yi=1

w
∗T

xi

)
Prediction at a new point x having found the optimal λ

w
T
x + b =

(
n∑
i=1

λi yi xi

)T

x + b

=

n∑
i=1

λi yi 〈xi, x〉+ b

Have to calculate a quantity that depends only on the inner product
between x and the points in the training set. The λi’s will all be zero
except for the support vectors. Thus many of the terms in the sum zero.
Only need to find the inner products between x and the support vectors.



Pen & Paper assignment

• Details available on the course website.

• Your assignment is a small pen & paper exercise based on hand calculation
of a separating line.

• Mail me about any errors you spot in the Exercise notes.

• I will notify the class about errors spotted and corrections via the course
website and mailing list.


